| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745 | 
							- <?php
 
- /** PHPExcel root directory */
 
- if (!defined('PHPEXCEL_ROOT')) {
 
-     /**
 
-      * @ignore
 
-      */
 
-     define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../');
 
-     require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php');
 
- }
 
- require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php';
 
- /** LOG_GAMMA_X_MAX_VALUE */
 
- define('LOG_GAMMA_X_MAX_VALUE', 2.55e305);
 
- /** XMININ */
 
- define('XMININ', 2.23e-308);
 
- /** EPS */
 
- define('EPS', 2.22e-16);
 
- /** SQRT2PI */
 
- define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099);
 
- /**
 
-  * PHPExcel_Calculation_Statistical
 
-  *
 
-  * Copyright (c) 2006 - 2015 PHPExcel
 
-  *
 
-  * This library is free software; you can redistribute it and/or
 
-  * modify it under the terms of the GNU Lesser General Public
 
-  * License as published by the Free Software Foundation; either
 
-  * version 2.1 of the License, or (at your option) any later version.
 
-  *
 
-  * This library is distributed in the hope that it will be useful,
 
-  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 
-  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 
-  * Lesser General Public License for more details.
 
-  *
 
-  * You should have received a copy of the GNU Lesser General Public
 
-  * License along with this library; if not, write to the Free Software
 
-  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 
-  *
 
-  * @category    PHPExcel
 
-  * @package        PHPExcel_Calculation
 
-  * @copyright    Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
 
-  * @license        http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL
 
-  * @version        ##VERSION##, ##DATE##
 
-  */
 
- class PHPExcel_Calculation_Statistical
 
- {
 
-     private static function checkTrendArrays(&$array1, &$array2)
 
-     {
 
-         if (!is_array($array1)) {
 
-             $array1 = array($array1);
 
-         }
 
-         if (!is_array($array2)) {
 
-             $array2 = array($array2);
 
-         }
 
-         $array1 = PHPExcel_Calculation_Functions::flattenArray($array1);
 
-         $array2 = PHPExcel_Calculation_Functions::flattenArray($array2);
 
-         foreach ($array1 as $key => $value) {
 
-             if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
 
-                 unset($array1[$key]);
 
-                 unset($array2[$key]);
 
-             }
 
-         }
 
-         foreach ($array2 as $key => $value) {
 
-             if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
 
-                 unset($array1[$key]);
 
-                 unset($array2[$key]);
 
-             }
 
-         }
 
-         $array1 = array_merge($array1);
 
-         $array2 = array_merge($array2);
 
-         return true;
 
-     }
 
-     /**
 
-      * Beta function.
 
-      *
 
-      * @author Jaco van Kooten
 
-      *
 
-      * @param p require p>0
 
-      * @param q require q>0
 
-      * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
 
-      */
 
-     private static function beta($p, $q)
 
-     {
 
-         if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) {
 
-             return 0.0;
 
-         } else {
 
-             return exp(self::logBeta($p, $q));
 
-         }
 
-     }
 
-     /**
 
-      * Incomplete beta function
 
-      *
 
-      * @author Jaco van Kooten
 
-      * @author Paul Meagher
 
-      *
 
-      * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).
 
-      * @param x require 0<=x<=1
 
-      * @param p require p>0
 
-      * @param q require q>0
 
-      * @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow
 
-      */
 
-     private static function incompleteBeta($x, $p, $q)
 
-     {
 
-         if ($x <= 0.0) {
 
-             return 0.0;
 
-         } elseif ($x >= 1.0) {
 
-             return 1.0;
 
-         } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
 
-             return 0.0;
 
-         }
 
-         $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));
 
-         if ($x < ($p + 1.0) / ($p + $q + 2.0)) {
 
-             return $beta_gam * self::betaFraction($x, $p, $q) / $p;
 
-         } else {
 
-             return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q);
 
-         }
 
-     }
 
-     // Function cache for logBeta function
 
-     private static $logBetaCacheP      = 0.0;
 
-     private static $logBetaCacheQ      = 0.0;
 
-     private static $logBetaCacheResult = 0.0;
 
-     /**
 
-      * The natural logarithm of the beta function.
 
-      *
 
-      * @param p require p>0
 
-      * @param q require q>0
 
-      * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
 
-      * @author Jaco van Kooten
 
-      */
 
-     private static function logBeta($p, $q)
 
-     {
 
-         if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) {
 
-             self::$logBetaCacheP = $p;
 
-             self::$logBetaCacheQ = $q;
 
-             if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
 
-                 self::$logBetaCacheResult = 0.0;
 
-             } else {
 
-                 self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q);
 
-             }
 
-         }
 
-         return self::$logBetaCacheResult;
 
-     }
 
-     /**
 
-      * Evaluates of continued fraction part of incomplete beta function.
 
-      * Based on an idea from Numerical Recipes (W.H. Press et al, 1992).
 
-      * @author Jaco van Kooten
 
-      */
 
-     private static function betaFraction($x, $p, $q)
 
-     {
 
-         $c = 1.0;
 
-         $sum_pq = $p + $q;
 
-         $p_plus = $p + 1.0;
 
-         $p_minus = $p - 1.0;
 
-         $h = 1.0 - $sum_pq * $x / $p_plus;
 
-         if (abs($h) < XMININ) {
 
-             $h = XMININ;
 
-         }
 
-         $h = 1.0 / $h;
 
-         $frac = $h;
 
-         $m     = 1;
 
-         $delta = 0.0;
 
-         while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION) {
 
-             $m2 = 2 * $m;
 
-             // even index for d
 
-             $d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2));
 
-             $h = 1.0 + $d * $h;
 
-             if (abs($h) < XMININ) {
 
-                 $h = XMININ;
 
-             }
 
-             $h = 1.0 / $h;
 
-             $c = 1.0 + $d / $c;
 
-             if (abs($c) < XMININ) {
 
-                 $c = XMININ;
 
-             }
 
-             $frac *= $h * $c;
 
-             // odd index for d
 
-             $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));
 
-             $h = 1.0 + $d * $h;
 
-             if (abs($h) < XMININ) {
 
-                 $h = XMININ;
 
-             }
 
-             $h = 1.0 / $h;
 
-             $c = 1.0 + $d / $c;
 
-             if (abs($c) < XMININ) {
 
-                 $c = XMININ;
 
-             }
 
-             $delta = $h * $c;
 
-             $frac *= $delta;
 
-             ++$m;
 
-         }
 
-         return $frac;
 
-     }
 
-     /**
 
-      * logGamma function
 
-      *
 
-      * @version 1.1
 
-      * @author Jaco van Kooten
 
-      *
 
-      * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.
 
-      *
 
-      * The natural logarithm of the gamma function. <br />
 
-      * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />
 
-      * Applied Mathematics Division <br />
 
-      * Argonne National Laboratory <br />
 
-      * Argonne, IL 60439 <br />
 
-      * <p>
 
-      * References:
 
-      * <ol>
 
-      * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural
 
-      *     Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>
 
-      * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>
 
-      * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>
 
-      * </ol>
 
-      * </p>
 
-      * <p>
 
-      * From the original documentation:
 
-      * </p>
 
-      * <p>
 
-      * This routine calculates the LOG(GAMMA) function for a positive real argument X.
 
-      * Computation is based on an algorithm outlined in references 1 and 2.
 
-      * The program uses rational functions that theoretically approximate LOG(GAMMA)
 
-      * to at least 18 significant decimal digits. The approximation for X > 12 is from
 
-      * reference 3, while approximations for X < 12.0 are similar to those in reference
 
-      * 1, but are unpublished. The accuracy achieved depends on the arithmetic system,
 
-      * the compiler, the intrinsic functions, and proper selection of the
 
-      * machine-dependent constants.
 
-      * </p>
 
-      * <p>
 
-      * Error returns: <br />
 
-      * The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
 
-      * The computation is believed to be free of underflow and overflow.
 
-      * </p>
 
-      * @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305
 
-      */
 
-     // Function cache for logGamma
 
-     private static $logGammaCacheResult = 0.0;
 
-     private static $logGammaCacheX      = 0.0;
 
-     private static function logGamma($x)
 
-     {
 
-         // Log Gamma related constants
 
-         static $lg_d1 = -0.5772156649015328605195174;
 
-         static $lg_d2 = 0.4227843350984671393993777;
 
-         static $lg_d4 = 1.791759469228055000094023;
 
-         static $lg_p1 = array(
 
-             4.945235359296727046734888,
 
-             201.8112620856775083915565,
 
-             2290.838373831346393026739,
 
-             11319.67205903380828685045,
 
-             28557.24635671635335736389,
 
-             38484.96228443793359990269,
 
-             26377.48787624195437963534,
 
-             7225.813979700288197698961
 
-         );
 
-         static $lg_p2 = array(
 
-             4.974607845568932035012064,
 
-             542.4138599891070494101986,
 
-             15506.93864978364947665077,
 
-             184793.2904445632425417223,
 
-             1088204.76946882876749847,
 
-             3338152.967987029735917223,
 
-             5106661.678927352456275255,
 
-             3074109.054850539556250927
 
-         );
 
-         static $lg_p4 = array(
 
-             14745.02166059939948905062,
 
-             2426813.369486704502836312,
 
-             121475557.4045093227939592,
 
-             2663432449.630976949898078,
 
-             29403789566.34553899906876,
 
-             170266573776.5398868392998,
 
-             492612579337.743088758812,
 
-             560625185622.3951465078242
 
-         );
 
-         static $lg_q1 = array(
 
-             67.48212550303777196073036,
 
-             1113.332393857199323513008,
 
-             7738.757056935398733233834,
 
-             27639.87074403340708898585,
 
-             54993.10206226157329794414,
 
-             61611.22180066002127833352,
 
-             36351.27591501940507276287,
 
-             8785.536302431013170870835
 
-         );
 
-         static $lg_q2 = array(
 
-             183.0328399370592604055942,
 
-             7765.049321445005871323047,
 
-             133190.3827966074194402448,
 
-             1136705.821321969608938755,
 
-             5267964.117437946917577538,
 
-             13467014.54311101692290052,
 
-             17827365.30353274213975932,
 
-             9533095.591844353613395747
 
-         );
 
-         static $lg_q4 = array(
 
-             2690.530175870899333379843,
 
-             639388.5654300092398984238,
 
-             41355999.30241388052042842,
 
-             1120872109.61614794137657,
 
-             14886137286.78813811542398,
 
-             101680358627.2438228077304,
 
-             341747634550.7377132798597,
 
-             446315818741.9713286462081
 
-         );
 
-         static $lg_c  = array(
 
-             -0.001910444077728,
 
-             8.4171387781295e-4,
 
-             -5.952379913043012e-4,
 
-             7.93650793500350248e-4,
 
-             -0.002777777777777681622553,
 
-             0.08333333333333333331554247,
 
-             0.0057083835261
 
-         );
 
-         // Rough estimate of the fourth root of logGamma_xBig
 
-         static $lg_frtbig = 2.25e76;
 
-         static $pnt68     = 0.6796875;
 
-         if ($x == self::$logGammaCacheX) {
 
-             return self::$logGammaCacheResult;
 
-         }
 
-         $y = $x;
 
-         if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) {
 
-             if ($y <= EPS) {
 
-                 $res = -log(y);
 
-             } elseif ($y <= 1.5) {
 
-                 // ---------------------
 
-                 //    EPS .LT. X .LE. 1.5
 
-                 // ---------------------
 
-                 if ($y < $pnt68) {
 
-                     $corr = -log($y);
 
-                     $xm1 = $y;
 
-                 } else {
 
-                     $corr = 0.0;
 
-                     $xm1 = $y - 1.0;
 
-                 }
 
-                 if ($y <= 0.5 || $y >= $pnt68) {
 
-                     $xden = 1.0;
 
-                     $xnum = 0.0;
 
-                     for ($i = 0; $i < 8; ++$i) {
 
-                         $xnum = $xnum * $xm1 + $lg_p1[$i];
 
-                         $xden = $xden * $xm1 + $lg_q1[$i];
 
-                     }
 
-                     $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));
 
-                 } else {
 
-                     $xm2 = $y - 1.0;
 
-                     $xden = 1.0;
 
-                     $xnum = 0.0;
 
-                     for ($i = 0; $i < 8; ++$i) {
 
-                         $xnum = $xnum * $xm2 + $lg_p2[$i];
 
-                         $xden = $xden * $xm2 + $lg_q2[$i];
 
-                     }
 
-                     $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
 
-                 }
 
-             } elseif ($y <= 4.0) {
 
-                 // ---------------------
 
-                 //    1.5 .LT. X .LE. 4.0
 
-                 // ---------------------
 
-                 $xm2 = $y - 2.0;
 
-                 $xden = 1.0;
 
-                 $xnum = 0.0;
 
-                 for ($i = 0; $i < 8; ++$i) {
 
-                     $xnum = $xnum * $xm2 + $lg_p2[$i];
 
-                     $xden = $xden * $xm2 + $lg_q2[$i];
 
-                 }
 
-                 $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
 
-             } elseif ($y <= 12.0) {
 
-                 // ----------------------
 
-                 //    4.0 .LT. X .LE. 12.0
 
-                 // ----------------------
 
-                 $xm4 = $y - 4.0;
 
-                 $xden = -1.0;
 
-                 $xnum = 0.0;
 
-                 for ($i = 0; $i < 8; ++$i) {
 
-                     $xnum = $xnum * $xm4 + $lg_p4[$i];
 
-                     $xden = $xden * $xm4 + $lg_q4[$i];
 
-                 }
 
-                 $res = $lg_d4 + $xm4 * ($xnum / $xden);
 
-             } else {
 
-                 // ---------------------------------
 
-                 //    Evaluate for argument .GE. 12.0
 
-                 // ---------------------------------
 
-                 $res = 0.0;
 
-                 if ($y <= $lg_frtbig) {
 
-                     $res = $lg_c[6];
 
-                     $ysq = $y * $y;
 
-                     for ($i = 0; $i < 6; ++$i) {
 
-                         $res = $res / $ysq + $lg_c[$i];
 
-                     }
 
-                     $res /= $y;
 
-                     $corr = log($y);
 
-                     $res = $res + log(SQRT2PI) - 0.5 * $corr;
 
-                     $res += $y * ($corr - 1.0);
 
-                 }
 
-             }
 
-         } else {
 
-             // --------------------------
 
-             //    Return for bad arguments
 
-             // --------------------------
 
-             $res = MAX_VALUE;
 
-         }
 
-         // ------------------------------
 
-         //    Final adjustments and return
 
-         // ------------------------------
 
-         self::$logGammaCacheX = $x;
 
-         self::$logGammaCacheResult = $res;
 
-         return $res;
 
-     }
 
-     //
 
-     //    Private implementation of the incomplete Gamma function
 
-     //
 
-     private static function incompleteGamma($a, $x)
 
-     {
 
-         static $max = 32;
 
-         $summer = 0;
 
-         for ($n=0; $n<=$max; ++$n) {
 
-             $divisor = $a;
 
-             for ($i=1; $i<=$n; ++$i) {
 
-                 $divisor *= ($a + $i);
 
-             }
 
-             $summer += (pow($x, $n) / $divisor);
 
-         }
 
-         return pow($x, $a) * exp(0-$x) * $summer;
 
-     }
 
-     //
 
-     //    Private implementation of the Gamma function
 
-     //
 
-     private static function gamma($data)
 
-     {
 
-         if ($data == 0.0) {
 
-             return 0;
 
-         }
 
-         static $p0 = 1.000000000190015;
 
-         static $p = array(
 
-             1 => 76.18009172947146,
 
-             2 => -86.50532032941677,
 
-             3 => 24.01409824083091,
 
-             4 => -1.231739572450155,
 
-             5 => 1.208650973866179e-3,
 
-             6 => -5.395239384953e-6
 
-         );
 
-         $y = $x = $data;
 
-         $tmp = $x + 5.5;
 
-         $tmp -= ($x + 0.5) * log($tmp);
 
-         $summer = $p0;
 
-         for ($j=1; $j<=6; ++$j) {
 
-             $summer += ($p[$j] / ++$y);
 
-         }
 
-         return exp(0 - $tmp + log(SQRT2PI * $summer / $x));
 
-     }
 
-     /***************************************************************************
 
-      *                                inverse_ncdf.php
 
-      *                            -------------------
 
-      *    begin                : Friday, January 16, 2004
 
-      *    copyright            : (C) 2004 Michael Nickerson
 
-      *    email                : nickersonm@yahoo.com
 
-      *
 
-      ***************************************************************************/
 
-     private static function inverseNcdf($p)
 
-     {
 
-         //    Inverse ncdf approximation by Peter J. Acklam, implementation adapted to
 
-         //    PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as
 
-         //    a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html
 
-         //    I have not checked the accuracy of this implementation. Be aware that PHP
 
-         //    will truncate the coeficcients to 14 digits.
 
-         //    You have permission to use and distribute this function freely for
 
-         //    whatever purpose you want, but please show common courtesy and give credit
 
-         //    where credit is due.
 
-         //    Input paramater is $p - probability - where 0 < p < 1.
 
-         //    Coefficients in rational approximations
 
-         static $a = array(
 
-             1 => -3.969683028665376e+01,
 
-             2 => 2.209460984245205e+02,
 
-             3 => -2.759285104469687e+02,
 
-             4 => 1.383577518672690e+02,
 
-             5 => -3.066479806614716e+01,
 
-             6 => 2.506628277459239e+00
 
-         );
 
-         static $b = array(
 
-             1 => -5.447609879822406e+01,
 
-             2 => 1.615858368580409e+02,
 
-             3 => -1.556989798598866e+02,
 
-             4 => 6.680131188771972e+01,
 
-             5 => -1.328068155288572e+01
 
-         );
 
-         static $c = array(
 
-             1 => -7.784894002430293e-03,
 
-             2 => -3.223964580411365e-01,
 
-             3 => -2.400758277161838e+00,
 
-             4 => -2.549732539343734e+00,
 
-             5 => 4.374664141464968e+00,
 
-             6 => 2.938163982698783e+00
 
-         );
 
-         static $d = array(
 
-             1 => 7.784695709041462e-03,
 
-             2 => 3.224671290700398e-01,
 
-             3 => 2.445134137142996e+00,
 
-             4 => 3.754408661907416e+00
 
-         );
 
-         //    Define lower and upper region break-points.
 
-         $p_low = 0.02425;            //Use lower region approx. below this
 
-         $p_high = 1 - $p_low;        //Use upper region approx. above this
 
-         if (0 < $p && $p < $p_low) {
 
-             //    Rational approximation for lower region.
 
-             $q = sqrt(-2 * log($p));
 
-             return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
 
-                     (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
 
-         } elseif ($p_low <= $p && $p <= $p_high) {
 
-             //    Rational approximation for central region.
 
-             $q = $p - 0.5;
 
-             $r = $q * $q;
 
-             return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /
 
-                    ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);
 
-         } elseif ($p_high < $p && $p < 1) {
 
-             //    Rational approximation for upper region.
 
-             $q = sqrt(-2 * log(1 - $p));
 
-             return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
 
-                      (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
 
-         }
 
-         //    If 0 < p < 1, return a null value
 
-         return PHPExcel_Calculation_Functions::NULL();
 
-     }
 
-     private static function inverseNcdf2($prob)
 
-     {
 
-         //    Approximation of inverse standard normal CDF developed by
 
-         //    B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58.
 
-         $a1 = 2.50662823884;
 
-         $a2 = -18.61500062529;
 
-         $a3 = 41.39119773534;
 
-         $a4 = -25.44106049637;
 
-         $b1 = -8.4735109309;
 
-         $b2 = 23.08336743743;
 
-         $b3 = -21.06224101826;
 
-         $b4 = 3.13082909833;
 
-         $c1 = 0.337475482272615;
 
-         $c2 = 0.976169019091719;
 
-         $c3 = 0.160797971491821;
 
-         $c4 = 2.76438810333863E-02;
 
-         $c5 = 3.8405729373609E-03;
 
-         $c6 = 3.951896511919E-04;
 
-         $c7 = 3.21767881768E-05;
 
-         $c8 = 2.888167364E-07;
 
-         $c9 = 3.960315187E-07;
 
-         $y = $prob - 0.5;
 
-         if (abs($y) < 0.42) {
 
-             $z = ($y * $y);
 
-             $z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1);
 
-         } else {
 
-             if ($y > 0) {
 
-                 $z = log(-log(1 - $prob));
 
-             } else {
 
-                 $z = log(-log($prob));
 
-             }
 
-             $z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9)))))));
 
-             if ($y < 0) {
 
-                 $z = -$z;
 
-             }
 
-         }
 
-         return $z;
 
-     }    //    function inverseNcdf2()
 
-     private static function inverseNcdf3($p)
 
-     {
 
-         //    ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3.
 
-         //    Produces the normal deviate Z corresponding to a given lower
 
-         //    tail area of P; Z is accurate to about 1 part in 10**16.
 
-         //
 
-         //    This is a PHP version of the original FORTRAN code that can
 
-         //    be found at http://lib.stat.cmu.edu/apstat/
 
-         $split1 = 0.425;
 
-         $split2 = 5;
 
-         $const1 = 0.180625;
 
-         $const2 = 1.6;
 
-         //    coefficients for p close to 0.5
 
-         $a0 = 3.3871328727963666080;
 
-         $a1 = 1.3314166789178437745E+2;
 
-         $a2 = 1.9715909503065514427E+3;
 
-         $a3 = 1.3731693765509461125E+4;
 
-         $a4 = 4.5921953931549871457E+4;
 
-         $a5 = 6.7265770927008700853E+4;
 
-         $a6 = 3.3430575583588128105E+4;
 
-         $a7 = 2.5090809287301226727E+3;
 
-         $b1 = 4.2313330701600911252E+1;
 
-         $b2 = 6.8718700749205790830E+2;
 
-         $b3 = 5.3941960214247511077E+3;
 
-         $b4 = 2.1213794301586595867E+4;
 
-         $b5 = 3.9307895800092710610E+4;
 
-         $b6 = 2.8729085735721942674E+4;
 
-         $b7 = 5.2264952788528545610E+3;
 
-         //    coefficients for p not close to 0, 0.5 or 1.
 
-         $c0 = 1.42343711074968357734;
 
-         $c1 = 4.63033784615654529590;
 
-         $c2 = 5.76949722146069140550;
 
-         $c3 = 3.64784832476320460504;
 
-         $c4 = 1.27045825245236838258;
 
-         $c5 = 2.41780725177450611770E-1;
 
-         $c6 = 2.27238449892691845833E-2;
 
-         $c7 = 7.74545014278341407640E-4;
 
-         $d1 = 2.05319162663775882187;
 
-         $d2 = 1.67638483018380384940;
 
-         $d3 = 6.89767334985100004550E-1;
 
-         $d4 = 1.48103976427480074590E-1;
 
-         $d5 = 1.51986665636164571966E-2;
 
-         $d6 = 5.47593808499534494600E-4;
 
-         $d7 = 1.05075007164441684324E-9;
 
-         //    coefficients for p near 0 or 1.
 
-         $e0 = 6.65790464350110377720;
 
-         $e1 = 5.46378491116411436990;
 
-         $e2 = 1.78482653991729133580;
 
-         $e3 = 2.96560571828504891230E-1;
 
-         $e4 = 2.65321895265761230930E-2;
 
-         $e5 = 1.24266094738807843860E-3;
 
-         $e6 = 2.71155556874348757815E-5;
 
-         $e7 = 2.01033439929228813265E-7;
 
-         $f1 = 5.99832206555887937690E-1;
 
-         $f2 = 1.36929880922735805310E-1;
 
-         $f3 = 1.48753612908506148525E-2;
 
-         $f4 = 7.86869131145613259100E-4;
 
-         $f5 = 1.84631831751005468180E-5;
 
-         $f6 = 1.42151175831644588870E-7;
 
-         $f7 = 2.04426310338993978564E-15;
 
-         $q = $p - 0.5;
 
-         //    computation for p close to 0.5
 
-         if (abs($q) <= split1) {
 
-             $R = $const1 - $q * $q;
 
-             $z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) /
 
-                       ((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1);
 
-         } else {
 
-             if ($q < 0) {
 
-                 $R = $p;
 
-             } else {
 
-                 $R = 1 - $p;
 
-             }
 
-             $R = pow(-log($R), 2);
 
-             //    computation for p not close to 0, 0.5 or 1.
 
-             if ($R <= $split2) {
 
-                 $R = $R - $const2;
 
-                 $z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) /
 
-                      ((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1);
 
-             } else {
 
-             //    computation for p near 0 or 1.
 
-                 $R = $R - $split2;
 
-                 $z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) /
 
-                      ((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1);
 
-             }
 
-             if ($q < 0) {
 
-                 $z = -$z;
 
-             }
 
-         }
 
-         return $z;
 
-     }
 
-     /**
 
-      * AVEDEV
 
-      *
 
-      * Returns the average of the absolute deviations of data points from their mean.
 
-      * AVEDEV is a measure of the variability in a data set.
 
-      *
 
-      * Excel Function:
 
-      *        AVEDEV(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function AVEDEV()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         // Return value
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGE($aArgs);
 
-         if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
 
-             $aCount = 0;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                     $arg = (integer) $arg;
 
-                 }
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     if (is_null($returnValue)) {
 
-                         $returnValue = abs($arg - $aMean);
 
-                     } else {
 
-                         $returnValue += abs($arg - $aMean);
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-             // Return
 
-             if ($aCount == 0) {
 
-                 return PHPExcel_Calculation_Functions::DIV0();
 
-             }
 
-             return $returnValue / $aCount;
 
-         }
 
-         return PHPExcel_Calculation_Functions::NaN();
 
-     }
 
-     /**
 
-      * AVERAGE
 
-      *
 
-      * Returns the average (arithmetic mean) of the arguments
 
-      *
 
-      * Excel Function:
 
-      *        AVERAGE(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function AVERAGE()
 
-     {
 
-         $returnValue = $aCount = 0;
 
-         // Loop through arguments
 
-         foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {
 
-             if ((is_bool($arg)) &&
 
-                 ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                 $arg = (integer) $arg;
 
-             }
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 if (is_null($returnValue)) {
 
-                     $returnValue = $arg;
 
-                 } else {
 
-                     $returnValue += $arg;
 
-                 }
 
-                 ++$aCount;
 
-             }
 
-         }
 
-         // Return
 
-         if ($aCount > 0) {
 
-             return $returnValue / $aCount;
 
-         } else {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-     }
 
-     /**
 
-      * AVERAGEA
 
-      *
 
-      * Returns the average of its arguments, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        AVERAGEA(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function AVERAGEA()
 
-     {
 
-         $returnValue = null;
 
-         $aCount = 0;
 
-         // Loop through arguments
 
-         foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {
 
-             if ((is_bool($arg)) &&
 
-                 (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 
-             } else {
 
-                 if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 
-                     if (is_bool($arg)) {
 
-                         $arg = (integer) $arg;
 
-                     } elseif (is_string($arg)) {
 
-                         $arg = 0;
 
-                     }
 
-                     if (is_null($returnValue)) {
 
-                         $returnValue = $arg;
 
-                     } else {
 
-                         $returnValue += $arg;
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-         }
 
-         if ($aCount > 0) {
 
-             return $returnValue / $aCount;
 
-         } else {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-     }
 
-     /**
 
-      * AVERAGEIF
 
-      *
 
-      * Returns the average value from a range of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        AVERAGEIF(value1[,value2[, ...]],condition)
 
-      *
 
-      * @access    public
 
-      * @category Mathematical and Trigonometric Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    string        $condition        The criteria that defines which cells will be checked.
 
-      * @param    mixed[]        $averageArgs    Data values
 
-      * @return    float
 
-      */
 
-     public static function AVERAGEIF($aArgs, $condition, $averageArgs = array())
 
-     {
 
-         $returnValue = 0;
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
 
-         $averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs);
 
-         if (empty($averageArgs)) {
 
-             $averageArgs = $aArgs;
 
-         }
 
-         $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
 
-         // Loop through arguments
 
-         $aCount = 0;
 
-         foreach ($aArgs as $key => $arg) {
 
-             if (!is_numeric($arg)) {
 
-                 $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
 
-             }
 
-             $testCondition = '='.$arg.$condition;
 
-             if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 
-                 if ((is_null($returnValue)) || ($arg > $returnValue)) {
 
-                     $returnValue += $arg;
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-         }
 
-         if ($aCount > 0) {
 
-             return $returnValue / $aCount;
 
-         }
 
-         return PHPExcel_Calculation_Functions::DIV0();
 
-     }
 
-     /**
 
-      * BETADIST
 
-      *
 
-      * Returns the beta distribution.
 
-      *
 
-      * @param    float        $value            Value at which you want to evaluate the distribution
 
-      * @param    float        $alpha            Parameter to the distribution
 
-      * @param    float        $beta            Parameter to the distribution
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1)
 
-     {
 
-         $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 
-         $beta  = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
 
-         $rMin  = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);
 
-         $rMax  = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);
 
-         if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
 
-             if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ($rMin > $rMax) {
 
-                 $tmp = $rMin;
 
-                 $rMin = $rMax;
 
-                 $rMax = $tmp;
 
-             }
 
-             $value -= $rMin;
 
-             $value /= ($rMax - $rMin);
 
-             return self::incompleteBeta($value, $alpha, $beta);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * BETAINV
 
-      *
 
-      * Returns the inverse of the beta distribution.
 
-      *
 
-      * @param    float        $probability    Probability at which you want to evaluate the distribution
 
-      * @param    float        $alpha            Parameter to the distribution
 
-      * @param    float        $beta            Parameter to the distribution
 
-      * @param    float        $rMin            Minimum value
 
-      * @param    float        $rMax            Maximum value
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1)
 
-     {
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         $alpha       = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 
-         $beta        = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
 
-         $rMin        = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);
 
-         $rMax        = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);
 
-         if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
 
-             if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ($rMin > $rMax) {
 
-                 $tmp = $rMin;
 
-                 $rMin = $rMax;
 
-                 $rMax = $tmp;
 
-             }
 
-             $a = 0;
 
-             $b = 2;
 
-             $i = 0;
 
-             while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
 
-                 $guess = ($a + $b) / 2;
 
-                 $result = self::BETADIST($guess, $alpha, $beta);
 
-                 if (($result == $probability) || ($result == 0)) {
 
-                     $b = $a;
 
-                 } elseif ($result > $probability) {
 
-                     $b = $guess;
 
-                 } else {
 
-                     $a = $guess;
 
-                 }
 
-             }
 
-             if ($i == MAX_ITERATIONS) {
 
-                 return PHPExcel_Calculation_Functions::NA();
 
-             }
 
-             return round($rMin + $guess * ($rMax - $rMin), 12);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * BINOMDIST
 
-      *
 
-      * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with
 
-      *        a fixed number of tests or trials, when the outcomes of any trial are only success or failure,
 
-      *        when trials are independent, and when the probability of success is constant throughout the
 
-      *        experiment. For example, BINOMDIST can calculate the probability that two of the next three
 
-      *        babies born are male.
 
-      *
 
-      * @param    float        $value            Number of successes in trials
 
-      * @param    float        $trials            Number of trials
 
-      * @param    float        $probability    Probability of success on each trial
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      *
 
-      * @todo    Cumulative distribution function
 
-      *
 
-      */
 
-     public static function BINOMDIST($value, $trials, $probability, $cumulative)
 
-     {
 
-         $value       = floor(PHPExcel_Calculation_Functions::flattenSingleValue($value));
 
-         $trials      = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {
 
-             if (($value < 0) || ($value > $trials)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if (($probability < 0) || ($probability > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     $summer = 0;
 
-                     for ($i = 0; $i <= $value; ++$i) {
 
-                         $summer += PHPExcel_Calculation_MathTrig::COMBIN($trials, $i) * pow($probability, $i) * pow(1 - $probability, $trials - $i);
 
-                     }
 
-                     return $summer;
 
-                 } else {
 
-                     return PHPExcel_Calculation_MathTrig::COMBIN($trials, $value) * pow($probability, $value) * pow(1 - $probability, $trials - $value) ;
 
-                 }
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * CHIDIST
 
-      *
 
-      * Returns the one-tailed probability of the chi-squared distribution.
 
-      *
 
-      * @param    float        $value            Value for the function
 
-      * @param    float        $degrees        degrees of freedom
 
-      * @return    float
 
-      */
 
-     public static function CHIDIST($value, $degrees)
 
-     {
 
-         $value   = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
 
-         if ((is_numeric($value)) && (is_numeric($degrees))) {
 
-             if ($degrees < 1) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ($value < 0) {
 
-                 if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {
 
-                     return 1;
 
-                 }
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return 1 - (self::incompleteGamma($degrees/2, $value/2) / self::gamma($degrees/2));
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * CHIINV
 
-      *
 
-      * Returns the one-tailed probability of the chi-squared distribution.
 
-      *
 
-      * @param    float        $probability    Probability for the function
 
-      * @param    float        $degrees        degrees of freedom
 
-      * @return    float
 
-      */
 
-     public static function CHIINV($probability, $degrees)
 
-     {
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         $degrees     = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
 
-         if ((is_numeric($probability)) && (is_numeric($degrees))) {
 
-             $xLo = 100;
 
-             $xHi = 0;
 
-             $x = $xNew = 1;
 
-             $dx    = 1;
 
-             $i = 0;
 
-             while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
 
-                 // Apply Newton-Raphson step
 
-                 $result = self::CHIDIST($x, $degrees);
 
-                 $error = $result - $probability;
 
-                 if ($error == 0.0) {
 
-                     $dx = 0;
 
-                 } elseif ($error < 0.0) {
 
-                     $xLo = $x;
 
-                 } else {
 
-                     $xHi = $x;
 
-                 }
 
-                 // Avoid division by zero
 
-                 if ($result != 0.0) {
 
-                     $dx = $error / $result;
 
-                     $xNew = $x - $dx;
 
-                 }
 
-                 // If the NR fails to converge (which for example may be the
 
-                 // case if the initial guess is too rough) we apply a bisection
 
-                 // step to determine a more narrow interval around the root.
 
-                 if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
 
-                     $xNew = ($xLo + $xHi) / 2;
 
-                     $dx = $xNew - $x;
 
-                 }
 
-                 $x = $xNew;
 
-             }
 
-             if ($i == MAX_ITERATIONS) {
 
-                 return PHPExcel_Calculation_Functions::NA();
 
-             }
 
-             return round($x, 12);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * CONFIDENCE
 
-      *
 
-      * Returns the confidence interval for a population mean
 
-      *
 
-      * @param    float        $alpha
 
-      * @param    float        $stdDev        Standard Deviation
 
-      * @param    float        $size
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function CONFIDENCE($alpha, $stdDev, $size)
 
-     {
 
-         $alpha  = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 
-         $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 
-         $size   = floor(PHPExcel_Calculation_Functions::flattenSingleValue($size));
 
-         if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {
 
-             if (($alpha <= 0) || ($alpha >= 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if (($stdDev <= 0) || ($size < 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * CORREL
 
-      *
 
-      * Returns covariance, the average of the products of deviations for each data point pair.
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @return    float
 
-      */
 
-     public static function CORREL($yValues, $xValues = null)
 
-     {
 
-         if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getCorrelation();
 
-     }
 
-     /**
 
-      * COUNT
 
-      *
 
-      * Counts the number of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        COUNT(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    int
 
-      */
 
-     public static function COUNT()
 
-     {
 
-         $returnValue = 0;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         foreach ($aArgs as $k => $arg) {
 
-             if ((is_bool($arg)) &&
 
-                 ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                 $arg = (integer) $arg;
 
-             }
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 ++$returnValue;
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * COUNTA
 
-      *
 
-      * Counts the number of cells that are not empty within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        COUNTA(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    int
 
-      */
 
-     public static function COUNTA()
 
-     {
 
-         $returnValue = 0;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric, boolean or string value?
 
-             if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 
-                 ++$returnValue;
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * COUNTBLANK
 
-      *
 
-      * Counts the number of empty cells within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        COUNTBLANK(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    int
 
-      */
 
-     public static function COUNTBLANK()
 
-     {
 
-         $returnValue = 0;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a blank cell?
 
-             if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) {
 
-                 ++$returnValue;
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * COUNTIF
 
-      *
 
-      * Counts the number of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        COUNTIF(value1[,value2[, ...]],condition)
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    string        $condition        The criteria that defines which cells will be counted.
 
-      * @return    int
 
-      */
 
-     public static function COUNTIF($aArgs, $condition)
 
-     {
 
-         $returnValue = 0;
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
 
-         $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
 
-         // Loop through arguments
 
-         foreach ($aArgs as $arg) {
 
-             if (!is_numeric($arg)) {
 
-                 $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
 
-             }
 
-             $testCondition = '='.$arg.$condition;
 
-             if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 
-                 // Is it a value within our criteria
 
-                 ++$returnValue;
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * COVAR
 
-      *
 
-      * Returns covariance, the average of the products of deviations for each data point pair.
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @return    float
 
-      */
 
-     public static function COVAR($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getCovariance();
 
-     }
 
-     /**
 
-      * CRITBINOM
 
-      *
 
-      * Returns the smallest value for which the cumulative binomial distribution is greater
 
-      *        than or equal to a criterion value
 
-      *
 
-      * See http://support.microsoft.com/kb/828117/ for details of the algorithm used
 
-      *
 
-      * @param    float        $trials            number of Bernoulli trials
 
-      * @param    float        $probability    probability of a success on each trial
 
-      * @param    float        $alpha            criterion value
 
-      * @return    int
 
-      *
 
-      * @todo    Warning. This implementation differs from the algorithm detailed on the MS
 
-      *            web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess
 
-      *            This eliminates a potential endless loop error, but may have an adverse affect on the
 
-      *            accuracy of the function (although all my tests have so far returned correct results).
 
-      *
 
-      */
 
-     public static function CRITBINOM($trials, $probability, $alpha)
 
-     {
 
-         $trials      = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         $alpha       = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 
-         if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {
 
-             if ($trials < 0) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             } elseif (($probability < 0) || ($probability > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             } elseif (($alpha < 0) || ($alpha > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             } elseif ($alpha <= 0.5) {
 
-                 $t = sqrt(log(1 / ($alpha * $alpha)));
 
-                 $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));
 
-             } else {
 
-                 $t = sqrt(log(1 / pow(1 - $alpha, 2)));
 
-                 $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);
 
-             }
 
-             $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));
 
-             if ($Guess < 0) {
 
-                 $Guess = 0;
 
-             } elseif ($Guess > $trials) {
 
-                 $Guess = $trials;
 
-             }
 
-             $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;
 
-             $EssentiallyZero = 10e-12;
 
-             $m = floor($trials * $probability);
 
-             ++$TotalUnscaledProbability;
 
-             if ($m == $Guess) {
 
-                 ++$UnscaledPGuess;
 
-             }
 
-             if ($m <= $Guess) {
 
-                 ++$UnscaledCumPGuess;
 
-             }
 
-             $PreviousValue = 1;
 
-             $Done = false;
 
-             $k = $m + 1;
 
-             while ((!$Done) && ($k <= $trials)) {
 
-                 $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));
 
-                 $TotalUnscaledProbability += $CurrentValue;
 
-                 if ($k == $Guess) {
 
-                     $UnscaledPGuess += $CurrentValue;
 
-                 }
 
-                 if ($k <= $Guess) {
 
-                     $UnscaledCumPGuess += $CurrentValue;
 
-                 }
 
-                 if ($CurrentValue <= $EssentiallyZero) {
 
-                     $Done = true;
 
-                 }
 
-                 $PreviousValue = $CurrentValue;
 
-                 ++$k;
 
-             }
 
-             $PreviousValue = 1;
 
-             $Done = false;
 
-             $k = $m - 1;
 
-             while ((!$Done) && ($k >= 0)) {
 
-                 $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);
 
-                 $TotalUnscaledProbability += $CurrentValue;
 
-                 if ($k == $Guess) {
 
-                     $UnscaledPGuess += $CurrentValue;
 
-                 }
 
-                 if ($k <= $Guess) {
 
-                     $UnscaledCumPGuess += $CurrentValue;
 
-                 }
 
-                 if ($CurrentValue <= $EssentiallyZero) {
 
-                     $Done = true;
 
-                 }
 
-                 $PreviousValue = $CurrentValue;
 
-                 --$k;
 
-             }
 
-             $PGuess = $UnscaledPGuess / $TotalUnscaledProbability;
 
-             $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;
 
- //            $CumPGuessMinus1 = $CumPGuess - $PGuess;
 
-             $CumPGuessMinus1 = $CumPGuess - 1;
 
-             while (true) {
 
-                 if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {
 
-                     return $Guess;
 
-                 } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {
 
-                     $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);
 
-                     $CumPGuessMinus1 = $CumPGuess;
 
-                     $CumPGuess = $CumPGuess + $PGuessPlus1;
 
-                     $PGuess = $PGuessPlus1;
 
-                     ++$Guess;
 
-                 } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {
 
-                     $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;
 
-                     $CumPGuess = $CumPGuessMinus1;
 
-                     $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;
 
-                     $PGuess = $PGuessMinus1;
 
-                     --$Guess;
 
-                 }
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * DEVSQ
 
-      *
 
-      * Returns the sum of squares of deviations of data points from their sample mean.
 
-      *
 
-      * Excel Function:
 
-      *        DEVSQ(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function DEVSQ()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         // Return value
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGE($aArgs);
 
-         if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
 
-             $aCount = -1;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_bool($arg)) &&
 
-                     ((!PHPExcel_Calculation_Functions::isCellValue($k)) ||
 
-                     (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                     $arg = (integer) $arg;
 
-                 }
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     if (is_null($returnValue)) {
 
-                         $returnValue = pow(($arg - $aMean), 2);
 
-                     } else {
 
-                         $returnValue += pow(($arg - $aMean), 2);
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-             // Return
 
-             if (is_null($returnValue)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             } else {
 
-                 return $returnValue;
 
-             }
 
-         }
 
-         return self::NA();
 
-     }
 
-     /**
 
-      * EXPONDIST
 
-      *
 
-      *    Returns the exponential distribution. Use EXPONDIST to model the time between events,
 
-      *        such as how long an automated bank teller takes to deliver cash. For example, you can
 
-      *        use EXPONDIST to determine the probability that the process takes at most 1 minute.
 
-      *
 
-      * @param    float        $value            Value of the function
 
-      * @param    float        $lambda            The parameter value
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      */
 
-     public static function EXPONDIST($value, $lambda, $cumulative)
 
-     {
 
-         $value    = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $lambda    = PHPExcel_Calculation_Functions::flattenSingleValue($lambda);
 
-         $cumulative    = PHPExcel_Calculation_Functions::flattenSingleValue($cumulative);
 
-         if ((is_numeric($value)) && (is_numeric($lambda))) {
 
-             if (($value < 0) || ($lambda < 0)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     return 1 - exp(0-$value*$lambda);
 
-                 } else {
 
-                     return $lambda * exp(0-$value*$lambda);
 
-                 }
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * FISHER
 
-      *
 
-      * Returns the Fisher transformation at x. This transformation produces a function that
 
-      *        is normally distributed rather than skewed. Use this function to perform hypothesis
 
-      *        testing on the correlation coefficient.
 
-      *
 
-      * @param    float        $value
 
-      * @return    float
 
-      */
 
-     public static function FISHER($value)
 
-     {
 
-         $value    = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         if (is_numeric($value)) {
 
-             if (($value <= -1) || ($value >= 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return 0.5 * log((1+$value)/(1-$value));
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * FISHERINV
 
-      *
 
-      * Returns the inverse of the Fisher transformation. Use this transformation when
 
-      *        analyzing correlations between ranges or arrays of data. If y = FISHER(x), then
 
-      *        FISHERINV(y) = x.
 
-      *
 
-      * @param    float        $value
 
-      * @return    float
 
-      */
 
-     public static function FISHERINV($value)
 
-     {
 
-         $value    = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         if (is_numeric($value)) {
 
-             return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * FORECAST
 
-      *
 
-      * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.
 
-      *
 
-      * @param    float                Value of X for which we want to find Y
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @return    float
 
-      */
 
-     public static function FORECAST($xValue, $yValues, $xValues)
 
-     {
 
-         $xValue    = PHPExcel_Calculation_Functions::flattenSingleValue($xValue);
 
-         if (!is_numeric($xValue)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         } elseif (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getValueOfYForX($xValue);
 
-     }
 
-     /**
 
-      * GAMMADIST
 
-      *
 
-      * Returns the gamma distribution.
 
-      *
 
-      * @param    float        $value            Value at which you want to evaluate the distribution
 
-      * @param    float        $a                Parameter to the distribution
 
-      * @param    float        $b                Parameter to the distribution
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function GAMMADIST($value, $a, $b, $cumulative)
 
-     {
 
-         $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $a     = PHPExcel_Calculation_Functions::flattenSingleValue($a);
 
-         $b     = PHPExcel_Calculation_Functions::flattenSingleValue($b);
 
-         if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {
 
-             if (($value < 0) || ($a <= 0) || ($b <= 0)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     return self::incompleteGamma($a, $value / $b) / self::gamma($a);
 
-                 } else {
 
-                     return (1 / (pow($b, $a) * self::gamma($a))) * pow($value, $a-1) * exp(0-($value / $b));
 
-                 }
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * GAMMAINV
 
-      *
 
-      * Returns the inverse of the beta distribution.
 
-      *
 
-      * @param    float        $probability    Probability at which you want to evaluate the distribution
 
-      * @param    float        $alpha            Parameter to the distribution
 
-      * @param    float        $beta            Parameter to the distribution
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function GAMMAINV($probability, $alpha, $beta)
 
-     {
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         $alpha       = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 
-         $beta        = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
 
-         if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {
 
-             if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             $xLo = 0;
 
-             $xHi = $alpha * $beta * 5;
 
-             $x = $xNew = 1;
 
-             $error = $pdf = 0;
 
-             $dx    = 1024;
 
-             $i = 0;
 
-             while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
 
-                 // Apply Newton-Raphson step
 
-                 $error = self::GAMMADIST($x, $alpha, $beta, true) - $probability;
 
-                 if ($error < 0.0) {
 
-                     $xLo = $x;
 
-                 } else {
 
-                     $xHi = $x;
 
-                 }
 
-                 $pdf = self::GAMMADIST($x, $alpha, $beta, false);
 
-                 // Avoid division by zero
 
-                 if ($pdf != 0.0) {
 
-                     $dx = $error / $pdf;
 
-                     $xNew = $x - $dx;
 
-                 }
 
-                 // If the NR fails to converge (which for example may be the
 
-                 // case if the initial guess is too rough) we apply a bisection
 
-                 // step to determine a more narrow interval around the root.
 
-                 if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {
 
-                     $xNew = ($xLo + $xHi) / 2;
 
-                     $dx = $xNew - $x;
 
-                 }
 
-                 $x = $xNew;
 
-             }
 
-             if ($i == MAX_ITERATIONS) {
 
-                 return PHPExcel_Calculation_Functions::NA();
 
-             }
 
-             return $x;
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * GAMMALN
 
-      *
 
-      * Returns the natural logarithm of the gamma function.
 
-      *
 
-      * @param    float        $value
 
-      * @return    float
 
-      */
 
-     public static function GAMMALN($value)
 
-     {
 
-         $value    = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         if (is_numeric($value)) {
 
-             if ($value <= 0) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return log(self::gamma($value));
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * GEOMEAN
 
-      *
 
-      * Returns the geometric mean of an array or range of positive data. For example, you
 
-      *        can use GEOMEAN to calculate average growth rate given compound interest with
 
-      *        variable rates.
 
-      *
 
-      * Excel Function:
 
-      *        GEOMEAN(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function GEOMEAN()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         $aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs);
 
-         if (is_numeric($aMean) && ($aMean > 0)) {
 
-             $aCount = self::COUNT($aArgs) ;
 
-             if (self::MIN($aArgs) > 0) {
 
-                 return pow($aMean, (1 / $aCount));
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::NaN();
 
-     }
 
-     /**
 
-      * GROWTH
 
-      *
 
-      * Returns values along a predicted emponential trend
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @param    array of mixed        Values of X for which we want to find Y
 
-      * @param    boolean                A logical value specifying whether to force the intersect to equal 0.
 
-      * @return    array of float
 
-      */
 
-     public static function GROWTH($yValues, $xValues = array(), $newValues = array(), $const = true)
 
-     {
 
-         $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);
 
-         $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);
 
-         $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);
 
-         $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
 
-         $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL, $yValues, $xValues, $const);
 
-         if (empty($newValues)) {
 
-             $newValues = $bestFitExponential->getXValues();
 
-         }
 
-         $returnArray = array();
 
-         foreach ($newValues as $xValue) {
 
-             $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);
 
-         }
 
-         return $returnArray;
 
-     }
 
-     /**
 
-      * HARMEAN
 
-      *
 
-      * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the
 
-      *        arithmetic mean of reciprocals.
 
-      *
 
-      * Excel Function:
 
-      *        HARMEAN(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function HARMEAN()
 
-     {
 
-         // Return value
 
-         $returnValue = PHPExcel_Calculation_Functions::NA();
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         if (self::MIN($aArgs) < 0) {
 
-             return PHPExcel_Calculation_Functions::NaN();
 
-         }
 
-         $aCount = 0;
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 if ($arg <= 0) {
 
-                     return PHPExcel_Calculation_Functions::NaN();
 
-                 }
 
-                 if (is_null($returnValue)) {
 
-                     $returnValue = (1 / $arg);
 
-                 } else {
 
-                     $returnValue += (1 / $arg);
 
-                 }
 
-                 ++$aCount;
 
-             }
 
-         }
 
-         // Return
 
-         if ($aCount > 0) {
 
-             return 1 / ($returnValue / $aCount);
 
-         } else {
 
-             return $returnValue;
 
-         }
 
-     }
 
-     /**
 
-      * HYPGEOMDIST
 
-      *
 
-      * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of
 
-      * sample successes, given the sample size, population successes, and population size.
 
-      *
 
-      * @param    float        $sampleSuccesses        Number of successes in the sample
 
-      * @param    float        $sampleNumber            Size of the sample
 
-      * @param    float        $populationSuccesses    Number of successes in the population
 
-      * @param    float        $populationNumber        Population size
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber)
 
-     {
 
-         $sampleSuccesses     = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses));
 
-         $sampleNumber        = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber));
 
-         $populationSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses));
 
-         $populationNumber    = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber));
 
-         if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {
 
-             if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) *
 
-                    PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) /
 
-                    PHPExcel_Calculation_MathTrig::COMBIN($populationNumber, $sampleNumber);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * INTERCEPT
 
-      *
 
-      * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @return    float
 
-      */
 
-     public static function INTERCEPT($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getIntersect();
 
-     }
 
-     /**
 
-      * KURT
 
-      *
 
-      * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness
 
-      * or flatness of a distribution compared with the normal distribution. Positive
 
-      * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a
 
-      * relatively flat distribution.
 
-      *
 
-      * @param    array    Data Series
 
-      * @return    float
 
-      */
 
-     public static function KURT()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         $mean = self::AVERAGE($aArgs);
 
-         $stdDev = self::STDEV($aArgs);
 
-         if ($stdDev > 0) {
 
-             $count = $summer = 0;
 
-             // Loop through arguments
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 
-                 } else {
 
-                     // Is it a numeric value?
 
-                     if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                         $summer += pow((($arg - $mean) / $stdDev), 4);
 
-                         ++$count;
 
-                     }
 
-                 }
 
-             }
 
-             // Return
 
-             if ($count > 3) {
 
-                 return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1, 2) / (($count-2) * ($count-3)));
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::DIV0();
 
-     }
 
-     /**
 
-      * LARGE
 
-      *
 
-      * Returns the nth largest value in a data set. You can use this function to
 
-      *        select a value based on its relative standing.
 
-      *
 
-      * Excel Function:
 
-      *        LARGE(value1[,value2[, ...]],entry)
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    int            $entry            Position (ordered from the largest) in the array or range of data to return
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function LARGE()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         // Calculate
 
-         $entry = floor(array_pop($aArgs));
 
-         if ((is_numeric($entry)) && (!is_string($entry))) {
 
-             $mArgs = array();
 
-             foreach ($aArgs as $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $mArgs[] = $arg;
 
-                 }
 
-             }
 
-             $count = self::COUNT($mArgs);
 
-             $entry = floor(--$entry);
 
-             if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             rsort($mArgs);
 
-             return $mArgs[$entry];
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * LINEST
 
-      *
 
-      * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,
 
-      *        and then returns an array that describes the line.
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @param    boolean                A logical value specifying whether to force the intersect to equal 0.
 
-      * @param    boolean                A logical value specifying whether to return additional regression statistics.
 
-      * @return    array
 
-      */
 
-     public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)
 
-     {
 
-         $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
 
-         $stats = (is_null($stats)) ? false : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);
 
-         if (is_null($xValues)) {
 
-             $xValues = range(1, count(PHPExcel_Calculation_Functions::flattenArray($yValues)));
 
-         }
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return 0;
 
-         }
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues, $const);
 
-         if ($stats) {
 
-             return array(
 
-                 array(
 
-                     $bestFitLinear->getSlope(),
 
-                     $bestFitLinear->getSlopeSE(),
 
-                     $bestFitLinear->getGoodnessOfFit(),
 
-                     $bestFitLinear->getF(),
 
-                     $bestFitLinear->getSSRegression(),
 
-                 ),
 
-                 array(
 
-                     $bestFitLinear->getIntersect(),
 
-                     $bestFitLinear->getIntersectSE(),
 
-                     $bestFitLinear->getStdevOfResiduals(),
 
-                     $bestFitLinear->getDFResiduals(),
 
-                     $bestFitLinear->getSSResiduals()
 
-                 )
 
-             );
 
-         } else {
 
-             return array(
 
-                 $bestFitLinear->getSlope(),
 
-                 $bestFitLinear->getIntersect()
 
-             );
 
-         }
 
-     }
 
-     /**
 
-      * LOGEST
 
-      *
 
-      * Calculates an exponential curve that best fits the X and Y data series,
 
-      *        and then returns an array that describes the line.
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @param    boolean                A logical value specifying whether to force the intersect to equal 0.
 
-      * @param    boolean                A logical value specifying whether to return additional regression statistics.
 
-      * @return    array
 
-      */
 
-     public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)
 
-     {
 
-         $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
 
-         $stats = (is_null($stats)) ? false : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);
 
-         if (is_null($xValues)) {
 
-             $xValues = range(1, count(PHPExcel_Calculation_Functions::flattenArray($yValues)));
 
-         }
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         foreach ($yValues as $value) {
 
-             if ($value <= 0.0) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-         }
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return 1;
 
-         }
 
-         $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL, $yValues, $xValues, $const);
 
-         if ($stats) {
 
-             return array(
 
-                 array(
 
-                     $bestFitExponential->getSlope(),
 
-                     $bestFitExponential->getSlopeSE(),
 
-                     $bestFitExponential->getGoodnessOfFit(),
 
-                     $bestFitExponential->getF(),
 
-                     $bestFitExponential->getSSRegression(),
 
-                 ),
 
-                 array(
 
-                     $bestFitExponential->getIntersect(),
 
-                     $bestFitExponential->getIntersectSE(),
 
-                     $bestFitExponential->getStdevOfResiduals(),
 
-                     $bestFitExponential->getDFResiduals(),
 
-                     $bestFitExponential->getSSResiduals()
 
-                 )
 
-             );
 
-         } else {
 
-             return array(
 
-                 $bestFitExponential->getSlope(),
 
-                 $bestFitExponential->getIntersect()
 
-             );
 
-         }
 
-     }
 
-     /**
 
-      * LOGINV
 
-      *
 
-      * Returns the inverse of the normal cumulative distribution
 
-      *
 
-      * @param    float        $probability
 
-      * @param    float        $mean
 
-      * @param    float        $stdDev
 
-      * @return    float
 
-      *
 
-      * @todo    Try implementing P J Acklam's refinement algorithm for greater
 
-      *            accuracy if I can get my head round the mathematics
 
-      *            (as described at) http://home.online.no/~pjacklam/notes/invnorm/
 
-      */
 
-     public static function LOGINV($probability, $mean, $stdDev)
 
-     {
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         $mean        = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 
-         $stdDev      = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return exp($mean + $stdDev * self::NORMSINV($probability));
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * LOGNORMDIST
 
-      *
 
-      * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed
 
-      * with parameters mean and standard_dev.
 
-      *
 
-      * @param    float        $value
 
-      * @param    float        $mean
 
-      * @param    float        $stdDev
 
-      * @return    float
 
-      */
 
-     public static function LOGNORMDIST($value, $mean, $stdDev)
 
-     {
 
-         $value  = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $mean   = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 
-         $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if (($value <= 0) || ($stdDev <= 0)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return self::NORMSDIST((log($value) - $mean) / $stdDev);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * MAX
 
-      *
 
-      * MAX returns the value of the element of the values passed that has the highest value,
 
-      *        with negative numbers considered smaller than positive numbers.
 
-      *
 
-      * Excel Function:
 
-      *        MAX(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function MAX()
 
-     {
 
-         $returnValue = null;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 if ((is_null($returnValue)) || ($arg > $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         if (is_null($returnValue)) {
 
-             return 0;
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MAXA
 
-      *
 
-      * Returns the greatest value in a list of arguments, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        MAXA(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function MAXA()
 
-     {
 
-         $returnValue = null;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 
-                 if (is_bool($arg)) {
 
-                     $arg = (integer) $arg;
 
-                 } elseif (is_string($arg)) {
 
-                     $arg = 0;
 
-                 }
 
-                 if ((is_null($returnValue)) || ($arg > $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         if (is_null($returnValue)) {
 
-             return 0;
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MAXIF
 
-      *
 
-      * Counts the maximum value within a range of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        MAXIF(value1[,value2[, ...]],condition)
 
-      *
 
-      * @access    public
 
-      * @category Mathematical and Trigonometric Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    string        $condition        The criteria that defines which cells will be checked.
 
-      * @return    float
 
-      */
 
-     public static function MAXIF($aArgs, $condition, $sumArgs = array())
 
-     {
 
-         $returnValue = null;
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
 
-         $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);
 
-         if (empty($sumArgs)) {
 
-             $sumArgs = $aArgs;
 
-         }
 
-         $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
 
-         // Loop through arguments
 
-         foreach ($aArgs as $key => $arg) {
 
-             if (!is_numeric($arg)) {
 
-                 $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
 
-             }
 
-             $testCondition = '='.$arg.$condition;
 
-             if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 
-                 if ((is_null($returnValue)) || ($arg > $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MEDIAN
 
-      *
 
-      * Returns the median of the given numbers. The median is the number in the middle of a set of numbers.
 
-      *
 
-      * Excel Function:
 
-      *        MEDIAN(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function MEDIAN()
 
-     {
 
-         $returnValue = PHPExcel_Calculation_Functions::NaN();
 
-         $mArgs = array();
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 $mArgs[] = $arg;
 
-             }
 
-         }
 
-         $mValueCount = count($mArgs);
 
-         if ($mValueCount > 0) {
 
-             sort($mArgs, SORT_NUMERIC);
 
-             $mValueCount = $mValueCount / 2;
 
-             if ($mValueCount == floor($mValueCount)) {
 
-                 $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;
 
-             } else {
 
-                 $mValueCount = floor($mValueCount);
 
-                 $returnValue = $mArgs[$mValueCount];
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MIN
 
-      *
 
-      * MIN returns the value of the element of the values passed that has the smallest value,
 
-      *        with negative numbers considered smaller than positive numbers.
 
-      *
 
-      * Excel Function:
 
-      *        MIN(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function MIN()
 
-     {
 
-         $returnValue = null;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 if ((is_null($returnValue)) || ($arg < $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         if (is_null($returnValue)) {
 
-             return 0;
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MINA
 
-      *
 
-      * Returns the smallest value in a list of arguments, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        MINA(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function MINA()
 
-     {
 
-         $returnValue = null;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
 
-                 if (is_bool($arg)) {
 
-                     $arg = (integer) $arg;
 
-                 } elseif (is_string($arg)) {
 
-                     $arg = 0;
 
-                 }
 
-                 if ((is_null($returnValue)) || ($arg < $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         if (is_null($returnValue)) {
 
-             return 0;
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * MINIF
 
-      *
 
-      * Returns the minimum value within a range of cells that contain numbers within the list of arguments
 
-      *
 
-      * Excel Function:
 
-      *        MINIF(value1[,value2[, ...]],condition)
 
-      *
 
-      * @access    public
 
-      * @category Mathematical and Trigonometric Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    string        $condition        The criteria that defines which cells will be checked.
 
-      * @return    float
 
-      */
 
-     public static function MINIF($aArgs, $condition, $sumArgs = array())
 
-     {
 
-         $returnValue = null;
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
 
-         $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);
 
-         if (empty($sumArgs)) {
 
-             $sumArgs = $aArgs;
 
-         }
 
-         $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
 
-         // Loop through arguments
 
-         foreach ($aArgs as $key => $arg) {
 
-             if (!is_numeric($arg)) {
 
-                 $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
 
-             }
 
-             $testCondition = '='.$arg.$condition;
 
-             if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
 
-                 if ((is_null($returnValue)) || ($arg < $returnValue)) {
 
-                     $returnValue = $arg;
 
-                 }
 
-             }
 
-         }
 
-         return $returnValue;
 
-     }
 
-     //
 
-     //    Special variant of array_count_values that isn't limited to strings and integers,
 
-     //        but can work with floating point numbers as values
 
-     //
 
-     private static function modeCalc($data)
 
-     {
 
-         $frequencyArray = array();
 
-         foreach ($data as $datum) {
 
-             $found = false;
 
-             foreach ($frequencyArray as $key => $value) {
 
-                 if ((string) $value['value'] == (string) $datum) {
 
-                     ++$frequencyArray[$key]['frequency'];
 
-                     $found = true;
 
-                     break;
 
-                 }
 
-             }
 
-             if (!$found) {
 
-                 $frequencyArray[] = array(
 
-                     'value'     => $datum,
 
-                     'frequency' => 1
 
-                 );
 
-             }
 
-         }
 
-         foreach ($frequencyArray as $key => $value) {
 
-             $frequencyList[$key] = $value['frequency'];
 
-             $valueList[$key] = $value['value'];
 
-         }
 
-         array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray);
 
-         if ($frequencyArray[0]['frequency'] == 1) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         }
 
-         return $frequencyArray[0]['value'];
 
-     }
 
-     /**
 
-      * MODE
 
-      *
 
-      * Returns the most frequently occurring, or repetitive, value in an array or range of data
 
-      *
 
-      * Excel Function:
 
-      *        MODE(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function MODE()
 
-     {
 
-         $returnValue = PHPExcel_Calculation_Functions::NA();
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         $mArgs = array();
 
-         foreach ($aArgs as $arg) {
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 $mArgs[] = $arg;
 
-             }
 
-         }
 
-         if (!empty($mArgs)) {
 
-             return self::modeCalc($mArgs);
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * NEGBINOMDIST
 
-      *
 
-      * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that
 
-      *        there will be number_f failures before the number_s-th success, when the constant
 
-      *        probability of a success is probability_s. This function is similar to the binomial
 
-      *        distribution, except that the number of successes is fixed, and the number of trials is
 
-      *        variable. Like the binomial, trials are assumed to be independent.
 
-      *
 
-      * @param    float        $failures        Number of Failures
 
-      * @param    float        $successes        Threshold number of Successes
 
-      * @param    float        $probability    Probability of success on each trial
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function NEGBINOMDIST($failures, $successes, $probability)
 
-     {
 
-         $failures    = floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures));
 
-         $successes   = floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes));
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {
 
-             if (($failures < 0) || ($successes < 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             } elseif (($probability < 0) || ($probability > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {
 
-                 if (($failures + $successes - 1) <= 0) {
 
-                     return PHPExcel_Calculation_Functions::NaN();
 
-                 }
 
-             }
 
-             return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * (pow($probability, $successes)) * (pow(1 - $probability, $failures));
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * NORMDIST
 
-      *
 
-      * Returns the normal distribution for the specified mean and standard deviation. This
 
-      * function has a very wide range of applications in statistics, including hypothesis
 
-      * testing.
 
-      *
 
-      * @param    float        $value
 
-      * @param    float        $mean        Mean Value
 
-      * @param    float        $stdDev        Standard Deviation
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function NORMDIST($value, $mean, $stdDev, $cumulative)
 
-     {
 
-         $value  = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $mean   = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 
-         $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if ($stdDev < 0) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     return 0.5 * (1 + PHPExcel_Calculation_Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2))));
 
-                 } else {
 
-                     return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean, 2) / (2 * ($stdDev * $stdDev))));
 
-                 }
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * NORMINV
 
-      *
 
-      * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.
 
-      *
 
-      * @param    float        $value
 
-      * @param    float        $mean        Mean Value
 
-      * @param    float        $stdDev        Standard Deviation
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function NORMINV($probability, $mean, $stdDev)
 
-     {
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         $mean        = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 
-         $stdDev      = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if (($probability < 0) || ($probability > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ($stdDev < 0) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return (self::inverseNcdf($probability) * $stdDev) + $mean;
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * NORMSDIST
 
-      *
 
-      * Returns the standard normal cumulative distribution function. The distribution has
 
-      * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a
 
-      * table of standard normal curve areas.
 
-      *
 
-      * @param    float        $value
 
-      * @return    float
 
-      */
 
-     public static function NORMSDIST($value)
 
-     {
 
-         $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         return self::NORMDIST($value, 0, 1, true);
 
-     }
 
-     /**
 
-      * NORMSINV
 
-      *
 
-      * Returns the inverse of the standard normal cumulative distribution
 
-      *
 
-      * @param    float        $value
 
-      * @return    float
 
-      */
 
-     public static function NORMSINV($value)
 
-     {
 
-         return self::NORMINV($value, 0, 1);
 
-     }
 
-     /**
 
-      * PERCENTILE
 
-      *
 
-      * Returns the nth percentile of values in a range..
 
-      *
 
-      * Excel Function:
 
-      *        PERCENTILE(value1[,value2[, ...]],entry)
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    float        $entry            Percentile value in the range 0..1, inclusive.
 
-      * @return    float
 
-      */
 
-     public static function PERCENTILE()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         // Calculate
 
-         $entry = array_pop($aArgs);
 
-         if ((is_numeric($entry)) && (!is_string($entry))) {
 
-             if (($entry < 0) || ($entry > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             $mArgs = array();
 
-             foreach ($aArgs as $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $mArgs[] = $arg;
 
-                 }
 
-             }
 
-             $mValueCount = count($mArgs);
 
-             if ($mValueCount > 0) {
 
-                 sort($mArgs);
 
-                 $count = self::COUNT($mArgs);
 
-                 $index = $entry * ($count-1);
 
-                 $iBase = floor($index);
 
-                 if ($index == $iBase) {
 
-                     return $mArgs[$index];
 
-                 } else {
 
-                     $iNext = $iBase + 1;
 
-                     $iProportion = $index - $iBase;
 
-                     return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ;
 
-                 }
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * PERCENTRANK
 
-      *
 
-      * Returns the rank of a value in a data set as a percentage of the data set.
 
-      *
 
-      * @param    array of number        An array of, or a reference to, a list of numbers.
 
-      * @param    number                The number whose rank you want to find.
 
-      * @param    number                The number of significant digits for the returned percentage value.
 
-      * @return    float
 
-      */
 
-     public static function PERCENTRANK($valueSet, $value, $significance = 3)
 
-     {
 
-         $valueSet     = PHPExcel_Calculation_Functions::flattenArray($valueSet);
 
-         $value        = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $significance = (is_null($significance)) ? 3 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance);
 
-         foreach ($valueSet as $key => $valueEntry) {
 
-             if (!is_numeric($valueEntry)) {
 
-                 unset($valueSet[$key]);
 
-             }
 
-         }
 
-         sort($valueSet, SORT_NUMERIC);
 
-         $valueCount = count($valueSet);
 
-         if ($valueCount == 0) {
 
-             return PHPExcel_Calculation_Functions::NaN();
 
-         }
 
-         $valueAdjustor = $valueCount - 1;
 
-         if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         }
 
-         $pos = array_search($value, $valueSet);
 
-         if ($pos === false) {
 
-             $pos = 0;
 
-             $testValue = $valueSet[0];
 
-             while ($testValue < $value) {
 
-                 $testValue = $valueSet[++$pos];
 
-             }
 
-             --$pos;
 
-             $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));
 
-         }
 
-         return round($pos / $valueAdjustor, $significance);
 
-     }
 
-     /**
 
-      * PERMUT
 
-      *
 
-      * Returns the number of permutations for a given number of objects that can be
 
-      *        selected from number objects. A permutation is any set or subset of objects or
 
-      *        events where internal order is significant. Permutations are different from
 
-      *        combinations, for which the internal order is not significant. Use this function
 
-      *        for lottery-style probability calculations.
 
-      *
 
-      * @param    int        $numObjs    Number of different objects
 
-      * @param    int        $numInSet    Number of objects in each permutation
 
-      * @return    int        Number of permutations
 
-      */
 
-     public static function PERMUT($numObjs, $numInSet)
 
-     {
 
-         $numObjs  = PHPExcel_Calculation_Functions::flattenSingleValue($numObjs);
 
-         $numInSet = PHPExcel_Calculation_Functions::flattenSingleValue($numInSet);
 
-         if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {
 
-             $numInSet = floor($numInSet);
 
-             if ($numObjs < $numInSet) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet));
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * POISSON
 
-      *
 
-      * Returns the Poisson distribution. A common application of the Poisson distribution
 
-      * is predicting the number of events over a specific time, such as the number of
 
-      * cars arriving at a toll plaza in 1 minute.
 
-      *
 
-      * @param    float        $value
 
-      * @param    float        $mean        Mean Value
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function POISSON($value, $mean, $cumulative)
 
-     {
 
-         $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $mean  = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 
-         if ((is_numeric($value)) && (is_numeric($mean))) {
 
-             if (($value < 0) || ($mean <= 0)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     $summer = 0;
 
-                     for ($i = 0; $i <= floor($value); ++$i) {
 
-                         $summer += pow($mean, $i) / PHPExcel_Calculation_MathTrig::FACT($i);
 
-                     }
 
-                     return exp(0-$mean) * $summer;
 
-                 } else {
 
-                     return (exp(0-$mean) * pow($mean, $value)) / PHPExcel_Calculation_MathTrig::FACT($value);
 
-                 }
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * QUARTILE
 
-      *
 
-      * Returns the quartile of a data set.
 
-      *
 
-      * Excel Function:
 
-      *        QUARTILE(value1[,value2[, ...]],entry)
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    int            $entry            Quartile value in the range 1..3, inclusive.
 
-      * @return    float
 
-      */
 
-     public static function QUARTILE()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         // Calculate
 
-         $entry = floor(array_pop($aArgs));
 
-         if ((is_numeric($entry)) && (!is_string($entry))) {
 
-             $entry /= 4;
 
-             if (($entry < 0) || ($entry > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return self::PERCENTILE($aArgs, $entry);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * RANK
 
-      *
 
-      * Returns the rank of a number in a list of numbers.
 
-      *
 
-      * @param    number                The number whose rank you want to find.
 
-      * @param    array of number        An array of, or a reference to, a list of numbers.
 
-      * @param    mixed                Order to sort the values in the value set
 
-      * @return    float
 
-      */
 
-     public static function RANK($value, $valueSet, $order = 0)
 
-     {
 
-         $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);
 
-         $order = (is_null($order)) ? 0 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($order);
 
-         foreach ($valueSet as $key => $valueEntry) {
 
-             if (!is_numeric($valueEntry)) {
 
-                 unset($valueSet[$key]);
 
-             }
 
-         }
 
-         if ($order == 0) {
 
-             rsort($valueSet, SORT_NUMERIC);
 
-         } else {
 
-             sort($valueSet, SORT_NUMERIC);
 
-         }
 
-         $pos = array_search($value, $valueSet);
 
-         if ($pos === false) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         }
 
-         return ++$pos;
 
-     }
 
-     /**
 
-      * RSQ
 
-      *
 
-      * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @return    float
 
-      */
 
-     public static function RSQ($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getGoodnessOfFit();
 
-     }
 
-     /**
 
-      * SKEW
 
-      *
 
-      * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry
 
-      * of a distribution around its mean. Positive skewness indicates a distribution with an
 
-      * asymmetric tail extending toward more positive values. Negative skewness indicates a
 
-      * distribution with an asymmetric tail extending toward more negative values.
 
-      *
 
-      * @param    array    Data Series
 
-      * @return    float
 
-      */
 
-     public static function SKEW()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         $mean = self::AVERAGE($aArgs);
 
-         $stdDev = self::STDEV($aArgs);
 
-         $count = $summer = 0;
 
-         // Loop through arguments
 
-         foreach ($aArgs as $k => $arg) {
 
-             if ((is_bool($arg)) &&
 
-                 (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 
-             } else {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $summer += pow((($arg - $mean) / $stdDev), 3);
 
-                     ++$count;
 
-                 }
 
-             }
 
-         }
 
-         if ($count > 2) {
 
-             return $summer * ($count / (($count-1) * ($count-2)));
 
-         }
 
-         return PHPExcel_Calculation_Functions::DIV0();
 
-     }
 
-     /**
 
-      * SLOPE
 
-      *
 
-      * Returns the slope of the linear regression line through data points in known_y's and known_x's.
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @return    float
 
-      */
 
-     public static function SLOPE($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getSlope();
 
-     }
 
-     /**
 
-      * SMALL
 
-      *
 
-      * Returns the nth smallest value in a data set. You can use this function to
 
-      *        select a value based on its relative standing.
 
-      *
 
-      * Excel Function:
 
-      *        SMALL(value1[,value2[, ...]],entry)
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    int            $entry            Position (ordered from the smallest) in the array or range of data to return
 
-      * @return    float
 
-      */
 
-     public static function SMALL()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         // Calculate
 
-         $entry = array_pop($aArgs);
 
-         if ((is_numeric($entry)) && (!is_string($entry))) {
 
-             $mArgs = array();
 
-             foreach ($aArgs as $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $mArgs[] = $arg;
 
-                 }
 
-             }
 
-             $count = self::COUNT($mArgs);
 
-             $entry = floor(--$entry);
 
-             if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             sort($mArgs);
 
-             return $mArgs[$entry];
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * STANDARDIZE
 
-      *
 
-      * Returns a normalized value from a distribution characterized by mean and standard_dev.
 
-      *
 
-      * @param    float    $value        Value to normalize
 
-      * @param    float    $mean        Mean Value
 
-      * @param    float    $stdDev        Standard Deviation
 
-      * @return    float    Standardized value
 
-      */
 
-     public static function STANDARDIZE($value, $mean, $stdDev)
 
-     {
 
-         $value  = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $mean   = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
 
-         $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
 
-         if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
 
-             if ($stdDev <= 0) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             return ($value - $mean) / $stdDev ;
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * STDEV
 
-      *
 
-      * Estimates standard deviation based on a sample. The standard deviation is a measure of how
 
-      *        widely values are dispersed from the average value (the mean).
 
-      *
 
-      * Excel Function:
 
-      *        STDEV(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function STDEV()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         // Return value
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGE($aArgs);
 
-         if (!is_null($aMean)) {
 
-             $aCount = -1;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                     $arg = (integer) $arg;
 
-                 }
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     if (is_null($returnValue)) {
 
-                         $returnValue = pow(($arg - $aMean), 2);
 
-                     } else {
 
-                         $returnValue += pow(($arg - $aMean), 2);
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-             // Return
 
-             if (($aCount > 0) && ($returnValue >= 0)) {
 
-                 return sqrt($returnValue / $aCount);
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::DIV0();
 
-     }
 
-     /**
 
-      * STDEVA
 
-      *
 
-      * Estimates standard deviation based on a sample, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        STDEVA(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function STDEVA()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGEA($aArgs);
 
-         if (!is_null($aMean)) {
 
-             $aCount = -1;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 
-                 } else {
 
-                     // Is it a numeric value?
 
-                     if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 
-                         if (is_bool($arg)) {
 
-                             $arg = (integer) $arg;
 
-                         } elseif (is_string($arg)) {
 
-                             $arg = 0;
 
-                         }
 
-                         if (is_null($returnValue)) {
 
-                             $returnValue = pow(($arg - $aMean), 2);
 
-                         } else {
 
-                             $returnValue += pow(($arg - $aMean), 2);
 
-                         }
 
-                         ++$aCount;
 
-                     }
 
-                 }
 
-             }
 
-             if (($aCount > 0) && ($returnValue >= 0)) {
 
-                 return sqrt($returnValue / $aCount);
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::DIV0();
 
-     }
 
-     /**
 
-      * STDEVP
 
-      *
 
-      * Calculates standard deviation based on the entire population
 
-      *
 
-      * Excel Function:
 
-      *        STDEVP(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function STDEVP()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGE($aArgs);
 
-         if (!is_null($aMean)) {
 
-             $aCount = 0;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
 
-                     $arg = (integer) $arg;
 
-                 }
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     if (is_null($returnValue)) {
 
-                         $returnValue = pow(($arg - $aMean), 2);
 
-                     } else {
 
-                         $returnValue += pow(($arg - $aMean), 2);
 
-                     }
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-             if (($aCount > 0) && ($returnValue >= 0)) {
 
-                 return sqrt($returnValue / $aCount);
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::DIV0();
 
-     }
 
-     /**
 
-      * STDEVPA
 
-      *
 
-      * Calculates standard deviation based on the entire population, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        STDEVPA(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function STDEVPA()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         $returnValue = null;
 
-         $aMean = self::AVERAGEA($aArgs);
 
-         if (!is_null($aMean)) {
 
-             $aCount = 0;
 
-             foreach ($aArgs as $k => $arg) {
 
-                 if ((is_bool($arg)) &&
 
-                     (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 
-                 } else {
 
-                     // Is it a numeric value?
 
-                     if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 
-                         if (is_bool($arg)) {
 
-                             $arg = (integer) $arg;
 
-                         } elseif (is_string($arg)) {
 
-                             $arg = 0;
 
-                         }
 
-                         if (is_null($returnValue)) {
 
-                             $returnValue = pow(($arg - $aMean), 2);
 
-                         } else {
 
-                             $returnValue += pow(($arg - $aMean), 2);
 
-                         }
 
-                         ++$aCount;
 
-                     }
 
-                 }
 
-             }
 
-             if (($aCount > 0) && ($returnValue >= 0)) {
 
-                 return sqrt($returnValue / $aCount);
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::DIV0();
 
-     }
 
-     /**
 
-      * STEYX
 
-      *
 
-      * Returns the standard error of the predicted y-value for each x in the regression.
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @return    float
 
-      */
 
-     public static function STEYX($yValues, $xValues)
 
-     {
 
-         if (!self::checkTrendArrays($yValues, $xValues)) {
 
-             return PHPExcel_Calculation_Functions::VALUE();
 
-         }
 
-         $yValueCount = count($yValues);
 
-         $xValueCount = count($xValues);
 
-         if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
 
-             return PHPExcel_Calculation_Functions::NA();
 
-         } elseif ($yValueCount == 1) {
 
-             return PHPExcel_Calculation_Functions::DIV0();
 
-         }
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
 
-         return $bestFitLinear->getStdevOfResiduals();
 
-     }
 
-     /**
 
-      * TDIST
 
-      *
 
-      * Returns the probability of Student's T distribution.
 
-      *
 
-      * @param    float        $value            Value for the function
 
-      * @param    float        $degrees        degrees of freedom
 
-      * @param    float        $tails            number of tails (1 or 2)
 
-      * @return    float
 
-      */
 
-     public static function TDIST($value, $degrees, $tails)
 
-     {
 
-         $value        = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $degrees    = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
 
-         $tails        = floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails));
 
-         if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {
 
-             if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             //    tdist, which finds the probability that corresponds to a given value
 
-             //    of t with k degrees of freedom. This algorithm is translated from a
 
-             //    pascal function on p81 of "Statistical Computing in Pascal" by D
 
-             //    Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:
 
-             //    London). The above Pascal algorithm is itself a translation of the
 
-             //    fortran algoritm "AS 3" by B E Cooper of the Atlas Computer
 
-             //    Laboratory as reported in (among other places) "Applied Statistics
 
-             //    Algorithms", editied by P Griffiths and I D Hill (1985; Ellis
 
-             //    Horwood Ltd.; W. Sussex, England).
 
-             $tterm = $degrees;
 
-             $ttheta = atan2($value, sqrt($tterm));
 
-             $tc = cos($ttheta);
 
-             $ts = sin($ttheta);
 
-             $tsum = 0;
 
-             if (($degrees % 2) == 1) {
 
-                 $ti = 3;
 
-                 $tterm = $tc;
 
-             } else {
 
-                 $ti = 2;
 
-                 $tterm = 1;
 
-             }
 
-             $tsum = $tterm;
 
-             while ($ti < $degrees) {
 
-                 $tterm *= $tc * $tc * ($ti - 1) / $ti;
 
-                 $tsum += $tterm;
 
-                 $ti += 2;
 
-             }
 
-             $tsum *= $ts;
 
-             if (($degrees % 2) == 1) {
 
-                 $tsum = M_2DIVPI * ($tsum + $ttheta);
 
-             }
 
-             $tValue = 0.5 * (1 + $tsum);
 
-             if ($tails == 1) {
 
-                 return 1 - abs($tValue);
 
-             } else {
 
-                 return 1 - abs((1 - $tValue) - $tValue);
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * TINV
 
-      *
 
-      * Returns the one-tailed probability of the chi-squared distribution.
 
-      *
 
-      * @param    float        $probability    Probability for the function
 
-      * @param    float        $degrees        degrees of freedom
 
-      * @return    float
 
-      */
 
-     public static function TINV($probability, $degrees)
 
-     {
 
-         $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
 
-         $degrees     = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
 
-         if ((is_numeric($probability)) && (is_numeric($degrees))) {
 
-             $xLo = 100;
 
-             $xHi = 0;
 
-             $x = $xNew = 1;
 
-             $dx    = 1;
 
-             $i = 0;
 
-             while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
 
-                 // Apply Newton-Raphson step
 
-                 $result = self::TDIST($x, $degrees, 2);
 
-                 $error = $result - $probability;
 
-                 if ($error == 0.0) {
 
-                     $dx = 0;
 
-                 } elseif ($error < 0.0) {
 
-                     $xLo = $x;
 
-                 } else {
 
-                     $xHi = $x;
 
-                 }
 
-                 // Avoid division by zero
 
-                 if ($result != 0.0) {
 
-                     $dx = $error / $result;
 
-                     $xNew = $x - $dx;
 
-                 }
 
-                 // If the NR fails to converge (which for example may be the
 
-                 // case if the initial guess is too rough) we apply a bisection
 
-                 // step to determine a more narrow interval around the root.
 
-                 if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
 
-                     $xNew = ($xLo + $xHi) / 2;
 
-                     $dx = $xNew - $x;
 
-                 }
 
-                 $x = $xNew;
 
-             }
 
-             if ($i == MAX_ITERATIONS) {
 
-                 return PHPExcel_Calculation_Functions::NA();
 
-             }
 
-             return round($x, 12);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * TREND
 
-      *
 
-      * Returns values along a linear trend
 
-      *
 
-      * @param    array of mixed        Data Series Y
 
-      * @param    array of mixed        Data Series X
 
-      * @param    array of mixed        Values of X for which we want to find Y
 
-      * @param    boolean                A logical value specifying whether to force the intersect to equal 0.
 
-      * @return    array of float
 
-      */
 
-     public static function TREND($yValues, $xValues = array(), $newValues = array(), $const = true)
 
-     {
 
-         $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);
 
-         $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);
 
-         $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);
 
-         $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
 
-         $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues, $const);
 
-         if (empty($newValues)) {
 
-             $newValues = $bestFitLinear->getXValues();
 
-         }
 
-         $returnArray = array();
 
-         foreach ($newValues as $xValue) {
 
-             $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);
 
-         }
 
-         return $returnArray;
 
-     }
 
-     /**
 
-      * TRIMMEAN
 
-      *
 
-      * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean
 
-      *        taken by excluding a percentage of data points from the top and bottom tails
 
-      *        of a data set.
 
-      *
 
-      * Excel Function:
 
-      *        TRIMEAN(value1[,value2[, ...]], $discard)
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @param    float        $discard        Percentage to discard
 
-      * @return    float
 
-      */
 
-     public static function TRIMMEAN()
 
-     {
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         // Calculate
 
-         $percent = array_pop($aArgs);
 
-         if ((is_numeric($percent)) && (!is_string($percent))) {
 
-             if (($percent < 0) || ($percent > 1)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             $mArgs = array();
 
-             foreach ($aArgs as $arg) {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                     $mArgs[] = $arg;
 
-                 }
 
-             }
 
-             $discard = floor(self::COUNT($mArgs) * $percent / 2);
 
-             sort($mArgs);
 
-             for ($i=0; $i < $discard; ++$i) {
 
-                 array_pop($mArgs);
 
-                 array_shift($mArgs);
 
-             }
 
-             return self::AVERAGE($mArgs);
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * VARFunc
 
-      *
 
-      * Estimates variance based on a sample.
 
-      *
 
-      * Excel Function:
 
-      *        VAR(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function VARFunc()
 
-     {
 
-         $returnValue = PHPExcel_Calculation_Functions::DIV0();
 
-         $summerA = $summerB = 0;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         $aCount = 0;
 
-         foreach ($aArgs as $arg) {
 
-             if (is_bool($arg)) {
 
-                 $arg = (integer) $arg;
 
-             }
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 $summerA += ($arg * $arg);
 
-                 $summerB += $arg;
 
-                 ++$aCount;
 
-             }
 
-         }
 
-         if ($aCount > 1) {
 
-             $summerA *= $aCount;
 
-             $summerB *= $summerB;
 
-             $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * VARA
 
-      *
 
-      * Estimates variance based on a sample, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        VARA(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function VARA()
 
-     {
 
-         $returnValue = PHPExcel_Calculation_Functions::DIV0();
 
-         $summerA = $summerB = 0;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         $aCount = 0;
 
-         foreach ($aArgs as $k => $arg) {
 
-             if ((is_string($arg)) &&
 
-                 (PHPExcel_Calculation_Functions::isValue($k))) {
 
-                 return PHPExcel_Calculation_Functions::VALUE();
 
-             } elseif ((is_string($arg)) &&
 
-                 (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 
-             } else {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 
-                     if (is_bool($arg)) {
 
-                         $arg = (integer) $arg;
 
-                     } elseif (is_string($arg)) {
 
-                         $arg = 0;
 
-                     }
 
-                     $summerA += ($arg * $arg);
 
-                     $summerB += $arg;
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-         }
 
-         if ($aCount > 1) {
 
-             $summerA *= $aCount;
 
-             $summerB *= $summerB;
 
-             $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * VARP
 
-      *
 
-      * Calculates variance based on the entire population
 
-      *
 
-      * Excel Function:
 
-      *        VARP(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function VARP()
 
-     {
 
-         // Return value
 
-         $returnValue = PHPExcel_Calculation_Functions::DIV0();
 
-         $summerA = $summerB = 0;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
 
-         $aCount = 0;
 
-         foreach ($aArgs as $arg) {
 
-             if (is_bool($arg)) {
 
-                 $arg = (integer) $arg;
 
-             }
 
-             // Is it a numeric value?
 
-             if ((is_numeric($arg)) && (!is_string($arg))) {
 
-                 $summerA += ($arg * $arg);
 
-                 $summerB += $arg;
 
-                 ++$aCount;
 
-             }
 
-         }
 
-         if ($aCount > 0) {
 
-             $summerA *= $aCount;
 
-             $summerB *= $summerB;
 
-             $returnValue = ($summerA - $summerB) / ($aCount * $aCount);
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * VARPA
 
-      *
 
-      * Calculates variance based on the entire population, including numbers, text, and logical values
 
-      *
 
-      * Excel Function:
 
-      *        VARPA(value1[,value2[, ...]])
 
-      *
 
-      * @access    public
 
-      * @category Statistical Functions
 
-      * @param    mixed        $arg,...        Data values
 
-      * @return    float
 
-      */
 
-     public static function VARPA()
 
-     {
 
-         $returnValue = PHPExcel_Calculation_Functions::DIV0();
 
-         $summerA = $summerB = 0;
 
-         // Loop through arguments
 
-         $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
 
-         $aCount = 0;
 
-         foreach ($aArgs as $k => $arg) {
 
-             if ((is_string($arg)) &&
 
-                 (PHPExcel_Calculation_Functions::isValue($k))) {
 
-                 return PHPExcel_Calculation_Functions::VALUE();
 
-             } elseif ((is_string($arg)) &&
 
-                 (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
 
-             } else {
 
-                 // Is it a numeric value?
 
-                 if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
 
-                     if (is_bool($arg)) {
 
-                         $arg = (integer) $arg;
 
-                     } elseif (is_string($arg)) {
 
-                         $arg = 0;
 
-                     }
 
-                     $summerA += ($arg * $arg);
 
-                     $summerB += $arg;
 
-                     ++$aCount;
 
-                 }
 
-             }
 
-         }
 
-         if ($aCount > 0) {
 
-             $summerA *= $aCount;
 
-             $summerB *= $summerB;
 
-             $returnValue = ($summerA - $summerB) / ($aCount * $aCount);
 
-         }
 
-         return $returnValue;
 
-     }
 
-     /**
 
-      * WEIBULL
 
-      *
 
-      * Returns the Weibull distribution. Use this distribution in reliability
 
-      * analysis, such as calculating a device's mean time to failure.
 
-      *
 
-      * @param    float        $value
 
-      * @param    float        $alpha        Alpha Parameter
 
-      * @param    float        $beta        Beta Parameter
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function WEIBULL($value, $alpha, $beta, $cumulative)
 
-     {
 
-         $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
 
-         $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
 
-         $beta  = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
 
-         if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {
 
-             if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {
 
-                 return PHPExcel_Calculation_Functions::NaN();
 
-             }
 
-             if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
 
-                 if ($cumulative) {
 
-                     return 1 - exp(0 - pow($value / $beta, $alpha));
 
-                 } else {
 
-                     return ($alpha / pow($beta, $alpha)) * pow($value, $alpha - 1) * exp(0 - pow($value / $beta, $alpha));
 
-                 }
 
-             }
 
-         }
 
-         return PHPExcel_Calculation_Functions::VALUE();
 
-     }
 
-     /**
 
-      * ZTEST
 
-      *
 
-      * Returns the Weibull distribution. Use this distribution in reliability
 
-      * analysis, such as calculating a device's mean time to failure.
 
-      *
 
-      * @param    float        $dataSet
 
-      * @param    float        $m0        Alpha Parameter
 
-      * @param    float        $sigma    Beta Parameter
 
-      * @param    boolean        $cumulative
 
-      * @return    float
 
-      *
 
-      */
 
-     public static function ZTEST($dataSet, $m0, $sigma = null)
 
-     {
 
-         $dataSet = PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet);
 
-         $m0      = PHPExcel_Calculation_Functions::flattenSingleValue($m0);
 
-         $sigma   = PHPExcel_Calculation_Functions::flattenSingleValue($sigma);
 
-         if (is_null($sigma)) {
 
-             $sigma = self::STDEV($dataSet);
 
-         }
 
-         $n = count($dataSet);
 
-         return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / SQRT($n)));
 
-     }
 
- }
 
 
  |