HalftoneShader.js 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /**
  2. * RGB Halftone shader for three.js.
  3. * NOTE:
  4. * Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square)
  5. * Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker)
  6. */
  7. const HalftoneShader = {
  8. uniforms: {
  9. 'tDiffuse': { value: null },
  10. 'shape': { value: 1 },
  11. 'radius': { value: 4 },
  12. 'rotateR': { value: Math.PI / 12 * 1 },
  13. 'rotateG': { value: Math.PI / 12 * 2 },
  14. 'rotateB': { value: Math.PI / 12 * 3 },
  15. 'scatter': { value: 0 },
  16. 'width': { value: 1 },
  17. 'height': { value: 1 },
  18. 'blending': { value: 1 },
  19. 'blendingMode': { value: 1 },
  20. 'greyscale': { value: false },
  21. 'disable': { value: false }
  22. },
  23. vertexShader: /* glsl */`
  24. varying vec2 vUV;
  25. void main() {
  26. vUV = uv;
  27. gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
  28. }`,
  29. fragmentShader: /* glsl */`
  30. #define SQRT2_MINUS_ONE 0.41421356
  31. #define SQRT2_HALF_MINUS_ONE 0.20710678
  32. #define PI2 6.28318531
  33. #define SHAPE_DOT 1
  34. #define SHAPE_ELLIPSE 2
  35. #define SHAPE_LINE 3
  36. #define SHAPE_SQUARE 4
  37. #define BLENDING_LINEAR 1
  38. #define BLENDING_MULTIPLY 2
  39. #define BLENDING_ADD 3
  40. #define BLENDING_LIGHTER 4
  41. #define BLENDING_DARKER 5
  42. uniform sampler2D tDiffuse;
  43. uniform float radius;
  44. uniform float rotateR;
  45. uniform float rotateG;
  46. uniform float rotateB;
  47. uniform float scatter;
  48. uniform float width;
  49. uniform float height;
  50. uniform int shape;
  51. uniform bool disable;
  52. uniform float blending;
  53. uniform int blendingMode;
  54. varying vec2 vUV;
  55. uniform bool greyscale;
  56. const int samples = 8;
  57. float blend( float a, float b, float t ) {
  58. // linear blend
  59. return a * ( 1.0 - t ) + b * t;
  60. }
  61. float hypot( float x, float y ) {
  62. // vector magnitude
  63. return sqrt( x * x + y * y );
  64. }
  65. float rand( vec2 seed ){
  66. // get pseudo-random number
  67. return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 );
  68. }
  69. float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) {
  70. // apply shape-specific transforms
  71. float dist = hypot( coord.x - p.x, coord.y - p.y );
  72. float rad = channel;
  73. if ( shape == SHAPE_DOT ) {
  74. rad = pow( abs( rad ), 1.125 ) * rad_max;
  75. } else if ( shape == SHAPE_ELLIPSE ) {
  76. rad = pow( abs( rad ), 1.125 ) * rad_max;
  77. if ( dist != 0.0 ) {
  78. float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y );
  79. dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE;
  80. }
  81. } else if ( shape == SHAPE_LINE ) {
  82. rad = pow( abs( rad ), 1.5) * rad_max;
  83. float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y;
  84. dist = hypot( normal.x * dot_p, normal.y * dot_p );
  85. } else if ( shape == SHAPE_SQUARE ) {
  86. float theta = atan( p.y - coord.y, p.x - coord.x ) - angle;
  87. float sin_t = abs( sin( theta ) );
  88. float cos_t = abs( cos( theta ) );
  89. rad = pow( abs( rad ), 1.4 );
  90. rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) );
  91. }
  92. return rad - dist;
  93. }
  94. struct Cell {
  95. // grid sample positions
  96. vec2 normal;
  97. vec2 p1;
  98. vec2 p2;
  99. vec2 p3;
  100. vec2 p4;
  101. float samp2;
  102. float samp1;
  103. float samp3;
  104. float samp4;
  105. };
  106. vec4 getSample( vec2 point ) {
  107. // multi-sampled point
  108. vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) );
  109. float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2;
  110. float step = PI2 / float( samples );
  111. float dist = radius * 0.66;
  112. for ( int i = 0; i < samples; ++i ) {
  113. float r = base + step * float( i );
  114. vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist );
  115. tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) );
  116. }
  117. tex /= float( samples ) + 1.0;
  118. return tex;
  119. }
  120. float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) {
  121. // get colour for given point
  122. float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res;
  123. if ( channel == 0 ) {
  124. c.samp1 = getSample( c.p1 ).r;
  125. c.samp2 = getSample( c.p2 ).r;
  126. c.samp3 = getSample( c.p3 ).r;
  127. c.samp4 = getSample( c.p4 ).r;
  128. } else if (channel == 1) {
  129. c.samp1 = getSample( c.p1 ).g;
  130. c.samp2 = getSample( c.p2 ).g;
  131. c.samp3 = getSample( c.p3 ).g;
  132. c.samp4 = getSample( c.p4 ).g;
  133. } else {
  134. c.samp1 = getSample( c.p1 ).b;
  135. c.samp3 = getSample( c.p3 ).b;
  136. c.samp2 = getSample( c.p2 ).b;
  137. c.samp4 = getSample( c.p4 ).b;
  138. }
  139. dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius );
  140. dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius );
  141. dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius );
  142. dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius );
  143. res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0;
  144. res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0;
  145. res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0;
  146. res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0;
  147. res = clamp( res, 0.0, 1.0 );
  148. return res;
  149. }
  150. Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) {
  151. // get containing cell
  152. Cell c;
  153. // calc grid
  154. vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) );
  155. float threshold = step * 0.5;
  156. float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y );
  157. float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y );
  158. vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal );
  159. float offset_normal = mod( hypot( offset.x, offset.y ), step );
  160. float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0;
  161. float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir;
  162. float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step );
  163. float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0;
  164. float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir;
  165. // get closest corner
  166. c.normal = n;
  167. c.p1.x = p.x - n.x * normal_scale + n.y * line_scale;
  168. c.p1.y = p.y - n.y * normal_scale - n.x * line_scale;
  169. // scatter
  170. if ( scatter != 0.0 ) {
  171. float off_mag = scatter * threshold * 0.5;
  172. float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2;
  173. c.p1.x += cos( off_angle ) * off_mag;
  174. c.p1.y += sin( off_angle ) * off_mag;
  175. }
  176. // find corners
  177. float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step );
  178. float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step );
  179. c.p2.x = c.p1.x - n.x * normal_step;
  180. c.p2.y = c.p1.y - n.y * normal_step;
  181. c.p3.x = c.p1.x + n.y * line_step;
  182. c.p3.y = c.p1.y - n.x * line_step;
  183. c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step;
  184. c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step;
  185. return c;
  186. }
  187. float blendColour( float a, float b, float t ) {
  188. // blend colours
  189. if ( blendingMode == BLENDING_LINEAR ) {
  190. return blend( a, b, 1.0 - t );
  191. } else if ( blendingMode == BLENDING_ADD ) {
  192. return blend( a, min( 1.0, a + b ), t );
  193. } else if ( blendingMode == BLENDING_MULTIPLY ) {
  194. return blend( a, max( 0.0, a * b ), t );
  195. } else if ( blendingMode == BLENDING_LIGHTER ) {
  196. return blend( a, max( a, b ), t );
  197. } else if ( blendingMode == BLENDING_DARKER ) {
  198. return blend( a, min( a, b ), t );
  199. } else {
  200. return blend( a, b, 1.0 - t );
  201. }
  202. }
  203. void main() {
  204. if ( ! disable ) {
  205. // setup
  206. vec2 p = vec2( vUV.x * width, vUV.y * height );
  207. vec2 origin = vec2( 0, 0 );
  208. float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25;
  209. // get channel samples
  210. Cell cell_r = getReferenceCell( p, origin, rotateR, radius );
  211. Cell cell_g = getReferenceCell( p, origin, rotateG, radius );
  212. Cell cell_b = getReferenceCell( p, origin, rotateB, radius );
  213. float r = getDotColour( cell_r, p, 0, rotateR, aa );
  214. float g = getDotColour( cell_g, p, 1, rotateG, aa );
  215. float b = getDotColour( cell_b, p, 2, rotateB, aa );
  216. // blend with original
  217. vec4 colour = texture2D( tDiffuse, vUV );
  218. r = blendColour( r, colour.r, blending );
  219. g = blendColour( g, colour.g, blending );
  220. b = blendColour( b, colour.b, blending );
  221. if ( greyscale ) {
  222. r = g = b = (r + b + g) / 3.0;
  223. }
  224. gl_FragColor = vec4( r, g, b, 1.0 );
  225. } else {
  226. gl_FragColor = texture2D( tDiffuse, vUV );
  227. }
  228. }`
  229. };
  230. export { HalftoneShader };