| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 | <?php/** *    @package JAMA * *    For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n *    orthogonal matrix Q and an n-by-n upper triangular matrix R so that *    A = Q*R. * *    The QR decompostion always exists, even if the matrix does not have *    full rank, so the constructor will never fail.  The primary use of the *    QR decomposition is in the least squares solution of nonsquare systems *    of simultaneous linear equations.  This will fail if isFullRank() *    returns false. * *    @author  Paul Meagher *    @license PHP v3.0 *    @version 1.1 */class PHPExcel_Shared_JAMA_QRDecomposition{    const MATRIX_RANK_EXCEPTION  = "Can only perform operation on full-rank matrix.";    /**     *    Array for internal storage of decomposition.     *    @var array     */    private $QR = array();    /**     *    Row dimension.     *    @var integer     */    private $m;    /**    *    Column dimension.    *    @var integer    */    private $n;    /**     *    Array for internal storage of diagonal of R.     *    @var  array     */    private $Rdiag = array();    /**     *    QR Decomposition computed by Householder reflections.     *     *    @param matrix $A Rectangular matrix     *    @return Structure to access R and the Householder vectors and compute Q.     */    public function __construct($A)    {        if ($A instanceof PHPExcel_Shared_JAMA_Matrix) {            // Initialize.            $this->QR = $A->getArrayCopy();            $this->m  = $A->getRowDimension();            $this->n  = $A->getColumnDimension();            // Main loop.            for ($k = 0; $k < $this->n; ++$k) {                // Compute 2-norm of k-th column without under/overflow.                $nrm = 0.0;                for ($i = $k; $i < $this->m; ++$i) {                    $nrm = hypo($nrm, $this->QR[$i][$k]);                }                if ($nrm != 0.0) {                    // Form k-th Householder vector.                    if ($this->QR[$k][$k] < 0) {                        $nrm = -$nrm;                    }                    for ($i = $k; $i < $this->m; ++$i) {                        $this->QR[$i][$k] /= $nrm;                    }                    $this->QR[$k][$k] += 1.0;                    // Apply transformation to remaining columns.                    for ($j = $k+1; $j < $this->n; ++$j) {                        $s = 0.0;                        for ($i = $k; $i < $this->m; ++$i) {                            $s += $this->QR[$i][$k] * $this->QR[$i][$j];                        }                        $s = -$s/$this->QR[$k][$k];                        for ($i = $k; $i < $this->m; ++$i) {                            $this->QR[$i][$j] += $s * $this->QR[$i][$k];                        }                    }                }                $this->Rdiag[$k] = -$nrm;            }        } else {            throw new PHPExcel_Calculation_Exception(PHPExcel_Shared_JAMA_Matrix::ARGUMENT_TYPE_EXCEPTION);        }    }    //    function __construct()    /**     *    Is the matrix full rank?     *     *    @return boolean true if R, and hence A, has full rank, else false.     */    public function isFullRank()    {        for ($j = 0; $j < $this->n; ++$j) {            if ($this->Rdiag[$j] == 0) {                return false;            }        }        return true;    }    //    function isFullRank()    /**     *    Return the Householder vectors     *     *    @return Matrix Lower trapezoidal matrix whose columns define the reflections     */    public function getH()    {        for ($i = 0; $i < $this->m; ++$i) {            for ($j = 0; $j < $this->n; ++$j) {                if ($i >= $j) {                    $H[$i][$j] = $this->QR[$i][$j];                } else {                    $H[$i][$j] = 0.0;                }            }        }        return new PHPExcel_Shared_JAMA_Matrix($H);    }    //    function getH()    /**     *    Return the upper triangular factor     *     *    @return Matrix upper triangular factor     */    public function getR()    {        for ($i = 0; $i < $this->n; ++$i) {            for ($j = 0; $j < $this->n; ++$j) {                if ($i < $j) {                    $R[$i][$j] = $this->QR[$i][$j];                } elseif ($i == $j) {                    $R[$i][$j] = $this->Rdiag[$i];                } else {                    $R[$i][$j] = 0.0;                }            }        }        return new PHPExcel_Shared_JAMA_Matrix($R);    }    //    function getR()    /**     *    Generate and return the (economy-sized) orthogonal factor     *     *    @return Matrix orthogonal factor     */    public function getQ()    {        for ($k = $this->n-1; $k >= 0; --$k) {            for ($i = 0; $i < $this->m; ++$i) {                $Q[$i][$k] = 0.0;            }            $Q[$k][$k] = 1.0;            for ($j = $k; $j < $this->n; ++$j) {                if ($this->QR[$k][$k] != 0) {                    $s = 0.0;                    for ($i = $k; $i < $this->m; ++$i) {                        $s += $this->QR[$i][$k] * $Q[$i][$j];                    }                    $s = -$s/$this->QR[$k][$k];                    for ($i = $k; $i < $this->m; ++$i) {                        $Q[$i][$j] += $s * $this->QR[$i][$k];                    }                }            }        }        /*        for($i = 0; $i < count($Q); ++$i) {            for($j = 0; $j < count($Q); ++$j) {                if (! isset($Q[$i][$j]) ) {                    $Q[$i][$j] = 0;                }            }        }        */        return new PHPExcel_Shared_JAMA_Matrix($Q);    }    //    function getQ()    /**     *    Least squares solution of A*X = B     *     *    @param Matrix $B A Matrix with as many rows as A and any number of columns.     *    @return Matrix Matrix that minimizes the two norm of Q*R*X-B.     */    public function solve($B)    {        if ($B->getRowDimension() == $this->m) {            if ($this->isFullRank()) {                // Copy right hand side                $nx = $B->getColumnDimension();                $X  = $B->getArrayCopy();                // Compute Y = transpose(Q)*B                for ($k = 0; $k < $this->n; ++$k) {                    for ($j = 0; $j < $nx; ++$j) {                        $s = 0.0;                        for ($i = $k; $i < $this->m; ++$i) {                            $s += $this->QR[$i][$k] * $X[$i][$j];                        }                        $s = -$s/$this->QR[$k][$k];                        for ($i = $k; $i < $this->m; ++$i) {                            $X[$i][$j] += $s * $this->QR[$i][$k];                        }                    }                }                // Solve R*X = Y;                for ($k = $this->n-1; $k >= 0; --$k) {                    for ($j = 0; $j < $nx; ++$j) {                        $X[$k][$j] /= $this->Rdiag[$k];                    }                    for ($i = 0; $i < $k; ++$i) {                        for ($j = 0; $j < $nx; ++$j) {                            $X[$i][$j] -= $X[$k][$j]* $this->QR[$i][$k];                        }                    }                }                $X = new PHPExcel_Shared_JAMA_Matrix($X);                return ($X->getMatrix(0, $this->n-1, 0, $nx));            } else {                throw new PHPExcel_Calculation_Exception(self::MATRIX_RANK_EXCEPTION);            }        } else {            throw new PHPExcel_Calculation_Exception(PHPExcel_Shared_JAMA_Matrix::MATRIX_DIMENSION_EXCEPTION);        }    }}
 |