| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 | ( function () {	/** * References: * http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html * https://learnopengl.com/Advanced-Lighting/SSAO * https://github.com/McNopper/OpenGL/blob/master/Example28/shader/ssao.frag.glsl */	const SSAOShader = {		defines: {			'PERSPECTIVE_CAMERA': 1,			'KERNEL_SIZE': 32		},		uniforms: {			'tDiffuse': {				value: null			},			'tNormal': {				value: null			},			'tDepth': {				value: null			},			'tNoise': {				value: null			},			'kernel': {				value: null			},			'cameraNear': {				value: null			},			'cameraFar': {				value: null			},			'resolution': {				value: new THREE.Vector2()			},			'cameraProjectionMatrix': {				value: new THREE.Matrix4()			},			'cameraInverseProjectionMatrix': {				value: new THREE.Matrix4()			},			'kernelRadius': {				value: 8			},			'minDistance': {				value: 0.005			},			'maxDistance': {				value: 0.05			}		},		vertexShader:  /* glsl */  `		varying vec2 vUv;		void main() {			vUv = uv;			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );		}`,		fragmentShader:  /* glsl */  `		uniform sampler2D tDiffuse;		uniform sampler2D tNormal;		uniform sampler2D tDepth;		uniform sampler2D tNoise;		uniform vec3 kernel[ KERNEL_SIZE ];		uniform vec2 resolution;		uniform float cameraNear;		uniform float cameraFar;		uniform mat4 cameraProjectionMatrix;		uniform mat4 cameraInverseProjectionMatrix;		uniform float kernelRadius;		uniform float minDistance; // avoid artifacts caused by neighbour fragments with minimal depth difference		uniform float maxDistance; // avoid the influence of fragments which are too far away		varying vec2 vUv;		#include <packing>		float getDepth( const in vec2 screenPosition ) {			return texture2D( tDepth, screenPosition ).x;		}		float getLinearDepth( const in vec2 screenPosition ) {			#if PERSPECTIVE_CAMERA == 1				float fragCoordZ = texture2D( tDepth, screenPosition ).x;				float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );				return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );			#else				return texture2D( tDepth, screenPosition ).x;			#endif		}		float getViewZ( const in float depth ) {			#if PERSPECTIVE_CAMERA == 1				return perspectiveDepthToViewZ( depth, cameraNear, cameraFar );			#else				return orthographicDepthToViewZ( depth, cameraNear, cameraFar );			#endif		}		vec3 getViewPosition( const in vec2 screenPosition, const in float depth, const in float viewZ ) {			float clipW = cameraProjectionMatrix[2][3] * viewZ + cameraProjectionMatrix[3][3];			vec4 clipPosition = vec4( ( vec3( screenPosition, depth ) - 0.5 ) * 2.0, 1.0 );			clipPosition *= clipW; // unprojection.			return ( cameraInverseProjectionMatrix * clipPosition ).xyz;		}		vec3 getViewNormal( const in vec2 screenPosition ) {			return unpackRGBToNormal( texture2D( tNormal, screenPosition ).xyz );		}		void main() {			float depth = getDepth( vUv );			float viewZ = getViewZ( depth );			vec3 viewPosition = getViewPosition( vUv, depth, viewZ );			vec3 viewNormal = getViewNormal( vUv );			vec2 noiseScale = vec2( resolution.x / 4.0, resolution.y / 4.0 );			vec3 random = texture2D( tNoise, vUv * noiseScale ).xyz;			// compute matrix used to reorient a kernel vector			vec3 tangent = normalize( random - viewNormal * dot( random, viewNormal ) );			vec3 bitangent = cross( viewNormal, tangent );			mat3 kernelMatrix = mat3( tangent, bitangent, viewNormal );		 float occlusion = 0.0;		 for ( int i = 0; i < KERNEL_SIZE; i ++ ) {				vec3 sampleVector = kernelMatrix * kernel[ i ]; // reorient sample vector in view space				vec3 samplePoint = viewPosition + ( sampleVector * kernelRadius ); // calculate sample point				vec4 samplePointNDC = cameraProjectionMatrix * vec4( samplePoint, 1.0 ); // project point and calculate NDC				samplePointNDC /= samplePointNDC.w;				vec2 samplePointUv = samplePointNDC.xy * 0.5 + 0.5; // compute uv coordinates				float realDepth = getLinearDepth( samplePointUv ); // get linear depth from depth texture				float sampleDepth = viewZToOrthographicDepth( samplePoint.z, cameraNear, cameraFar ); // compute linear depth of the sample view Z value				float delta = sampleDepth - realDepth;				if ( delta > minDistance && delta < maxDistance ) { // if fragment is before sample point, increase occlusion					occlusion += 1.0;				}			}			occlusion = clamp( occlusion / float( KERNEL_SIZE ), 0.0, 1.0 );			gl_FragColor = vec4( vec3( 1.0 - occlusion ), 1.0 );		}`	};	const SSAODepthShader = {		defines: {			'PERSPECTIVE_CAMERA': 1		},		uniforms: {			'tDepth': {				value: null			},			'cameraNear': {				value: null			},			'cameraFar': {				value: null			}		},		vertexShader: `varying vec2 vUv;		void main() {			vUv = uv;			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );		}`,		fragmentShader: `uniform sampler2D tDepth;		uniform float cameraNear;		uniform float cameraFar;		varying vec2 vUv;		#include <packing>		float getLinearDepth( const in vec2 screenPosition ) {			#if PERSPECTIVE_CAMERA == 1				float fragCoordZ = texture2D( tDepth, screenPosition ).x;				float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );				return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );			#else				return texture2D( tDepth, screenPosition ).x;			#endif		}		void main() {			float depth = getLinearDepth( vUv );			gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );		}`	};	const SSAOBlurShader = {		uniforms: {			'tDiffuse': {				value: null			},			'resolution': {				value: new THREE.Vector2()			}		},		vertexShader: `varying vec2 vUv;		void main() {			vUv = uv;			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );		}`,		fragmentShader: `uniform sampler2D tDiffuse;		uniform vec2 resolution;		varying vec2 vUv;		void main() {			vec2 texelSize = ( 1.0 / resolution );			float result = 0.0;			for ( int i = - 2; i <= 2; i ++ ) {				for ( int j = - 2; j <= 2; j ++ ) {					vec2 offset = ( vec2( float( i ), float( j ) ) ) * texelSize;					result += texture2D( tDiffuse, vUv + offset ).r;				}			}			gl_FragColor = vec4( vec3( result / ( 5.0 * 5.0 ) ), 1.0 );		}`	};	THREE.SSAOBlurShader = SSAOBlurShader;	THREE.SSAODepthShader = SSAODepthShader;	THREE.SSAOShader = SSAOShader;} )();
 |