| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 | ( function () {	/** * Description: A THREE loader for STL ASCII files, as created by Solidworks and other CAD programs. * * Supports both binary and ASCII encoded files, with automatic detection of type. * * The loader returns a non-indexed buffer geometry. * * Limitations: *  Binary decoding supports "Magics" color format (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL). *  There is perhaps some question as to how valid it is to always assume little-endian-ness. *  ASCII decoding assumes file is UTF-8. * * Usage: *  const loader = new STLLoader(); *  loader.load( './models/stl/slotted_disk.stl', function ( geometry ) { *    scene.add( new THREE.Mesh( geometry ) ); *  }); * * For binary STLs geometry might contain colors for vertices. To use it: *  // use the same code to load STL as above *  if (geometry.hasColors) { *    material = new THREE.MeshPhongMaterial({ opacity: geometry.alpha, vertexColors: true }); *  } else { .... } *  const mesh = new THREE.Mesh( geometry, material ); * * For ASCII STLs containing multiple solids, each solid is assigned to a different group. * Groups can be used to assign a different color by defining an array of materials with the same length of * geometry.groups and passing it to the Mesh constructor: * * const mesh = new THREE.Mesh( geometry, material ); * * For example: * *  const materials = []; *  const nGeometryGroups = geometry.groups.length; * *  const colorMap = ...; // Some logic to index colors. * *  for (let i = 0; i < nGeometryGroups; i++) { * *		const material = new THREE.MeshPhongMaterial({ *			color: colorMap[i], *			wireframe: false *		}); * *  } * *  materials.push(material); *  const mesh = new THREE.Mesh(geometry, materials); */	class STLLoader extends THREE.Loader {		constructor( manager ) {			super( manager );		}		load( url, onLoad, onProgress, onError ) {			const scope = this;			const loader = new THREE.FileLoader( this.manager );			loader.setPath( this.path );			loader.setResponseType( 'arraybuffer' );			loader.setRequestHeader( this.requestHeader );			loader.setWithCredentials( this.withCredentials );			loader.load( url, function ( text ) {				try {					onLoad( scope.parse( text ) );				} catch ( e ) {					if ( onError ) {						onError( e );					} else {						console.error( e );					}					scope.manager.itemError( url );				}			}, onProgress, onError );		}		parse( data ) {			function isBinary( data ) {				const reader = new DataView( data );				const face_size = 32 / 8 * 3 + 32 / 8 * 3 * 3 + 16 / 8;				const n_faces = reader.getUint32( 80, true );				const expect = 80 + 32 / 8 + n_faces * face_size;				if ( expect === reader.byteLength ) {					return true;				} // An ASCII STL data must begin with 'solid ' as the first six bytes.				// However, ASCII STLs lacking the SPACE after the 'd' are known to be				// plentiful.  So, check the first 5 bytes for 'solid'.				// Several encodings, such as UTF-8, precede the text with up to 5 bytes:				// https://en.wikipedia.org/wiki/Byte_order_mark#Byte_order_marks_by_encoding				// Search for "solid" to start anywhere after those prefixes.				// US-ASCII ordinal values for 's', 'o', 'l', 'i', 'd'				const solid = [ 115, 111, 108, 105, 100 ];				for ( let off = 0; off < 5; off ++ ) {					// If "solid" text is matched to the current offset, declare it to be an ASCII STL.					if ( matchDataViewAt( solid, reader, off ) ) return false;				} // Couldn't find "solid" text at the beginning; it is binary STL.				return true;			}			function matchDataViewAt( query, reader, offset ) {				// Check if each byte in query matches the corresponding byte from the current offset				for ( let i = 0, il = query.length; i < il; i ++ ) {					if ( query[ i ] !== reader.getUint8( offset + i, false ) ) return false;				}				return true;			}			function parseBinary( data ) {				const reader = new DataView( data );				const faces = reader.getUint32( 80, true );				let r,					g,					b,					hasColors = false,					colors;				let defaultR, defaultG, defaultB, alpha; // process STL header				// check for default color in header ("COLOR=rgba" sequence).				for ( let index = 0; index < 80 - 10; index ++ ) {					if ( reader.getUint32( index, false ) == 0x434F4C4F        /*COLO*/        && reader.getUint8( index + 4 ) == 0x52        /*'R'*/        && reader.getUint8( index + 5 ) == 0x3D        /*'='*/					) {						hasColors = true;						colors = new Float32Array( faces * 3 * 3 );						defaultR = reader.getUint8( index + 6 ) / 255;						defaultG = reader.getUint8( index + 7 ) / 255;						defaultB = reader.getUint8( index + 8 ) / 255;						alpha = reader.getUint8( index + 9 ) / 255;					}				}				const dataOffset = 84;				const faceLength = 12 * 4 + 2;				const geometry = new THREE.BufferGeometry();				const vertices = new Float32Array( faces * 3 * 3 );				const normals = new Float32Array( faces * 3 * 3 );				for ( let face = 0; face < faces; face ++ ) {					const start = dataOffset + face * faceLength;					const normalX = reader.getFloat32( start, true );					const normalY = reader.getFloat32( start + 4, true );					const normalZ = reader.getFloat32( start + 8, true );					if ( hasColors ) {						const packedColor = reader.getUint16( start + 48, true );						if ( ( packedColor & 0x8000 ) === 0 ) {							// facet has its own unique color							r = ( packedColor & 0x1F ) / 31;							g = ( packedColor >> 5 & 0x1F ) / 31;							b = ( packedColor >> 10 & 0x1F ) / 31;						} else {							r = defaultR;							g = defaultG;							b = defaultB;						}					}					for ( let i = 1; i <= 3; i ++ ) {						const vertexstart = start + i * 12;						const componentIdx = face * 3 * 3 + ( i - 1 ) * 3;						vertices[ componentIdx ] = reader.getFloat32( vertexstart, true );						vertices[ componentIdx + 1 ] = reader.getFloat32( vertexstart + 4, true );						vertices[ componentIdx + 2 ] = reader.getFloat32( vertexstart + 8, true );						normals[ componentIdx ] = normalX;						normals[ componentIdx + 1 ] = normalY;						normals[ componentIdx + 2 ] = normalZ;						if ( hasColors ) {							colors[ componentIdx ] = r;							colors[ componentIdx + 1 ] = g;							colors[ componentIdx + 2 ] = b;						}					}				}				geometry.setAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );				geometry.setAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );				if ( hasColors ) {					geometry.setAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) );					geometry.hasColors = true;					geometry.alpha = alpha;				}				return geometry;			}			function parseASCII( data ) {				const geometry = new THREE.BufferGeometry();				const patternSolid = /solid([\s\S]*?)endsolid/g;				const patternFace = /facet([\s\S]*?)endfacet/g;				let faceCounter = 0;				const patternFloat = /[\s]+([+-]?(?:\d*)(?:\.\d*)?(?:[eE][+-]?\d+)?)/.source;				const patternVertex = new RegExp( 'vertex' + patternFloat + patternFloat + patternFloat, 'g' );				const patternNormal = new RegExp( 'normal' + patternFloat + patternFloat + patternFloat, 'g' );				const vertices = [];				const normals = [];				const normal = new THREE.Vector3();				let result;				let groupCount = 0;				let startVertex = 0;				let endVertex = 0;				while ( ( result = patternSolid.exec( data ) ) !== null ) {					startVertex = endVertex;					const solid = result[ 0 ];					while ( ( result = patternFace.exec( solid ) ) !== null ) {						let vertexCountPerFace = 0;						let normalCountPerFace = 0;						const text = result[ 0 ];						while ( ( result = patternNormal.exec( text ) ) !== null ) {							normal.x = parseFloat( result[ 1 ] );							normal.y = parseFloat( result[ 2 ] );							normal.z = parseFloat( result[ 3 ] );							normalCountPerFace ++;						}						while ( ( result = patternVertex.exec( text ) ) !== null ) {							vertices.push( parseFloat( result[ 1 ] ), parseFloat( result[ 2 ] ), parseFloat( result[ 3 ] ) );							normals.push( normal.x, normal.y, normal.z );							vertexCountPerFace ++;							endVertex ++;						} // every face have to own ONE valid normal						if ( normalCountPerFace !== 1 ) {							console.error( 'THREE.STLLoader: Something isn\'t right with the normal of face number ' + faceCounter );						} // each face have to own THREE valid vertices						if ( vertexCountPerFace !== 3 ) {							console.error( 'THREE.STLLoader: Something isn\'t right with the vertices of face number ' + faceCounter );						}						faceCounter ++;					}					const start = startVertex;					const count = endVertex - startVertex;					geometry.addGroup( start, count, groupCount );					groupCount ++;				}				geometry.setAttribute( 'position', new THREE.Float32BufferAttribute( vertices, 3 ) );				geometry.setAttribute( 'normal', new THREE.Float32BufferAttribute( normals, 3 ) );				return geometry;			}			function ensureString( buffer ) {				if ( typeof buffer !== 'string' ) {					return THREE.LoaderUtils.decodeText( new Uint8Array( buffer ) );				}				return buffer;			}			function ensureBinary( buffer ) {				if ( typeof buffer === 'string' ) {					const array_buffer = new Uint8Array( buffer.length );					for ( let i = 0; i < buffer.length; i ++ ) {						array_buffer[ i ] = buffer.charCodeAt( i ) & 0xff; // implicitly assumes little-endian					}					return array_buffer.buffer || array_buffer;				} else {					return buffer;				}			} // start			const binData = ensureBinary( data );			return isBinary( binData ) ? parseBinary( binData ) : parseASCII( ensureString( data ) );		}	}	THREE.STLLoader = STLLoader;} )();
 |