| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 | import {	BackSide,	BoxGeometry,	Mesh,	ShaderMaterial,	UniformsUtils,	Vector3} from '../../../build/three.module.js';/** * Based on "A Practical Analytic Model for Daylight" * aka The Preetham Model, the de facto standard analytic skydome model * https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight * * First implemented by Simon Wallner * http://www.simonwallner.at/projects/atmospheric-scattering * * Improved by Martin Upitis * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR * * Three.js integration by zz85 http://twitter.com/blurspline*/class Sky extends Mesh {	constructor() {		const shader = Sky.SkyShader;		const material = new ShaderMaterial( {			name: 'SkyShader',			fragmentShader: shader.fragmentShader,			vertexShader: shader.vertexShader,			uniforms: UniformsUtils.clone( shader.uniforms ),			side: BackSide,			depthWrite: false		} );		super( new BoxGeometry( 1, 1, 1 ), material );	}}Sky.prototype.isSky = true;Sky.SkyShader = {	uniforms: {		'turbidity': { value: 2 },		'rayleigh': { value: 1 },		'mieCoefficient': { value: 0.005 },		'mieDirectionalG': { value: 0.8 },		'sunPosition': { value: new Vector3() },		'up': { value: new Vector3( 0, 1, 0 ) }	},	vertexShader: /* glsl */`		uniform vec3 sunPosition;		uniform float rayleigh;		uniform float turbidity;		uniform float mieCoefficient;		uniform vec3 up;		varying vec3 vWorldPosition;		varying vec3 vSunDirection;		varying float vSunfade;		varying vec3 vBetaR;		varying vec3 vBetaM;		varying float vSunE;		// constants for atmospheric scattering		const float e = 2.71828182845904523536028747135266249775724709369995957;		const float pi = 3.141592653589793238462643383279502884197169;		// wavelength of used primaries, according to preetham		const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );		// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:		// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))		const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );		// mie stuff		// K coefficient for the primaries		const float v = 4.0;		const vec3 K = vec3( 0.686, 0.678, 0.666 );		// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K		const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );		// earth shadow hack		// cutoffAngle = pi / 1.95;		const float cutoffAngle = 1.6110731556870734;		const float steepness = 1.5;		const float EE = 1000.0;		float sunIntensity( float zenithAngleCos ) {			zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );			return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );		}		vec3 totalMie( float T ) {			float c = ( 0.2 * T ) * 10E-18;			return 0.434 * c * MieConst;		}		void main() {			vec4 worldPosition = modelMatrix * vec4( position, 1.0 );			vWorldPosition = worldPosition.xyz;			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );			gl_Position.z = gl_Position.w; // set z to camera.far			vSunDirection = normalize( sunPosition );			vSunE = sunIntensity( dot( vSunDirection, up ) );			vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );			float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );			// extinction (absorbtion + out scattering)			// rayleigh coefficients			vBetaR = totalRayleigh * rayleighCoefficient;			// mie coefficients			vBetaM = totalMie( turbidity ) * mieCoefficient;		}`,	fragmentShader: /* glsl */`		varying vec3 vWorldPosition;		varying vec3 vSunDirection;		varying float vSunfade;		varying vec3 vBetaR;		varying vec3 vBetaM;		varying float vSunE;		uniform float mieDirectionalG;		uniform vec3 up;		const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );		// constants for atmospheric scattering		const float pi = 3.141592653589793238462643383279502884197169;		const float n = 1.0003; // refractive index of air		const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)		// optical length at zenith for molecules		const float rayleighZenithLength = 8.4E3;		const float mieZenithLength = 1.25E3;		// 66 arc seconds -> degrees, and the cosine of that		const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;		// 3.0 / ( 16.0 * pi )		const float THREE_OVER_SIXTEENPI = 0.05968310365946075;		// 1.0 / ( 4.0 * pi )		const float ONE_OVER_FOURPI = 0.07957747154594767;		float rayleighPhase( float cosTheta ) {			return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );		}		float hgPhase( float cosTheta, float g ) {			float g2 = pow( g, 2.0 );			float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );			return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );		}		void main() {			vec3 direction = normalize( vWorldPosition - cameraPos );			// optical length			// cutoff angle at 90 to avoid singularity in next formula.			float zenithAngle = acos( max( 0.0, dot( up, direction ) ) );			float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );			float sR = rayleighZenithLength * inverse;			float sM = mieZenithLength * inverse;			// combined extinction factor			vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );			// in scattering			float cosTheta = dot( direction, vSunDirection );			float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );			vec3 betaRTheta = vBetaR * rPhase;			float mPhase = hgPhase( cosTheta, mieDirectionalG );			vec3 betaMTheta = vBetaM * mPhase;			vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );			Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );			// nightsky			float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]			float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]			vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );			vec3 L0 = vec3( 0.1 ) * Fex;			// composition + solar disc			float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );			L0 += ( vSunE * 19000.0 * Fex ) * sundisk;			vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );			vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );			gl_FragColor = vec4( retColor, 1.0 );			#include <tonemapping_fragment>			#include <encodings_fragment>		}`};export { Sky };
 |