| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | ( function () {	/** * Shaders to render 3D volumes using raycasting. * The applied techniques are based on similar implementations in the Visvis and Vispy projects. * This is not the only approach, therefore it's marked 1. */	const VolumeRenderShader1 = {		uniforms: {			'u_size': {				value: new THREE.Vector3( 1, 1, 1 )			},			'u_renderstyle': {				value: 0			},			'u_renderthreshold': {				value: 0.5			},			'u_clim': {				value: new THREE.Vector2( 1, 1 )			},			'u_data': {				value: null			},			'u_cmdata': {				value: null			}		},		vertexShader:  /* glsl */  `		varying vec4 v_nearpos;		varying vec4 v_farpos;		varying vec3 v_position;		void main() {				// Prepare transforms to map to "camera view". See also:				// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram				mat4 viewtransformf = modelViewMatrix;				mat4 viewtransformi = inverse(modelViewMatrix);				// Project local vertex coordinate to camera position. Then do a step				// backward (in cam coords) to the near clipping plane, and project back. Do				// the same for the far clipping plane. This gives us all the information we				// need to calculate the ray and truncate it to the viewing cone.				vec4 position4 = vec4(position, 1.0);				vec4 pos_in_cam = viewtransformf * position4;				// Intersection of ray and near clipping plane (z = -1 in clip coords)				pos_in_cam.z = -pos_in_cam.w;				v_nearpos = viewtransformi * pos_in_cam;				// Intersection of ray and far clipping plane (z = +1 in clip coords)				pos_in_cam.z = pos_in_cam.w;				v_farpos = viewtransformi * pos_in_cam;				// Set varyings and output pos				v_position = position;				gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;		}`,		fragmentShader:  /* glsl */  `				precision highp float;				precision mediump sampler3D;				uniform vec3 u_size;				uniform int u_renderstyle;				uniform float u_renderthreshold;				uniform vec2 u_clim;				uniform sampler3D u_data;				uniform sampler2D u_cmdata;				varying vec3 v_position;				varying vec4 v_nearpos;				varying vec4 v_farpos;				// The maximum distance through our rendering volume is sqrt(3).				const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3				const int REFINEMENT_STEPS = 4;				const float relative_step_size = 1.0;				const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);				const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);				const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);				const float shininess = 40.0;				void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);				void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);				float sample1(vec3 texcoords);				vec4 apply_colormap(float val);				vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);				void main() {						// Normalize clipping plane info						vec3 farpos = v_farpos.xyz / v_farpos.w;						vec3 nearpos = v_nearpos.xyz / v_nearpos.w;						// Calculate unit vector pointing in the view direction through this fragment.						vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);						// Compute the (negative) distance to the front surface or near clipping plane.						// v_position is the back face of the cuboid, so the initial distance calculated in the dot						// product below is the distance from near clip plane to the back of the cuboid						float distance = dot(nearpos - v_position, view_ray);						distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,																				(u_size.x - 0.5 - v_position.x) / view_ray.x));						distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,																				(u_size.y - 0.5 - v_position.y) / view_ray.y));						distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,																				(u_size.z - 0.5 - v_position.z) / view_ray.z));						// Now we have the starting position on the front surface						vec3 front = v_position + view_ray * distance;						// Decide how many steps to take						int nsteps = int(-distance / relative_step_size + 0.5);						if ( nsteps < 1 )								discard;						// Get starting location and step vector in texture coordinates						vec3 step = ((v_position - front) / u_size) / float(nsteps);						vec3 start_loc = front / u_size;						// For testing: show the number of steps. This helps to establish						// whether the rays are correctly oriented						//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);						//'return;						if (u_renderstyle == 0)								cast_mip(start_loc, step, nsteps, view_ray);						else if (u_renderstyle == 1)								cast_iso(start_loc, step, nsteps, view_ray);						if (gl_FragColor.a < 0.05)								discard;				}				float sample1(vec3 texcoords) {						/* Sample float value from a 3D texture. Assumes intensity data. */						return texture(u_data, texcoords.xyz).r;				}				vec4 apply_colormap(float val) {						val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);						return texture2D(u_cmdata, vec2(val, 0.5));				}				void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {						float max_val = -1e6;						int max_i = 100;						vec3 loc = start_loc;						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with						// non-constant expression. So we use a hard-coded max, and an additional condition						// inside the loop.						for (int iter=0; iter<MAX_STEPS; iter++) {								if (iter >= nsteps)										break;								// Sample from the 3D texture								float val = sample1(loc);								// Apply MIP operation								if (val > max_val) {										max_val = val;										max_i = iter;								}								// Advance location deeper into the volume								loc += step;						}						// Refine location, gives crispier images						vec3 iloc = start_loc + step * (float(max_i) - 0.5);						vec3 istep = step / float(REFINEMENT_STEPS);						for (int i=0; i<REFINEMENT_STEPS; i++) {								max_val = max(max_val, sample1(iloc));								iloc += istep;						}						// Resolve final color						gl_FragColor = apply_colormap(max_val);				}				void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {						gl_FragColor = vec4(0.0);	// init transparent						vec4 color3 = vec4(0.0);	// final color						vec3 dstep = 1.5 / u_size;	// step to sample derivative						vec3 loc = start_loc;						float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with						// non-constant expression. So we use a hard-coded max, and an additional condition						// inside the loop.						for (int iter=0; iter<MAX_STEPS; iter++) {								if (iter >= nsteps)										break;								// Sample from the 3D texture								float val = sample1(loc);								if (val > low_threshold) {										// Take the last interval in smaller steps										vec3 iloc = loc - 0.5 * step;										vec3 istep = step / float(REFINEMENT_STEPS);										for (int i=0; i<REFINEMENT_STEPS; i++) {												val = sample1(iloc);												if (val > u_renderthreshold) {														gl_FragColor = add_lighting(val, iloc, dstep, view_ray);														return;												}												iloc += istep;										}								}								// Advance location deeper into the volume								loc += step;						}				}				vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)				{					// Calculate color by incorporating lighting						// View direction						vec3 V = normalize(view_ray);						// calculate normal vector from gradient						vec3 N;						float val1, val2;						val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));						val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));						N[0] = val1 - val2;						val = max(max(val1, val2), val);						val1 = sample1(loc + vec3(0.0, -step[1], 0.0));						val2 = sample1(loc + vec3(0.0, +step[1], 0.0));						N[1] = val1 - val2;						val = max(max(val1, val2), val);						val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));						val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));						N[2] = val1 - val2;						val = max(max(val1, val2), val);						float gm = length(N); // gradient magnitude						N = normalize(N);						// Flip normal so it points towards viewer						float Nselect = float(dot(N, V) > 0.0);						N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;						// Init colors						vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);						vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);						vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);						// note: could allow multiple lights						for (int i=0; i<1; i++)						{								 // Get light direction (make sure to prevent zero devision)								vec3 L = normalize(view_ray);	//lightDirs[i];								float lightEnabled = float( length(L) > 0.0 );								L = normalize(L + (1.0 - lightEnabled));								// Calculate lighting properties								float lambertTerm = clamp(dot(N, L), 0.0, 1.0);								vec3 H = normalize(L+V); // Halfway vector								float specularTerm = pow(max(dot(H, N), 0.0), shininess);								// Calculate mask								float mask1 = lightEnabled;								// Calculate colors								ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;								diffuse_color +=	mask1 * lambertTerm;								specular_color += mask1 * specularTerm * specular_color;						}						// Calculate final color by componing different components						vec4 final_color;						vec4 color = apply_colormap(val);						final_color = color * (ambient_color + diffuse_color) + specular_color;						final_color.a = color.a;						return final_color;				}`	};	THREE.VolumeRenderShader1 = VolumeRenderShader1;} )();
 |