| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 | <?php/** *    @package JAMA * *    Cholesky decomposition class * *    For a symmetric, positive definite matrix A, the Cholesky decomposition *    is an lower triangular matrix L so that A = L*L'. * *    If the matrix is not symmetric or positive definite, the constructor *    returns a partial decomposition and sets an internal flag that may *    be queried by the isSPD() method. * *    @author Paul Meagher *    @author Michael Bommarito *    @version 1.2 */class CholeskyDecomposition{    /**     *    Decomposition storage     *    @var array     *    @access private     */    private $L = array();    /**     *    Matrix row and column dimension     *    @var int     *    @access private     */    private $m;    /**     *    Symmetric positive definite flag     *    @var boolean     *    @access private     */    private $isspd = true;    /**     *    CholeskyDecomposition     *     *    Class constructor - decomposes symmetric positive definite matrix     *    @param mixed Matrix square symmetric positive definite matrix     */    public function __construct($A = null)    {        if ($A instanceof Matrix) {            $this->L = $A->getArray();            $this->m = $A->getRowDimension();            for ($i = 0; $i < $this->m; ++$i) {                for ($j = $i; $j < $this->m; ++$j) {                    for ($sum = $this->L[$i][$j], $k = $i - 1; $k >= 0; --$k) {                        $sum -= $this->L[$i][$k] * $this->L[$j][$k];                    }                    if ($i == $j) {                        if ($sum >= 0) {                            $this->L[$i][$i] = sqrt($sum);                        } else {                            $this->isspd = false;                        }                    } else {                        if ($this->L[$i][$i] != 0) {                            $this->L[$j][$i] = $sum / $this->L[$i][$i];                        }                    }                }                for ($k = $i+1; $k < $this->m; ++$k) {                    $this->L[$i][$k] = 0.0;                }            }        } else {            throw new PHPExcel_Calculation_Exception(JAMAError(ARGUMENT_TYPE_EXCEPTION));        }    }    //    function __construct()    /**     *    Is the matrix symmetric and positive definite?     *     *    @return boolean     */    public function isSPD()    {        return $this->isspd;    }    //    function isSPD()    /**     *    getL     *     *    Return triangular factor.     *    @return Matrix Lower triangular matrix     */    public function getL()    {        return new Matrix($this->L);    }    //    function getL()    /**     *    Solve A*X = B     *     *    @param $B Row-equal matrix     *    @return Matrix L * L' * X = B     */    public function solve($B = null)    {        if ($B instanceof Matrix) {            if ($B->getRowDimension() == $this->m) {                if ($this->isspd) {                    $X  = $B->getArrayCopy();                    $nx = $B->getColumnDimension();                    for ($k = 0; $k < $this->m; ++$k) {                        for ($i = $k + 1; $i < $this->m; ++$i) {                            for ($j = 0; $j < $nx; ++$j) {                                $X[$i][$j] -= $X[$k][$j] * $this->L[$i][$k];                            }                        }                        for ($j = 0; $j < $nx; ++$j) {                            $X[$k][$j] /= $this->L[$k][$k];                        }                    }                    for ($k = $this->m - 1; $k >= 0; --$k) {                        for ($j = 0; $j < $nx; ++$j) {                            $X[$k][$j] /= $this->L[$k][$k];                        }                        for ($i = 0; $i < $k; ++$i) {                            for ($j = 0; $j < $nx; ++$j) {                                $X[$i][$j] -= $X[$k][$j] * $this->L[$k][$i];                            }                        }                    }                    return new Matrix($X, $this->m, $nx);                } else {                    throw new PHPExcel_Calculation_Exception(JAMAError(MatrixSPDException));                }            } else {                throw new PHPExcel_Calculation_Exception(JAMAError(MATRIX_DIMENSION_EXCEPTION));            }        } else {            throw new PHPExcel_Calculation_Exception(JAMAError(ARGUMENT_TYPE_EXCEPTION));        }    }    //    function solve()}
 |