0
0

SimplexNoise.js 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444
  1. // Ported from Stefan Gustavson's java implementation
  2. // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  3. // Read Stefan's excellent paper for details on how this code works.
  4. //
  5. // Sean McCullough banksean@gmail.com
  6. //
  7. // Added 4D noise
  8. /**
  9. * You can pass in a random number generator object if you like.
  10. * It is assumed to have a random() method.
  11. */
  12. class SimplexNoise {
  13. constructor( r = Math ) {
  14. this.grad3 = [[ 1, 1, 0 ], [ - 1, 1, 0 ], [ 1, - 1, 0 ], [ - 1, - 1, 0 ],
  15. [ 1, 0, 1 ], [ - 1, 0, 1 ], [ 1, 0, - 1 ], [ - 1, 0, - 1 ],
  16. [ 0, 1, 1 ], [ 0, - 1, 1 ], [ 0, 1, - 1 ], [ 0, - 1, - 1 ]];
  17. this.grad4 = [[ 0, 1, 1, 1 ], [ 0, 1, 1, - 1 ], [ 0, 1, - 1, 1 ], [ 0, 1, - 1, - 1 ],
  18. [ 0, - 1, 1, 1 ], [ 0, - 1, 1, - 1 ], [ 0, - 1, - 1, 1 ], [ 0, - 1, - 1, - 1 ],
  19. [ 1, 0, 1, 1 ], [ 1, 0, 1, - 1 ], [ 1, 0, - 1, 1 ], [ 1, 0, - 1, - 1 ],
  20. [ - 1, 0, 1, 1 ], [ - 1, 0, 1, - 1 ], [ - 1, 0, - 1, 1 ], [ - 1, 0, - 1, - 1 ],
  21. [ 1, 1, 0, 1 ], [ 1, 1, 0, - 1 ], [ 1, - 1, 0, 1 ], [ 1, - 1, 0, - 1 ],
  22. [ - 1, 1, 0, 1 ], [ - 1, 1, 0, - 1 ], [ - 1, - 1, 0, 1 ], [ - 1, - 1, 0, - 1 ],
  23. [ 1, 1, 1, 0 ], [ 1, 1, - 1, 0 ], [ 1, - 1, 1, 0 ], [ 1, - 1, - 1, 0 ],
  24. [ - 1, 1, 1, 0 ], [ - 1, 1, - 1, 0 ], [ - 1, - 1, 1, 0 ], [ - 1, - 1, - 1, 0 ]];
  25. this.p = [];
  26. for ( let i = 0; i < 256; i ++ ) {
  27. this.p[ i ] = Math.floor( r.random() * 256 );
  28. }
  29. // To remove the need for index wrapping, double the permutation table length
  30. this.perm = [];
  31. for ( let i = 0; i < 512; i ++ ) {
  32. this.perm[ i ] = this.p[ i & 255 ];
  33. }
  34. // A lookup table to traverse the simplex around a given point in 4D.
  35. // Details can be found where this table is used, in the 4D noise method.
  36. this.simplex = [
  37. [ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 2, 3, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 3, 0 ],
  38. [ 0, 2, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 3, 2, 0 ],
  39. [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ],
  40. [ 1, 2, 0, 3 ], [ 0, 0, 0, 0 ], [ 1, 3, 0, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ],
  41. [ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 3, 1 ], [ 0, 0, 0, 0 ], [ 2, 1, 3, 0 ],
  42. [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ],
  43. [ 2, 0, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ], [ 0, 0, 0, 0 ], [ 3, 1, 2, 0 ],
  44. [ 2, 1, 0, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 1, 0, 2 ], [ 0, 0, 0, 0 ], [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]];
  45. }
  46. dot( g, x, y ) {
  47. return g[ 0 ] * x + g[ 1 ] * y;
  48. }
  49. dot3( g, x, y, z ) {
  50. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z;
  51. }
  52. dot4( g, x, y, z, w ) {
  53. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w;
  54. }
  55. noise( xin, yin ) {
  56. let n0; // Noise contributions from the three corners
  57. let n1;
  58. let n2;
  59. // Skew the input space to determine which simplex cell we're in
  60. const F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 );
  61. const s = ( xin + yin ) * F2; // Hairy factor for 2D
  62. const i = Math.floor( xin + s );
  63. const j = Math.floor( yin + s );
  64. const G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0;
  65. const t = ( i + j ) * G2;
  66. const X0 = i - t; // Unskew the cell origin back to (x,y) space
  67. const Y0 = j - t;
  68. const x0 = xin - X0; // The x,y distances from the cell origin
  69. const y0 = yin - Y0;
  70. // For the 2D case, the simplex shape is an equilateral triangle.
  71. // Determine which simplex we are in.
  72. let i1; // Offsets for second (middle) corner of simplex in (i,j) coords
  73. let j1;
  74. if ( x0 > y0 ) {
  75. i1 = 1; j1 = 0;
  76. // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  77. } else {
  78. i1 = 0; j1 = 1;
  79. } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  80. // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  81. // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  82. // c = (3-sqrt(3))/6
  83. const x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  84. const y1 = y0 - j1 + G2;
  85. const x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
  86. const y2 = y0 - 1.0 + 2.0 * G2;
  87. // Work out the hashed gradient indices of the three simplex corners
  88. const ii = i & 255;
  89. const jj = j & 255;
  90. const gi0 = this.perm[ ii + this.perm[ jj ] ] % 12;
  91. const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ] ] % 12;
  92. const gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ] ] % 12;
  93. // Calculate the contribution from the three corners
  94. let t0 = 0.5 - x0 * x0 - y0 * y0;
  95. if ( t0 < 0 ) n0 = 0.0;
  96. else {
  97. t0 *= t0;
  98. n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient
  99. }
  100. let t1 = 0.5 - x1 * x1 - y1 * y1;
  101. if ( t1 < 0 ) n1 = 0.0;
  102. else {
  103. t1 *= t1;
  104. n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 );
  105. }
  106. let t2 = 0.5 - x2 * x2 - y2 * y2;
  107. if ( t2 < 0 ) n2 = 0.0;
  108. else {
  109. t2 *= t2;
  110. n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 );
  111. }
  112. // Add contributions from each corner to get the final noise value.
  113. // The result is scaled to return values in the interval [-1,1].
  114. return 70.0 * ( n0 + n1 + n2 );
  115. }
  116. // 3D simplex noise
  117. noise3d( xin, yin, zin ) {
  118. let n0; // Noise contributions from the four corners
  119. let n1;
  120. let n2;
  121. let n3;
  122. // Skew the input space to determine which simplex cell we're in
  123. const F3 = 1.0 / 3.0;
  124. const s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D
  125. const i = Math.floor( xin + s );
  126. const j = Math.floor( yin + s );
  127. const k = Math.floor( zin + s );
  128. const G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
  129. const t = ( i + j + k ) * G3;
  130. const X0 = i - t; // Unskew the cell origin back to (x,y,z) space
  131. const Y0 = j - t;
  132. const Z0 = k - t;
  133. const x0 = xin - X0; // The x,y,z distances from the cell origin
  134. const y0 = yin - Y0;
  135. const z0 = zin - Z0;
  136. // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  137. // Determine which simplex we are in.
  138. let i1; // Offsets for second corner of simplex in (i,j,k) coords
  139. let j1;
  140. let k1;
  141. let i2; // Offsets for third corner of simplex in (i,j,k) coords
  142. let j2;
  143. let k2;
  144. if ( x0 >= y0 ) {
  145. if ( y0 >= z0 ) {
  146. i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
  147. // X Y Z order
  148. } else if ( x0 >= z0 ) {
  149. i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;
  150. // X Z Y order
  151. } else {
  152. i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;
  153. } // Z X Y order
  154. } else { // x0<y0
  155. if ( y0 < z0 ) {
  156. i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;
  157. // Z Y X order
  158. } else if ( x0 < z0 ) {
  159. i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;
  160. // Y Z X order
  161. } else {
  162. i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
  163. } // Y X Z order
  164. }
  165. // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  166. // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  167. // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  168. // c = 1/6.
  169. const x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  170. const y1 = y0 - j1 + G3;
  171. const z1 = z0 - k1 + G3;
  172. const x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
  173. const y2 = y0 - j2 + 2.0 * G3;
  174. const z2 = z0 - k2 + 2.0 * G3;
  175. const x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
  176. const y3 = y0 - 1.0 + 3.0 * G3;
  177. const z3 = z0 - 1.0 + 3.0 * G3;
  178. // Work out the hashed gradient indices of the four simplex corners
  179. const ii = i & 255;
  180. const jj = j & 255;
  181. const kk = k & 255;
  182. const gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ] ] ] % 12;
  183. const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ] ] ] % 12;
  184. const gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ] ] ] % 12;
  185. const gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ] ] ] % 12;
  186. // Calculate the contribution from the four corners
  187. let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
  188. if ( t0 < 0 ) n0 = 0.0;
  189. else {
  190. t0 *= t0;
  191. n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 );
  192. }
  193. let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
  194. if ( t1 < 0 ) n1 = 0.0;
  195. else {
  196. t1 *= t1;
  197. n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 );
  198. }
  199. let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
  200. if ( t2 < 0 ) n2 = 0.0;
  201. else {
  202. t2 *= t2;
  203. n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 );
  204. }
  205. let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
  206. if ( t3 < 0 ) n3 = 0.0;
  207. else {
  208. t3 *= t3;
  209. n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 );
  210. }
  211. // Add contributions from each corner to get the final noise value.
  212. // The result is scaled to stay just inside [-1,1]
  213. return 32.0 * ( n0 + n1 + n2 + n3 );
  214. }
  215. // 4D simplex noise
  216. noise4d( x, y, z, w ) {
  217. // For faster and easier lookups
  218. const grad4 = this.grad4;
  219. const simplex = this.simplex;
  220. const perm = this.perm;
  221. // The skewing and unskewing factors are hairy again for the 4D case
  222. const F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0;
  223. const G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0;
  224. let n0; // Noise contributions from the five corners
  225. let n1;
  226. let n2;
  227. let n3;
  228. let n4;
  229. // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
  230. const s = ( x + y + z + w ) * F4; // Factor for 4D skewing
  231. const i = Math.floor( x + s );
  232. const j = Math.floor( y + s );
  233. const k = Math.floor( z + s );
  234. const l = Math.floor( w + s );
  235. const t = ( i + j + k + l ) * G4; // Factor for 4D unskewing
  236. const X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
  237. const Y0 = j - t;
  238. const Z0 = k - t;
  239. const W0 = l - t;
  240. const x0 = x - X0; // The x,y,z,w distances from the cell origin
  241. const y0 = y - Y0;
  242. const z0 = z - Z0;
  243. const w0 = w - W0;
  244. // For the 4D case, the simplex is a 4D shape I won't even try to describe.
  245. // To find out which of the 24 possible simplices we're in, we need to
  246. // determine the magnitude ordering of x0, y0, z0 and w0.
  247. // The method below is a good way of finding the ordering of x,y,z,w and
  248. // then find the correct traversal order for the simplex we’re in.
  249. // First, six pair-wise comparisons are performed between each possible pair
  250. // of the four coordinates, and the results are used to add up binary bits
  251. // for an integer index.
  252. const c1 = ( x0 > y0 ) ? 32 : 0;
  253. const c2 = ( x0 > z0 ) ? 16 : 0;
  254. const c3 = ( y0 > z0 ) ? 8 : 0;
  255. const c4 = ( x0 > w0 ) ? 4 : 0;
  256. const c5 = ( y0 > w0 ) ? 2 : 0;
  257. const c6 = ( z0 > w0 ) ? 1 : 0;
  258. const c = c1 + c2 + c3 + c4 + c5 + c6;
  259. // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
  260. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
  261. // impossible. Only the 24 indices which have non-zero entries make any sense.
  262. // We use a thresholding to set the coordinates in turn from the largest magnitude.
  263. // The number 3 in the "simplex" array is at the position of the largest coordinate.
  264. const i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0;
  265. const j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0;
  266. const k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0;
  267. const l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0;
  268. // The number 2 in the "simplex" array is at the second largest coordinate.
  269. const i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0;
  270. const j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0;
  271. const k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0;
  272. const l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0;
  273. // The number 1 in the "simplex" array is at the second smallest coordinate.
  274. const i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0;
  275. const j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0;
  276. const k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0;
  277. const l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0;
  278. // The fifth corner has all coordinate offsets = 1, so no need to look that up.
  279. const x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
  280. const y1 = y0 - j1 + G4;
  281. const z1 = z0 - k1 + G4;
  282. const w1 = w0 - l1 + G4;
  283. const x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
  284. const y2 = y0 - j2 + 2.0 * G4;
  285. const z2 = z0 - k2 + 2.0 * G4;
  286. const w2 = w0 - l2 + 2.0 * G4;
  287. const x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
  288. const y3 = y0 - j3 + 3.0 * G4;
  289. const z3 = z0 - k3 + 3.0 * G4;
  290. const w3 = w0 - l3 + 3.0 * G4;
  291. const x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
  292. const y4 = y0 - 1.0 + 4.0 * G4;
  293. const z4 = z0 - 1.0 + 4.0 * G4;
  294. const w4 = w0 - 1.0 + 4.0 * G4;
  295. // Work out the hashed gradient indices of the five simplex corners
  296. const ii = i & 255;
  297. const jj = j & 255;
  298. const kk = k & 255;
  299. const ll = l & 255;
  300. const gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ] ] ] ] % 32;
  301. const gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ] ] ] ] % 32;
  302. const gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ] ] ] ] % 32;
  303. const gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ] ] ] ] % 32;
  304. const gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ] ] ] ] % 32;
  305. // Calculate the contribution from the five corners
  306. let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
  307. if ( t0 < 0 ) n0 = 0.0;
  308. else {
  309. t0 *= t0;
  310. n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 );
  311. }
  312. let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
  313. if ( t1 < 0 ) n1 = 0.0;
  314. else {
  315. t1 *= t1;
  316. n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 );
  317. }
  318. let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
  319. if ( t2 < 0 ) n2 = 0.0;
  320. else {
  321. t2 *= t2;
  322. n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 );
  323. }
  324. let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
  325. if ( t3 < 0 ) n3 = 0.0;
  326. else {
  327. t3 *= t3;
  328. n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 );
  329. }
  330. let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
  331. if ( t4 < 0 ) n4 = 0.0;
  332. else {
  333. t4 *= t4;
  334. n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 );
  335. }
  336. // Sum up and scale the result to cover the range [-1,1]
  337. return 27.0 * ( n0 + n1 + n2 + n3 + n4 );
  338. }
  339. }
  340. export { SimplexNoise };