| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644 | ( function () {	class SVGLoader extends THREE.Loader {		constructor( manager ) {			super( manager ); // Default dots per inch			this.defaultDPI = 90; // Accepted units: 'mm', 'cm', 'in', 'pt', 'pc', 'px'			this.defaultUnit = 'px';		}		load( url, onLoad, onProgress, onError ) {			const scope = this;			const loader = new THREE.FileLoader( scope.manager );			loader.setPath( scope.path );			loader.setRequestHeader( scope.requestHeader );			loader.setWithCredentials( scope.withCredentials );			loader.load( url, function ( text ) {				try {					onLoad( scope.parse( text ) );				} catch ( e ) {					if ( onError ) {						onError( e );					} else {						console.error( e );					}					scope.manager.itemError( url );				}			}, onProgress, onError );		}		parse( text ) {			const scope = this;			function parseNode( node, style ) {				if ( node.nodeType !== 1 ) return;				const transform = getNodeTransform( node );				let traverseChildNodes = true;				let path = null;				switch ( node.nodeName ) {					case 'svg':						break;					case 'style':						parseCSSStylesheet( node );						break;					case 'g':						style = parseStyle( node, style );						break;					case 'path':						style = parseStyle( node, style );						if ( node.hasAttribute( 'd' ) ) path = parsePathNode( node );						break;					case 'rect':						style = parseStyle( node, style );						path = parseRectNode( node );						break;					case 'polygon':						style = parseStyle( node, style );						path = parsePolygonNode( node );						break;					case 'polyline':						style = parseStyle( node, style );						path = parsePolylineNode( node );						break;					case 'circle':						style = parseStyle( node, style );						path = parseCircleNode( node );						break;					case 'ellipse':						style = parseStyle( node, style );						path = parseEllipseNode( node );						break;					case 'line':						style = parseStyle( node, style );						path = parseLineNode( node );						break;					case 'defs':						traverseChildNodes = false;						break;					case 'use':						style = parseStyle( node, style );						const usedNodeId = node.href.baseVal.substring( 1 );						const usedNode = node.viewportElement.getElementById( usedNodeId );						if ( usedNode ) {							parseNode( usedNode, style );						} else {							console.warn( 'SVGLoader: \'use node\' references non-existent node id: ' + usedNodeId );						}						break;					default: // console.log( node );				}				if ( path ) {					if ( style.fill !== undefined && style.fill !== 'none' ) {						path.color.setStyle( style.fill );					}					transformPath( path, currentTransform );					paths.push( path );					path.userData = {						node: node,						style: style					};				}				if ( traverseChildNodes ) {					const nodes = node.childNodes;					for ( let i = 0; i < nodes.length; i ++ ) {						parseNode( nodes[ i ], style );					}				}				if ( transform ) {					transformStack.pop();					if ( transformStack.length > 0 ) {						currentTransform.copy( transformStack[ transformStack.length - 1 ] );					} else {						currentTransform.identity();					}				}			}			function parsePathNode( node ) {				const path = new THREE.ShapePath();				const point = new THREE.Vector2();				const control = new THREE.Vector2();				const firstPoint = new THREE.Vector2();				let isFirstPoint = true;				let doSetFirstPoint = false;				const d = node.getAttribute( 'd' ); // console.log( d );				const commands = d.match( /[a-df-z][^a-df-z]*/ig );				for ( let i = 0, l = commands.length; i < l; i ++ ) {					const command = commands[ i ];					const type = command.charAt( 0 );					const data = command.substr( 1 ).trim();					if ( isFirstPoint === true ) {						doSetFirstPoint = true;						isFirstPoint = false;					}					let numbers;					switch ( type ) {						case 'M':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {								point.x = numbers[ j + 0 ];								point.y = numbers[ j + 1 ];								control.x = point.x;								control.y = point.y;								if ( j === 0 ) {									path.moveTo( point.x, point.y );								} else {									path.lineTo( point.x, point.y );								}								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'H':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {								point.x = numbers[ j ];								control.x = point.x;								control.y = point.y;								path.lineTo( point.x, point.y );								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'V':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {								point.y = numbers[ j ];								control.x = point.x;								control.y = point.y;								path.lineTo( point.x, point.y );								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'L':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {								point.x = numbers[ j + 0 ];								point.y = numbers[ j + 1 ];								control.x = point.x;								control.y = point.y;								path.lineTo( point.x, point.y );								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'C':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {								path.bezierCurveTo( numbers[ j + 0 ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], numbers[ j + 5 ] );								control.x = numbers[ j + 2 ];								control.y = numbers[ j + 3 ];								point.x = numbers[ j + 4 ];								point.y = numbers[ j + 5 ];								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'S':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {								path.bezierCurveTo( getReflection( point.x, control.x ), getReflection( point.y, control.y ), numbers[ j + 0 ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ] );								control.x = numbers[ j + 0 ];								control.y = numbers[ j + 1 ];								point.x = numbers[ j + 2 ];								point.y = numbers[ j + 3 ];								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'Q':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {								path.quadraticCurveTo( numbers[ j + 0 ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ] );								control.x = numbers[ j + 0 ];								control.y = numbers[ j + 1 ];								point.x = numbers[ j + 2 ];								point.y = numbers[ j + 3 ];								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'T':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {								const rx = getReflection( point.x, control.x );								const ry = getReflection( point.y, control.y );								path.quadraticCurveTo( rx, ry, numbers[ j + 0 ], numbers[ j + 1 ] );								control.x = rx;								control.y = ry;								point.x = numbers[ j + 0 ];								point.y = numbers[ j + 1 ];								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'A':							numbers = parseFloats( data, [ 3, 4 ], 7 );							for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {								// skip command if start point == end point								if ( numbers[ j + 5 ] == point.x && numbers[ j + 6 ] == point.y ) continue;								const start = point.clone();								point.x = numbers[ j + 5 ];								point.y = numbers[ j + 6 ];								control.x = point.x;								control.y = point.y;								parseArcCommand( path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point );								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'm':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {								point.x += numbers[ j + 0 ];								point.y += numbers[ j + 1 ];								control.x = point.x;								control.y = point.y;								if ( j === 0 ) {									path.moveTo( point.x, point.y );								} else {									path.lineTo( point.x, point.y );								}								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'h':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {								point.x += numbers[ j ];								control.x = point.x;								control.y = point.y;								path.lineTo( point.x, point.y );								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'v':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {								point.y += numbers[ j ];								control.x = point.x;								control.y = point.y;								path.lineTo( point.x, point.y );								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'l':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {								point.x += numbers[ j + 0 ];								point.y += numbers[ j + 1 ];								control.x = point.x;								control.y = point.y;								path.lineTo( point.x, point.y );								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'c':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {								path.bezierCurveTo( point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ], point.x + numbers[ j + 2 ], point.y + numbers[ j + 3 ], point.x + numbers[ j + 4 ], point.y + numbers[ j + 5 ] );								control.x = point.x + numbers[ j + 2 ];								control.y = point.y + numbers[ j + 3 ];								point.x += numbers[ j + 4 ];								point.y += numbers[ j + 5 ];								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 's':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {								path.bezierCurveTo( getReflection( point.x, control.x ), getReflection( point.y, control.y ), point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ], point.x + numbers[ j + 2 ], point.y + numbers[ j + 3 ] );								control.x = point.x + numbers[ j + 0 ];								control.y = point.y + numbers[ j + 1 ];								point.x += numbers[ j + 2 ];								point.y += numbers[ j + 3 ];								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'q':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {								path.quadraticCurveTo( point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ], point.x + numbers[ j + 2 ], point.y + numbers[ j + 3 ] );								control.x = point.x + numbers[ j + 0 ];								control.y = point.y + numbers[ j + 1 ];								point.x += numbers[ j + 2 ];								point.y += numbers[ j + 3 ];								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 't':							numbers = parseFloats( data );							for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {								const rx = getReflection( point.x, control.x );								const ry = getReflection( point.y, control.y );								path.quadraticCurveTo( rx, ry, point.x + numbers[ j + 0 ], point.y + numbers[ j + 1 ] );								control.x = rx;								control.y = ry;								point.x = point.x + numbers[ j + 0 ];								point.y = point.y + numbers[ j + 1 ];								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'a':							numbers = parseFloats( data, [ 3, 4 ], 7 );							for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {								// skip command if no displacement								if ( numbers[ j + 5 ] == 0 && numbers[ j + 6 ] == 0 ) continue;								const start = point.clone();								point.x += numbers[ j + 5 ];								point.y += numbers[ j + 6 ];								control.x = point.x;								control.y = point.y;								parseArcCommand( path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point );								if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );							}							break;						case 'Z':						case 'z':							path.currentPath.autoClose = true;							if ( path.currentPath.curves.length > 0 ) {								// Reset point to beginning of THREE.Path								point.copy( firstPoint );								path.currentPath.currentPoint.copy( point );								isFirstPoint = true;							}							break;						default:							console.warn( command );					} // console.log( type, parseFloats( data ), parseFloats( data ).length  )					doSetFirstPoint = false;				}				return path;			}			function parseCSSStylesheet( node ) {				if ( ! node.sheet || ! node.sheet.cssRules || ! node.sheet.cssRules.length ) return;				for ( let i = 0; i < node.sheet.cssRules.length; i ++ ) {					const stylesheet = node.sheet.cssRules[ i ];					if ( stylesheet.type !== 1 ) continue;					const selectorList = stylesheet.selectorText.split( /,/gm ).filter( Boolean ).map( i => i.trim() );					for ( let j = 0; j < selectorList.length; j ++ ) {						stylesheets[ selectorList[ j ] ] = Object.assign( stylesheets[ selectorList[ j ] ] || {}, stylesheet.style );					}				}			}			/**     * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes     * https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion     * From     * rx ry x-axis-rotation large-arc-flag sweep-flag x y     * To     * aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation     */			function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) {				if ( rx == 0 || ry == 0 ) {					// draw a line if either of the radii == 0					path.lineTo( end.x, end.y );					return;				}				x_axis_rotation = x_axis_rotation * Math.PI / 180; // Ensure radii are positive				rx = Math.abs( rx );				ry = Math.abs( ry ); // Compute (x1', y1')				const dx2 = ( start.x - end.x ) / 2.0;				const dy2 = ( start.y - end.y ) / 2.0;				const x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2;				const y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2; // Compute (cx', cy')				let rxs = rx * rx;				let rys = ry * ry;				const x1ps = x1p * x1p;				const y1ps = y1p * y1p; // Ensure radii are large enough				const cr = x1ps / rxs + y1ps / rys;				if ( cr > 1 ) {					// scale up rx,ry equally so cr == 1					const s = Math.sqrt( cr );					rx = s * rx;					ry = s * ry;					rxs = rx * rx;					rys = ry * ry;				}				const dq = rxs * y1ps + rys * x1ps;				const pq = ( rxs * rys - dq ) / dq;				let q = Math.sqrt( Math.max( 0, pq ) );				if ( large_arc_flag === sweep_flag ) q = - q;				const cxp = q * rx * y1p / ry;				const cyp = - q * ry * x1p / rx; // Step 3: Compute (cx, cy) from (cx', cy')				const cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2;				const cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2; // Step 4: Compute θ1 and Δθ				const theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry );				const delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 );				path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation );			}			function svgAngle( ux, uy, vx, vy ) {				const dot = ux * vx + uy * vy;				const len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy );				let ang = Math.acos( Math.max( - 1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear				if ( ux * vy - uy * vx < 0 ) ang = - ang;				return ang;			}			/*    * According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute    * rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough    */			function parseRectNode( node ) {				const x = parseFloatWithUnits( node.getAttribute( 'x' ) || 0 );				const y = parseFloatWithUnits( node.getAttribute( 'y' ) || 0 );				const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || node.getAttribute( 'ry' ) || 0 );				const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || node.getAttribute( 'rx' ) || 0 );				const w = parseFloatWithUnits( node.getAttribute( 'width' ) );				const h = parseFloatWithUnits( node.getAttribute( 'height' ) ); // Ellipse arc to Bezier approximation Coefficient (Inversed). See:				// https://spencermortensen.com/articles/bezier-circle/				const bci = 1 - 0.551915024494;				const path = new THREE.ShapePath(); // top left				path.moveTo( x + rx, y ); // top right				path.lineTo( x + w - rx, y );				if ( rx !== 0 || ry !== 0 ) {					path.bezierCurveTo( x + w - rx * bci, y, x + w, y + ry * bci, x + w, y + ry );				} // bottom right				path.lineTo( x + w, y + h - ry );				if ( rx !== 0 || ry !== 0 ) {					path.bezierCurveTo( x + w, y + h - ry * bci, x + w - rx * bci, y + h, x + w - rx, y + h );				} // bottom left				path.lineTo( x + rx, y + h );				if ( rx !== 0 || ry !== 0 ) {					path.bezierCurveTo( x + rx * bci, y + h, x, y + h - ry * bci, x, y + h - ry );				} // back to top left				path.lineTo( x, y + ry );				if ( rx !== 0 || ry !== 0 ) {					path.bezierCurveTo( x, y + ry * bci, x + rx * bci, y, x + rx, y );				}				return path;			}			function parsePolygonNode( node ) {				function iterator( match, a, b ) {					const x = parseFloatWithUnits( a );					const y = parseFloatWithUnits( b );					if ( index === 0 ) {						path.moveTo( x, y );					} else {						path.lineTo( x, y );					}					index ++;				}				const regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g;				const path = new THREE.ShapePath();				let index = 0;				node.getAttribute( 'points' ).replace( regex, iterator );				path.currentPath.autoClose = true;				return path;			}			function parsePolylineNode( node ) {				function iterator( match, a, b ) {					const x = parseFloatWithUnits( a );					const y = parseFloatWithUnits( b );					if ( index === 0 ) {						path.moveTo( x, y );					} else {						path.lineTo( x, y );					}					index ++;				}				const regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g;				const path = new THREE.ShapePath();				let index = 0;				node.getAttribute( 'points' ).replace( regex, iterator );				path.currentPath.autoClose = false;				return path;			}			function parseCircleNode( node ) {				const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );				const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );				const r = parseFloatWithUnits( node.getAttribute( 'r' ) || 0 );				const subpath = new THREE.Path();				subpath.absarc( x, y, r, 0, Math.PI * 2 );				const path = new THREE.ShapePath();				path.subPaths.push( subpath );				return path;			}			function parseEllipseNode( node ) {				const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );				const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );				const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || 0 );				const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || 0 );				const subpath = new THREE.Path();				subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 );				const path = new THREE.ShapePath();				path.subPaths.push( subpath );				return path;			}			function parseLineNode( node ) {				const x1 = parseFloatWithUnits( node.getAttribute( 'x1' ) || 0 );				const y1 = parseFloatWithUnits( node.getAttribute( 'y1' ) || 0 );				const x2 = parseFloatWithUnits( node.getAttribute( 'x2' ) || 0 );				const y2 = parseFloatWithUnits( node.getAttribute( 'y2' ) || 0 );				const path = new THREE.ShapePath();				path.moveTo( x1, y1 );				path.lineTo( x2, y2 );				path.currentPath.autoClose = false;				return path;			} //			function parseStyle( node, style ) {				style = Object.assign( {}, style ); // clone style				let stylesheetStyles = {};				if ( node.hasAttribute( 'class' ) ) {					const classSelectors = node.getAttribute( 'class' ).split( /\s/ ).filter( Boolean ).map( i => i.trim() );					for ( let i = 0; i < classSelectors.length; i ++ ) {						stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '.' + classSelectors[ i ] ] );					}				}				if ( node.hasAttribute( 'id' ) ) {					stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '#' + node.getAttribute( 'id' ) ] );				}				function addStyle( svgName, jsName, adjustFunction ) {					if ( adjustFunction === undefined ) adjustFunction = function copy( v ) {						if ( v.startsWith( 'url' ) ) console.warn( 'SVGLoader: url access in attributes is not implemented.' );						return v;					};					if ( node.hasAttribute( svgName ) ) style[ jsName ] = adjustFunction( node.getAttribute( svgName ) );					if ( stylesheetStyles[ svgName ] ) style[ jsName ] = adjustFunction( stylesheetStyles[ svgName ] );					if ( node.style && node.style[ svgName ] !== '' ) style[ jsName ] = adjustFunction( node.style[ svgName ] );				}				function clamp( v ) {					return Math.max( 0, Math.min( 1, parseFloatWithUnits( v ) ) );				}				function positive( v ) {					return Math.max( 0, parseFloatWithUnits( v ) );				}				addStyle( 'fill', 'fill' );				addStyle( 'fill-opacity', 'fillOpacity', clamp );				addStyle( 'fill-rule', 'fillRule' );				addStyle( 'opacity', 'opacity', clamp );				addStyle( 'stroke', 'stroke' );				addStyle( 'stroke-opacity', 'strokeOpacity', clamp );				addStyle( 'stroke-width', 'strokeWidth', positive );				addStyle( 'stroke-linejoin', 'strokeLineJoin' );				addStyle( 'stroke-linecap', 'strokeLineCap' );				addStyle( 'stroke-miterlimit', 'strokeMiterLimit', positive );				addStyle( 'visibility', 'visibility' );				return style;			} // http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes			function getReflection( a, b ) {				return a - ( b - a );			} // from https://github.com/ppvg/svg-numbers (MIT License)			function parseFloats( input, flags, stride ) {				if ( typeof input !== 'string' ) {					throw new TypeError( 'Invalid input: ' + typeof input );				} // Character groups				const RE = {					SEPARATOR: /[ \t\r\n\,.\-+]/,					WHITESPACE: /[ \t\r\n]/,					DIGIT: /[\d]/,					SIGN: /[-+]/,					POINT: /\./,					COMMA: /,/,					EXP: /e/i,					FLAGS: /[01]/				}; // States				const SEP = 0;				const INT = 1;				const FLOAT = 2;				const EXP = 3;				let state = SEP;				let seenComma = true;				let number = '',					exponent = '';				const result = [];				function throwSyntaxError( current, i, partial ) {					const error = new SyntaxError( 'Unexpected character "' + current + '" at index ' + i + '.' );					error.partial = partial;					throw error;				}				function newNumber() {					if ( number !== '' ) {						if ( exponent === '' ) result.push( Number( number ) ); else result.push( Number( number ) * Math.pow( 10, Number( exponent ) ) );					}					number = '';					exponent = '';				}				let current;				const length = input.length;				for ( let i = 0; i < length; i ++ ) {					current = input[ i ]; // check for flags					if ( Array.isArray( flags ) && flags.includes( result.length % stride ) && RE.FLAGS.test( current ) ) {						state = INT;						number = current;						newNumber();						continue;					} // parse until next number					if ( state === SEP ) {						// eat whitespace						if ( RE.WHITESPACE.test( current ) ) {							continue;						} // start new number						if ( RE.DIGIT.test( current ) || RE.SIGN.test( current ) ) {							state = INT;							number = current;							continue;						}						if ( RE.POINT.test( current ) ) {							state = FLOAT;							number = current;							continue;						} // throw on double commas (e.g. "1, , 2")						if ( RE.COMMA.test( current ) ) {							if ( seenComma ) {								throwSyntaxError( current, i, result );							}							seenComma = true;						}					} // parse integer part					if ( state === INT ) {						if ( RE.DIGIT.test( current ) ) {							number += current;							continue;						}						if ( RE.POINT.test( current ) ) {							number += current;							state = FLOAT;							continue;						}						if ( RE.EXP.test( current ) ) {							state = EXP;							continue;						} // throw on double signs ("-+1"), but not on sign as separator ("-1-2")						if ( RE.SIGN.test( current ) && number.length === 1 && RE.SIGN.test( number[ 0 ] ) ) {							throwSyntaxError( current, i, result );						}					} // parse decimal part					if ( state === FLOAT ) {						if ( RE.DIGIT.test( current ) ) {							number += current;							continue;						}						if ( RE.EXP.test( current ) ) {							state = EXP;							continue;						} // throw on double decimal points (e.g. "1..2")						if ( RE.POINT.test( current ) && number[ number.length - 1 ] === '.' ) {							throwSyntaxError( current, i, result );						}					} // parse exponent part					if ( state === EXP ) {						if ( RE.DIGIT.test( current ) ) {							exponent += current;							continue;						}						if ( RE.SIGN.test( current ) ) {							if ( exponent === '' ) {								exponent += current;								continue;							}							if ( exponent.length === 1 && RE.SIGN.test( exponent ) ) {								throwSyntaxError( current, i, result );							}						}					} // end of number					if ( RE.WHITESPACE.test( current ) ) {						newNumber();						state = SEP;						seenComma = false;					} else if ( RE.COMMA.test( current ) ) {						newNumber();						state = SEP;						seenComma = true;					} else if ( RE.SIGN.test( current ) ) {						newNumber();						state = INT;						number = current;					} else if ( RE.POINT.test( current ) ) {						newNumber();						state = FLOAT;						number = current;					} else {						throwSyntaxError( current, i, result );					}				} // add the last number found (if any)				newNumber();				return result;			} // Units			const units = [ 'mm', 'cm', 'in', 'pt', 'pc', 'px' ]; // Conversion: [ fromUnit ][ toUnit ] (-1 means dpi dependent)			const unitConversion = {				'mm': {					'mm': 1,					'cm': 0.1,					'in': 1 / 25.4,					'pt': 72 / 25.4,					'pc': 6 / 25.4,					'px': - 1				},				'cm': {					'mm': 10,					'cm': 1,					'in': 1 / 2.54,					'pt': 72 / 2.54,					'pc': 6 / 2.54,					'px': - 1				},				'in': {					'mm': 25.4,					'cm': 2.54,					'in': 1,					'pt': 72,					'pc': 6,					'px': - 1				},				'pt': {					'mm': 25.4 / 72,					'cm': 2.54 / 72,					'in': 1 / 72,					'pt': 1,					'pc': 6 / 72,					'px': - 1				},				'pc': {					'mm': 25.4 / 6,					'cm': 2.54 / 6,					'in': 1 / 6,					'pt': 72 / 6,					'pc': 1,					'px': - 1				},				'px': {					'px': 1				}			};			function parseFloatWithUnits( string ) {				let theUnit = 'px';				if ( typeof string === 'string' || string instanceof String ) {					for ( let i = 0, n = units.length; i < n; i ++ ) {						const u = units[ i ];						if ( string.endsWith( u ) ) {							theUnit = u;							string = string.substring( 0, string.length - u.length );							break;						}					}				}				let scale = undefined;				if ( theUnit === 'px' && scope.defaultUnit !== 'px' ) {					// Conversion scale from  pixels to inches, then to default units					scale = unitConversion[ 'in' ][ scope.defaultUnit ] / scope.defaultDPI;				} else {					scale = unitConversion[ theUnit ][ scope.defaultUnit ];					if ( scale < 0 ) {						// Conversion scale to pixels						scale = unitConversion[ theUnit ][ 'in' ] * scope.defaultDPI;					}				}				return scale * parseFloat( string );			} // Transforms			function getNodeTransform( node ) {				if ( ! ( node.hasAttribute( 'transform' ) || node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) ) {					return null;				}				const transform = parseNodeTransform( node );				if ( transformStack.length > 0 ) {					transform.premultiply( transformStack[ transformStack.length - 1 ] );				}				currentTransform.copy( transform );				transformStack.push( transform );				return transform;			}			function parseNodeTransform( node ) {				const transform = new THREE.Matrix3();				const currentTransform = tempTransform0;				if ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) {					const tx = parseFloatWithUnits( node.getAttribute( 'x' ) );					const ty = parseFloatWithUnits( node.getAttribute( 'y' ) );					transform.translate( tx, ty );				}				if ( node.hasAttribute( 'transform' ) ) {					const transformsTexts = node.getAttribute( 'transform' ).split( ')' );					for ( let tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex -- ) {						const transformText = transformsTexts[ tIndex ].trim();						if ( transformText === '' ) continue;						const openParPos = transformText.indexOf( '(' );						const closeParPos = transformText.length;						if ( openParPos > 0 && openParPos < closeParPos ) {							const transformType = transformText.substr( 0, openParPos );							const array = parseFloats( transformText.substr( openParPos + 1, closeParPos - openParPos - 1 ) );							currentTransform.identity();							switch ( transformType ) {								case 'translate':									if ( array.length >= 1 ) {										const tx = array[ 0 ];										let ty = tx;										if ( array.length >= 2 ) {											ty = array[ 1 ];										}										currentTransform.translate( tx, ty );									}									break;								case 'rotate':									if ( array.length >= 1 ) {										let angle = 0;										let cx = 0;										let cy = 0; // Angle										angle = - array[ 0 ] * Math.PI / 180;										if ( array.length >= 3 ) {											// Center x, y											cx = array[ 1 ];											cy = array[ 2 ];										} // Rotate around center (cx, cy)										tempTransform1.identity().translate( - cx, - cy );										tempTransform2.identity().rotate( angle );										tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 );										tempTransform1.identity().translate( cx, cy );										currentTransform.multiplyMatrices( tempTransform1, tempTransform3 );									}									break;								case 'scale':									if ( array.length >= 1 ) {										const scaleX = array[ 0 ];										let scaleY = scaleX;										if ( array.length >= 2 ) {											scaleY = array[ 1 ];										}										currentTransform.scale( scaleX, scaleY );									}									break;								case 'skewX':									if ( array.length === 1 ) {										currentTransform.set( 1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0, 0, 1, 0, 0, 0, 1 );									}									break;								case 'skewY':									if ( array.length === 1 ) {										currentTransform.set( 1, 0, 0, Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0, 0, 0, 1 );									}									break;								case 'matrix':									if ( array.length === 6 ) {										currentTransform.set( array[ 0 ], array[ 2 ], array[ 4 ], array[ 1 ], array[ 3 ], array[ 5 ], 0, 0, 1 );									}									break;							}						}						transform.premultiply( currentTransform );					}				}				return transform;			}			function transformPath( path, m ) {				function transfVec2( v2 ) {					tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m );					v2.set( tempV3.x, tempV3.y );				}				const isRotated = isTransformRotated( m );				const subPaths = path.subPaths;				for ( let i = 0, n = subPaths.length; i < n; i ++ ) {					const subPath = subPaths[ i ];					const curves = subPath.curves;					for ( let j = 0; j < curves.length; j ++ ) {						const curve = curves[ j ];						if ( curve.isLineCurve ) {							transfVec2( curve.v1 );							transfVec2( curve.v2 );						} else if ( curve.isCubicBezierCurve ) {							transfVec2( curve.v0 );							transfVec2( curve.v1 );							transfVec2( curve.v2 );							transfVec2( curve.v3 );						} else if ( curve.isQuadraticBezierCurve ) {							transfVec2( curve.v0 );							transfVec2( curve.v1 );							transfVec2( curve.v2 );						} else if ( curve.isEllipseCurve ) {							if ( isRotated ) {								console.warn( 'SVGLoader: Elliptic arc or ellipse rotation or skewing is not implemented.' );							}							tempV2.set( curve.aX, curve.aY );							transfVec2( tempV2 );							curve.aX = tempV2.x;							curve.aY = tempV2.y;							curve.xRadius *= getTransformScaleX( m );							curve.yRadius *= getTransformScaleY( m );						}					}				}			}			function isTransformRotated( m ) {				return m.elements[ 1 ] !== 0 || m.elements[ 3 ] !== 0;			}			function getTransformScaleX( m ) {				const te = m.elements;				return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] );			}			function getTransformScaleY( m ) {				const te = m.elements;				return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] );			} //			const paths = [];			const stylesheets = {};			const transformStack = [];			const tempTransform0 = new THREE.Matrix3();			const tempTransform1 = new THREE.Matrix3();			const tempTransform2 = new THREE.Matrix3();			const tempTransform3 = new THREE.Matrix3();			const tempV2 = new THREE.Vector2();			const tempV3 = new THREE.Vector3();			const currentTransform = new THREE.Matrix3();			const xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml			parseNode( xml.documentElement, {				fill: '#000',				fillOpacity: 1,				strokeOpacity: 1,				strokeWidth: 1,				strokeLineJoin: 'miter',				strokeLineCap: 'butt',				strokeMiterLimit: 4			} );			const data = {				paths: paths,				xml: xml.documentElement			}; // console.log( paths );			return data;		}		static createShapes( shapePath ) {			// Param shapePath: a shapepath as returned by the parse function of this class			// Returns THREE.Shape object			const BIGNUMBER = 999999999;			const IntersectionLocationType = {				ORIGIN: 0,				DESTINATION: 1,				BETWEEN: 2,				LEFT: 3,				RIGHT: 4,				BEHIND: 5,				BEYOND: 6			};			const classifyResult = {				loc: IntersectionLocationType.ORIGIN,				t: 0			};			function findEdgeIntersection( a0, a1, b0, b1 ) {				const x1 = a0.x;				const x2 = a1.x;				const x3 = b0.x;				const x4 = b1.x;				const y1 = a0.y;				const y2 = a1.y;				const y3 = b0.y;				const y4 = b1.y;				const nom1 = ( x4 - x3 ) * ( y1 - y3 ) - ( y4 - y3 ) * ( x1 - x3 );				const nom2 = ( x2 - x1 ) * ( y1 - y3 ) - ( y2 - y1 ) * ( x1 - x3 );				const denom = ( y4 - y3 ) * ( x2 - x1 ) - ( x4 - x3 ) * ( y2 - y1 );				const t1 = nom1 / denom;				const t2 = nom2 / denom;				if ( denom === 0 && nom1 !== 0 || t1 <= 0 || t1 >= 1 || t2 < 0 || t2 > 1 ) {					//1. lines are parallel or edges don't intersect					return null;				} else if ( nom1 === 0 && denom === 0 ) {					//2. lines are colinear					//check if endpoints of edge2 (b0-b1) lies on edge1 (a0-a1)					for ( let i = 0; i < 2; i ++ ) {						classifyPoint( i === 0 ? b0 : b1, a0, a1 ); //find position of this endpoints relatively to edge1						if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {							const point = i === 0 ? b0 : b1;							return {								x: point.x,								y: point.y,								t: classifyResult.t							};						} else if ( classifyResult.loc == IntersectionLocationType.BETWEEN ) {							const x = + ( x1 + classifyResult.t * ( x2 - x1 ) ).toPrecision( 10 );							const y = + ( y1 + classifyResult.t * ( y2 - y1 ) ).toPrecision( 10 );							return {								x: x,								y: y,								t: classifyResult.t							};						}					}					return null;				} else {					//3. edges intersect					for ( let i = 0; i < 2; i ++ ) {						classifyPoint( i === 0 ? b0 : b1, a0, a1 );						if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {							const point = i === 0 ? b0 : b1;							return {								x: point.x,								y: point.y,								t: classifyResult.t							};						}					}					const x = + ( x1 + t1 * ( x2 - x1 ) ).toPrecision( 10 );					const y = + ( y1 + t1 * ( y2 - y1 ) ).toPrecision( 10 );					return {						x: x,						y: y,						t: t1					};				}			}			function classifyPoint( p, edgeStart, edgeEnd ) {				const ax = edgeEnd.x - edgeStart.x;				const ay = edgeEnd.y - edgeStart.y;				const bx = p.x - edgeStart.x;				const by = p.y - edgeStart.y;				const sa = ax * by - bx * ay;				if ( p.x === edgeStart.x && p.y === edgeStart.y ) {					classifyResult.loc = IntersectionLocationType.ORIGIN;					classifyResult.t = 0;					return;				}				if ( p.x === edgeEnd.x && p.y === edgeEnd.y ) {					classifyResult.loc = IntersectionLocationType.DESTINATION;					classifyResult.t = 1;					return;				}				if ( sa < - Number.EPSILON ) {					classifyResult.loc = IntersectionLocationType.LEFT;					return;				}				if ( sa > Number.EPSILON ) {					classifyResult.loc = IntersectionLocationType.RIGHT;					return;				}				if ( ax * bx < 0 || ay * by < 0 ) {					classifyResult.loc = IntersectionLocationType.BEHIND;					return;				}				if ( Math.sqrt( ax * ax + ay * ay ) < Math.sqrt( bx * bx + by * by ) ) {					classifyResult.loc = IntersectionLocationType.BEYOND;					return;				}				let t;				if ( ax !== 0 ) {					t = bx / ax;				} else {					t = by / ay;				}				classifyResult.loc = IntersectionLocationType.BETWEEN;				classifyResult.t = t;			}			function getIntersections( path1, path2 ) {				const intersectionsRaw = [];				const intersections = [];				for ( let index = 1; index < path1.length; index ++ ) {					const path1EdgeStart = path1[ index - 1 ];					const path1EdgeEnd = path1[ index ];					for ( let index2 = 1; index2 < path2.length; index2 ++ ) {						const path2EdgeStart = path2[ index2 - 1 ];						const path2EdgeEnd = path2[ index2 ];						const intersection = findEdgeIntersection( path1EdgeStart, path1EdgeEnd, path2EdgeStart, path2EdgeEnd );						if ( intersection !== null && intersectionsRaw.find( i => i.t <= intersection.t + Number.EPSILON && i.t >= intersection.t - Number.EPSILON ) === undefined ) {							intersectionsRaw.push( intersection );							intersections.push( new THREE.Vector2( intersection.x, intersection.y ) );						}					}				}				return intersections;			}			function getScanlineIntersections( scanline, boundingBox, paths ) {				const center = new THREE.Vector2();				boundingBox.getCenter( center );				const allIntersections = [];				paths.forEach( path => {					// check if the center of the bounding box is in the bounding box of the paths.					// this is a pruning method to limit the search of intersections in paths that can't envelop of the current path.					// if a path envelops another path. The center of that oter path, has to be inside the bounding box of the enveloping path.					if ( path.boundingBox.containsPoint( center ) ) {						const intersections = getIntersections( scanline, path.points );						intersections.forEach( p => {							allIntersections.push( {								identifier: path.identifier,								isCW: path.isCW,								point: p							} );						} );					}				} );				allIntersections.sort( ( i1, i2 ) => {					return i1.point.x - i2.point.x;				} );				return allIntersections;			}			function isHoleTo( simplePath, allPaths, scanlineMinX, scanlineMaxX, _fillRule ) {				if ( _fillRule === null || _fillRule === undefined || _fillRule === '' ) {					_fillRule = 'nonzero';				}				const centerBoundingBox = new THREE.Vector2();				simplePath.boundingBox.getCenter( centerBoundingBox );				const scanline = [ new THREE.Vector2( scanlineMinX, centerBoundingBox.y ), new THREE.Vector2( scanlineMaxX, centerBoundingBox.y ) ];				const scanlineIntersections = getScanlineIntersections( scanline, simplePath.boundingBox, allPaths );				scanlineIntersections.sort( ( i1, i2 ) => {					return i1.point.x - i2.point.x;				} );				const baseIntersections = [];				const otherIntersections = [];				scanlineIntersections.forEach( i => {					if ( i.identifier === simplePath.identifier ) {						baseIntersections.push( i );					} else {						otherIntersections.push( i );					}				} );				const firstXOfPath = baseIntersections[ 0 ].point.x; // build up the path hierarchy				const stack = [];				let i = 0;				while ( i < otherIntersections.length && otherIntersections[ i ].point.x < firstXOfPath ) {					if ( stack.length > 0 && stack[ stack.length - 1 ] === otherIntersections[ i ].identifier ) {						stack.pop();					} else {						stack.push( otherIntersections[ i ].identifier );					}					i ++;				}				stack.push( simplePath.identifier );				if ( _fillRule === 'evenodd' ) {					const isHole = stack.length % 2 === 0 ? true : false;					const isHoleFor = stack[ stack.length - 2 ];					return {						identifier: simplePath.identifier,						isHole: isHole,						for: isHoleFor					};				} else if ( _fillRule === 'nonzero' ) {					// check if path is a hole by counting the amount of paths with alternating rotations it has to cross.					let isHole = true;					let isHoleFor = null;					let lastCWValue = null;					for ( let i = 0; i < stack.length; i ++ ) {						const identifier = stack[ i ];						if ( isHole ) {							lastCWValue = allPaths[ identifier ].isCW;							isHole = false;							isHoleFor = identifier;						} else if ( lastCWValue !== allPaths[ identifier ].isCW ) {							lastCWValue = allPaths[ identifier ].isCW;							isHole = true;						}					}					return {						identifier: simplePath.identifier,						isHole: isHole,						for: isHoleFor					};				} else {					console.warn( 'fill-rule: "' + _fillRule + '" is currently not implemented.' );				}			} // check for self intersecting paths			// TODO			// check intersecting paths			// TODO			// prepare paths for hole detection			let identifier = 0;			let scanlineMinX = BIGNUMBER;			let scanlineMaxX = - BIGNUMBER;			let simplePaths = shapePath.subPaths.map( p => {				const points = p.getPoints();				let maxY = - BIGNUMBER;				let minY = BIGNUMBER;				let maxX = - BIGNUMBER;				let minX = BIGNUMBER; //points.forEach(p => p.y *= -1);				for ( let i = 0; i < points.length; i ++ ) {					const p = points[ i ];					if ( p.y > maxY ) {						maxY = p.y;					}					if ( p.y < minY ) {						minY = p.y;					}					if ( p.x > maxX ) {						maxX = p.x;					}					if ( p.x < minX ) {						minX = p.x;					}				} //				if ( scanlineMaxX <= maxX ) {					scanlineMaxX = maxX + 1;				}				if ( scanlineMinX >= minX ) {					scanlineMinX = minX - 1;				}				return {					curves: p.curves,					points: points,					isCW: THREE.ShapeUtils.isClockWise( points ),					identifier: identifier ++,					boundingBox: new THREE.Box2( new THREE.Vector2( minX, minY ), new THREE.Vector2( maxX, maxY ) )				};			} );			simplePaths = simplePaths.filter( sp => sp.points.length > 1 ); // check if path is solid or a hole			const isAHole = simplePaths.map( p => isHoleTo( p, simplePaths, scanlineMinX, scanlineMaxX, shapePath.userData.style.fillRule ) );			const shapesToReturn = [];			simplePaths.forEach( p => {				const amIAHole = isAHole[ p.identifier ];				if ( ! amIAHole.isHole ) {					const shape = new THREE.Shape();					shape.curves = p.curves;					const holes = isAHole.filter( h => h.isHole && h.for === p.identifier );					holes.forEach( h => {						const hole = simplePaths[ h.identifier ];						const path = new THREE.Path();						path.curves = hole.curves;						shape.holes.push( path );					} );					shapesToReturn.push( shape );				}			} );			return shapesToReturn;		}		static getStrokeStyle( width, color, lineJoin, lineCap, miterLimit ) {			// Param width: Stroke width			// Param color: As returned by THREE.Color.getStyle()			// Param lineJoin: One of "round", "bevel", "miter" or "miter-limit"			// Param lineCap: One of "round", "square" or "butt"			// Param miterLimit: Maximum join length, in multiples of the "width" parameter (join is truncated if it exceeds that distance)			// Returns style object			width = width !== undefined ? width : 1;			color = color !== undefined ? color : '#000';			lineJoin = lineJoin !== undefined ? lineJoin : 'miter';			lineCap = lineCap !== undefined ? lineCap : 'butt';			miterLimit = miterLimit !== undefined ? miterLimit : 4;			return {				strokeColor: color,				strokeWidth: width,				strokeLineJoin: lineJoin,				strokeLineCap: lineCap,				strokeMiterLimit: miterLimit			};		}		static pointsToStroke( points, style, arcDivisions, minDistance ) {			// Generates a stroke with some witdh around the given path.			// The path can be open or closed (last point equals to first point)			// Param points: Array of Vector2D (the path). Minimum 2 points.			// Param style: Object with SVG properties as returned by SVGLoader.getStrokeStyle(), or SVGLoader.parse() in the path.userData.style object			// Params arcDivisions: Arc divisions for round joins and endcaps. (Optional)			// Param minDistance: Points closer to this distance will be merged. (Optional)			// Returns THREE.BufferGeometry with stroke triangles (In plane z = 0). UV coordinates are generated ('u' along path. 'v' across it, from left to right)			const vertices = [];			const normals = [];			const uvs = [];			if ( SVGLoader.pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs ) === 0 ) {				return null;			}			const geometry = new THREE.BufferGeometry();			geometry.setAttribute( 'position', new THREE.Float32BufferAttribute( vertices, 3 ) );			geometry.setAttribute( 'normal', new THREE.Float32BufferAttribute( normals, 3 ) );			geometry.setAttribute( 'uv', new THREE.Float32BufferAttribute( uvs, 2 ) );			return geometry;		}		static pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs, vertexOffset ) {			// This function can be called to update existing arrays or buffers.			// Accepts same parameters as pointsToStroke, plus the buffers and optional offset.			// Param vertexOffset: Offset vertices to start writing in the buffers (3 elements/vertex for vertices and normals, and 2 elements/vertex for uvs)			// Returns number of written vertices / normals / uvs pairs			// if 'vertices' parameter is undefined no triangles will be generated, but the returned vertices count will still be valid (useful to preallocate the buffers)			// 'normals' and 'uvs' buffers are optional			const tempV2_1 = new THREE.Vector2();			const tempV2_2 = new THREE.Vector2();			const tempV2_3 = new THREE.Vector2();			const tempV2_4 = new THREE.Vector2();			const tempV2_5 = new THREE.Vector2();			const tempV2_6 = new THREE.Vector2();			const tempV2_7 = new THREE.Vector2();			const lastPointL = new THREE.Vector2();			const lastPointR = new THREE.Vector2();			const point0L = new THREE.Vector2();			const point0R = new THREE.Vector2();			const currentPointL = new THREE.Vector2();			const currentPointR = new THREE.Vector2();			const nextPointL = new THREE.Vector2();			const nextPointR = new THREE.Vector2();			const innerPoint = new THREE.Vector2();			const outerPoint = new THREE.Vector2();			arcDivisions = arcDivisions !== undefined ? arcDivisions : 12;			minDistance = minDistance !== undefined ? minDistance : 0.001;			vertexOffset = vertexOffset !== undefined ? vertexOffset : 0; // First ensure there are no duplicated points			points = removeDuplicatedPoints( points );			const numPoints = points.length;			if ( numPoints < 2 ) return 0;			const isClosed = points[ 0 ].equals( points[ numPoints - 1 ] );			let currentPoint;			let previousPoint = points[ 0 ];			let nextPoint;			const strokeWidth2 = style.strokeWidth / 2;			const deltaU = 1 / ( numPoints - 1 );			let u0 = 0,				u1;			let innerSideModified;			let joinIsOnLeftSide;			let isMiter;			let initialJoinIsOnLeftSide = false;			let numVertices = 0;			let currentCoordinate = vertexOffset * 3;			let currentCoordinateUV = vertexOffset * 2; // Get initial left and right stroke points			getNormal( points[ 0 ], points[ 1 ], tempV2_1 ).multiplyScalar( strokeWidth2 );			lastPointL.copy( points[ 0 ] ).sub( tempV2_1 );			lastPointR.copy( points[ 0 ] ).add( tempV2_1 );			point0L.copy( lastPointL );			point0R.copy( lastPointR );			for ( let iPoint = 1; iPoint < numPoints; iPoint ++ ) {				currentPoint = points[ iPoint ]; // Get next point				if ( iPoint === numPoints - 1 ) {					if ( isClosed ) {						// Skip duplicated initial point						nextPoint = points[ 1 ];					} else nextPoint = undefined;				} else {					nextPoint = points[ iPoint + 1 ];				} // Normal of previous segment in tempV2_1				const normal1 = tempV2_1;				getNormal( previousPoint, currentPoint, normal1 );				tempV2_3.copy( normal1 ).multiplyScalar( strokeWidth2 );				currentPointL.copy( currentPoint ).sub( tempV2_3 );				currentPointR.copy( currentPoint ).add( tempV2_3 );				u1 = u0 + deltaU;				innerSideModified = false;				if ( nextPoint !== undefined ) {					// Normal of next segment in tempV2_2					getNormal( currentPoint, nextPoint, tempV2_2 );					tempV2_3.copy( tempV2_2 ).multiplyScalar( strokeWidth2 );					nextPointL.copy( currentPoint ).sub( tempV2_3 );					nextPointR.copy( currentPoint ).add( tempV2_3 );					joinIsOnLeftSide = true;					tempV2_3.subVectors( nextPoint, previousPoint );					if ( normal1.dot( tempV2_3 ) < 0 ) {						joinIsOnLeftSide = false;					}					if ( iPoint === 1 ) initialJoinIsOnLeftSide = joinIsOnLeftSide;					tempV2_3.subVectors( nextPoint, currentPoint );					tempV2_3.normalize();					const dot = Math.abs( normal1.dot( tempV2_3 ) ); // If path is straight, don't create join					if ( dot !== 0 ) {						// Compute inner and outer segment intersections						const miterSide = strokeWidth2 / dot;						tempV2_3.multiplyScalar( - miterSide );						tempV2_4.subVectors( currentPoint, previousPoint );						tempV2_5.copy( tempV2_4 ).setLength( miterSide ).add( tempV2_3 );						innerPoint.copy( tempV2_5 ).negate();						const miterLength2 = tempV2_5.length();						const segmentLengthPrev = tempV2_4.length();						tempV2_4.divideScalar( segmentLengthPrev );						tempV2_6.subVectors( nextPoint, currentPoint );						const segmentLengthNext = tempV2_6.length();						tempV2_6.divideScalar( segmentLengthNext ); // Check that previous and next segments doesn't overlap with the innerPoint of intersection						if ( tempV2_4.dot( innerPoint ) < segmentLengthPrev && tempV2_6.dot( innerPoint ) < segmentLengthNext ) {							innerSideModified = true;						}						outerPoint.copy( tempV2_5 ).add( currentPoint );						innerPoint.add( currentPoint );						isMiter = false;						if ( innerSideModified ) {							if ( joinIsOnLeftSide ) {								nextPointR.copy( innerPoint );								currentPointR.copy( innerPoint );							} else {								nextPointL.copy( innerPoint );								currentPointL.copy( innerPoint );							}						} else {							// The segment triangles are generated here if there was overlapping							makeSegmentTriangles();						}						switch ( style.strokeLineJoin ) {							case 'bevel':								makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );								break;							case 'round':								// Segment triangles								createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ); // Join triangles								if ( joinIsOnLeftSide ) {									makeCircularSector( currentPoint, currentPointL, nextPointL, u1, 0 );								} else {									makeCircularSector( currentPoint, nextPointR, currentPointR, u1, 1 );								}								break;							case 'miter':							case 'miter-clip':							default:								const miterFraction = strokeWidth2 * style.strokeMiterLimit / miterLength2;								if ( miterFraction < 1 ) {									// The join miter length exceeds the miter limit									if ( style.strokeLineJoin !== 'miter-clip' ) {										makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );										break;									} else {										// Segment triangles										createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ); // Miter-clip join triangles										if ( joinIsOnLeftSide ) {											tempV2_6.subVectors( outerPoint, currentPointL ).multiplyScalar( miterFraction ).add( currentPointL );											tempV2_7.subVectors( outerPoint, nextPointL ).multiplyScalar( miterFraction ).add( nextPointL );											addVertex( currentPointL, u1, 0 );											addVertex( tempV2_6, u1, 0 );											addVertex( currentPoint, u1, 0.5 );											addVertex( currentPoint, u1, 0.5 );											addVertex( tempV2_6, u1, 0 );											addVertex( tempV2_7, u1, 0 );											addVertex( currentPoint, u1, 0.5 );											addVertex( tempV2_7, u1, 0 );											addVertex( nextPointL, u1, 0 );										} else {											tempV2_6.subVectors( outerPoint, currentPointR ).multiplyScalar( miterFraction ).add( currentPointR );											tempV2_7.subVectors( outerPoint, nextPointR ).multiplyScalar( miterFraction ).add( nextPointR );											addVertex( currentPointR, u1, 1 );											addVertex( tempV2_6, u1, 1 );											addVertex( currentPoint, u1, 0.5 );											addVertex( currentPoint, u1, 0.5 );											addVertex( tempV2_6, u1, 1 );											addVertex( tempV2_7, u1, 1 );											addVertex( currentPoint, u1, 0.5 );											addVertex( tempV2_7, u1, 1 );											addVertex( nextPointR, u1, 1 );										}									}								} else {									// Miter join segment triangles									if ( innerSideModified ) {										// Optimized segment + join triangles										if ( joinIsOnLeftSide ) {											addVertex( lastPointR, u0, 1 );											addVertex( lastPointL, u0, 0 );											addVertex( outerPoint, u1, 0 );											addVertex( lastPointR, u0, 1 );											addVertex( outerPoint, u1, 0 );											addVertex( innerPoint, u1, 1 );										} else {											addVertex( lastPointR, u0, 1 );											addVertex( lastPointL, u0, 0 );											addVertex( outerPoint, u1, 1 );											addVertex( lastPointL, u0, 0 );											addVertex( innerPoint, u1, 0 );											addVertex( outerPoint, u1, 1 );										}										if ( joinIsOnLeftSide ) {											nextPointL.copy( outerPoint );										} else {											nextPointR.copy( outerPoint );										}									} else {										// Add extra miter join triangles										if ( joinIsOnLeftSide ) {											addVertex( currentPointL, u1, 0 );											addVertex( outerPoint, u1, 0 );											addVertex( currentPoint, u1, 0.5 );											addVertex( currentPoint, u1, 0.5 );											addVertex( outerPoint, u1, 0 );											addVertex( nextPointL, u1, 0 );										} else {											addVertex( currentPointR, u1, 1 );											addVertex( outerPoint, u1, 1 );											addVertex( currentPoint, u1, 0.5 );											addVertex( currentPoint, u1, 0.5 );											addVertex( outerPoint, u1, 1 );											addVertex( nextPointR, u1, 1 );										}									}									isMiter = true;								}								break;						}					} else {						// The segment triangles are generated here when two consecutive points are collinear						makeSegmentTriangles();					}				} else {					// The segment triangles are generated here if it is the ending segment					makeSegmentTriangles();				}				if ( ! isClosed && iPoint === numPoints - 1 ) {					// Start line endcap					addCapGeometry( points[ 0 ], point0L, point0R, joinIsOnLeftSide, true, u0 );				} // Increment loop variables				u0 = u1;				previousPoint = currentPoint;				lastPointL.copy( nextPointL );				lastPointR.copy( nextPointR );			}			if ( ! isClosed ) {				// Ending line endcap				addCapGeometry( currentPoint, currentPointL, currentPointR, joinIsOnLeftSide, false, u1 );			} else if ( innerSideModified && vertices ) {				// Modify path first segment vertices to adjust to the segments inner and outer intersections				let lastOuter = outerPoint;				let lastInner = innerPoint;				if ( initialJoinIsOnLeftSide !== joinIsOnLeftSide ) {					lastOuter = innerPoint;					lastInner = outerPoint;				}				if ( joinIsOnLeftSide ) {					if ( isMiter || initialJoinIsOnLeftSide ) {						lastInner.toArray( vertices, 0 * 3 );						lastInner.toArray( vertices, 3 * 3 );						if ( isMiter ) {							lastOuter.toArray( vertices, 1 * 3 );						}					}				} else {					if ( isMiter || ! initialJoinIsOnLeftSide ) {						lastInner.toArray( vertices, 1 * 3 );						lastInner.toArray( vertices, 3 * 3 );						if ( isMiter ) {							lastOuter.toArray( vertices, 0 * 3 );						}					}				}			}			return numVertices; // -- End of algorithm			// -- Functions			function getNormal( p1, p2, result ) {				result.subVectors( p2, p1 );				return result.set( - result.y, result.x ).normalize();			}			function addVertex( position, u, v ) {				if ( vertices ) {					vertices[ currentCoordinate ] = position.x;					vertices[ currentCoordinate + 1 ] = position.y;					vertices[ currentCoordinate + 2 ] = 0;					if ( normals ) {						normals[ currentCoordinate ] = 0;						normals[ currentCoordinate + 1 ] = 0;						normals[ currentCoordinate + 2 ] = 1;					}					currentCoordinate += 3;					if ( uvs ) {						uvs[ currentCoordinateUV ] = u;						uvs[ currentCoordinateUV + 1 ] = v;						currentCoordinateUV += 2;					}				}				numVertices += 3;			}			function makeCircularSector( center, p1, p2, u, v ) {				// param p1, p2: Points in the circle arc.				// p1 and p2 are in clockwise direction.				tempV2_1.copy( p1 ).sub( center ).normalize();				tempV2_2.copy( p2 ).sub( center ).normalize();				let angle = Math.PI;				const dot = tempV2_1.dot( tempV2_2 );				if ( Math.abs( dot ) < 1 ) angle = Math.abs( Math.acos( dot ) );				angle /= arcDivisions;				tempV2_3.copy( p1 );				for ( let i = 0, il = arcDivisions - 1; i < il; i ++ ) {					tempV2_4.copy( tempV2_3 ).rotateAround( center, angle );					addVertex( tempV2_3, u, v );					addVertex( tempV2_4, u, v );					addVertex( center, u, 0.5 );					tempV2_3.copy( tempV2_4 );				}				addVertex( tempV2_4, u, v );				addVertex( p2, u, v );				addVertex( center, u, 0.5 );			}			function makeSegmentTriangles() {				addVertex( lastPointR, u0, 1 );				addVertex( lastPointL, u0, 0 );				addVertex( currentPointL, u1, 0 );				addVertex( lastPointR, u0, 1 );				addVertex( currentPointL, u1, 1 );				addVertex( currentPointR, u1, 0 );			}			function makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u ) {				if ( innerSideModified ) {					// Optimized segment + bevel triangles					if ( joinIsOnLeftSide ) {						// THREE.Path segments triangles						addVertex( lastPointR, u0, 1 );						addVertex( lastPointL, u0, 0 );						addVertex( currentPointL, u1, 0 );						addVertex( lastPointR, u0, 1 );						addVertex( currentPointL, u1, 0 );						addVertex( innerPoint, u1, 1 ); // Bevel join triangle						addVertex( currentPointL, u, 0 );						addVertex( nextPointL, u, 0 );						addVertex( innerPoint, u, 0.5 );					} else {						// THREE.Path segments triangles						addVertex( lastPointR, u0, 1 );						addVertex( lastPointL, u0, 0 );						addVertex( currentPointR, u1, 1 );						addVertex( lastPointL, u0, 0 );						addVertex( innerPoint, u1, 0 );						addVertex( currentPointR, u1, 1 ); // Bevel join triangle						addVertex( currentPointR, u, 1 );						addVertex( nextPointR, u, 0 );						addVertex( innerPoint, u, 0.5 );					}				} else {					// Bevel join triangle. The segment triangles are done in the main loop					if ( joinIsOnLeftSide ) {						addVertex( currentPointL, u, 0 );						addVertex( nextPointL, u, 0 );						addVertex( currentPoint, u, 0.5 );					} else {						addVertex( currentPointR, u, 1 );						addVertex( nextPointR, u, 0 );						addVertex( currentPoint, u, 0.5 );					}				}			}			function createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ) {				if ( innerSideModified ) {					if ( joinIsOnLeftSide ) {						addVertex( lastPointR, u0, 1 );						addVertex( lastPointL, u0, 0 );						addVertex( currentPointL, u1, 0 );						addVertex( lastPointR, u0, 1 );						addVertex( currentPointL, u1, 0 );						addVertex( innerPoint, u1, 1 );						addVertex( currentPointL, u0, 0 );						addVertex( currentPoint, u1, 0.5 );						addVertex( innerPoint, u1, 1 );						addVertex( currentPoint, u1, 0.5 );						addVertex( nextPointL, u0, 0 );						addVertex( innerPoint, u1, 1 );					} else {						addVertex( lastPointR, u0, 1 );						addVertex( lastPointL, u0, 0 );						addVertex( currentPointR, u1, 1 );						addVertex( lastPointL, u0, 0 );						addVertex( innerPoint, u1, 0 );						addVertex( currentPointR, u1, 1 );						addVertex( currentPointR, u0, 1 );						addVertex( innerPoint, u1, 0 );						addVertex( currentPoint, u1, 0.5 );						addVertex( currentPoint, u1, 0.5 );						addVertex( innerPoint, u1, 0 );						addVertex( nextPointR, u0, 1 );					}				}			}			function addCapGeometry( center, p1, p2, joinIsOnLeftSide, start, u ) {				// param center: End point of the path				// param p1, p2: Left and right cap points				switch ( style.strokeLineCap ) {					case 'round':						if ( start ) {							makeCircularSector( center, p2, p1, u, 0.5 );						} else {							makeCircularSector( center, p1, p2, u, 0.5 );						}						break;					case 'square':						if ( start ) {							tempV2_1.subVectors( p1, center );							tempV2_2.set( tempV2_1.y, - tempV2_1.x );							tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );							tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center ); // Modify already existing vertices							if ( joinIsOnLeftSide ) {								tempV2_3.toArray( vertices, 1 * 3 );								tempV2_4.toArray( vertices, 0 * 3 );								tempV2_4.toArray( vertices, 3 * 3 );							} else {								tempV2_3.toArray( vertices, 1 * 3 );								tempV2_3.toArray( vertices, 3 * 3 );								tempV2_4.toArray( vertices, 0 * 3 );							}						} else {							tempV2_1.subVectors( p2, center );							tempV2_2.set( tempV2_1.y, - tempV2_1.x );							tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );							tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );							const vl = vertices.length; // Modify already existing vertices							if ( joinIsOnLeftSide ) {								tempV2_3.toArray( vertices, vl - 1 * 3 );								tempV2_4.toArray( vertices, vl - 2 * 3 );								tempV2_4.toArray( vertices, vl - 4 * 3 );							} else {								tempV2_3.toArray( vertices, vl - 2 * 3 );								tempV2_4.toArray( vertices, vl - 1 * 3 );								tempV2_4.toArray( vertices, vl - 4 * 3 );							}						}						break;					case 'butt':					default:						// Nothing to do here						break;				}			}			function removeDuplicatedPoints( points ) {				// Creates a new array if necessary with duplicated points removed.				// This does not remove duplicated initial and ending points of a closed path.				let dupPoints = false;				for ( let i = 1, n = points.length - 1; i < n; i ++ ) {					if ( points[ i ].distanceTo( points[ i + 1 ] ) < minDistance ) {						dupPoints = true;						break;					}				}				if ( ! dupPoints ) return points;				const newPoints = [];				newPoints.push( points[ 0 ] );				for ( let i = 1, n = points.length - 1; i < n; i ++ ) {					if ( points[ i ].distanceTo( points[ i + 1 ] ) >= minDistance ) {						newPoints.push( points[ i ] );					}				}				newPoints.push( points[ points.length - 1 ] );				return newPoints;			}		}	}	THREE.SVGLoader = SVGLoader;} )();
 |