| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 | ( function () {	/** * NURBS utils * * See NURBSCurve and NURBSSurface. **/	/************************************************************** *	NURBS Utils **************************************************************/	/*Finds knot vector span.p : degreeu : parametric valueU : knot vectorreturns the span*/	function findSpan( p, u, U ) {		const n = U.length - p - 1;		if ( u >= U[ n ] ) {			return n - 1;		}		if ( u <= U[ p ] ) {			return p;		}		let low = p;		let high = n;		let mid = Math.floor( ( low + high ) / 2 );		while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {			if ( u < U[ mid ] ) {				high = mid;			} else {				low = mid;			}			mid = Math.floor( ( low + high ) / 2 );		}		return mid;	}	/*Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2span : span in which u liesu    : parametric pointp    : degreeU    : knot vectorreturns array[p+1] with basis functions values.*/	function calcBasisFunctions( span, u, p, U ) {		const N = [];		const left = [];		const right = [];		N[ 0 ] = 1.0;		for ( let j = 1; j <= p; ++ j ) {			left[ j ] = u - U[ span + 1 - j ];			right[ j ] = U[ span + j ] - u;			let saved = 0.0;			for ( let r = 0; r < j; ++ r ) {				const rv = right[ r + 1 ];				const lv = left[ j - r ];				const temp = N[ r ] / ( rv + lv );				N[ r ] = saved + rv * temp;				saved = lv * temp;			}			N[ j ] = saved;		}		return N;	}	/*Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.p : degree of B-SplineU : knot vectorP : control points (x, y, z, w)u : parametric pointreturns point for given u*/	function calcBSplinePoint( p, U, P, u ) {		const span = findSpan( p, u, U );		const N = calcBasisFunctions( span, u, p, U );		const C = new THREE.Vector4( 0, 0, 0, 0 );		for ( let j = 0; j <= p; ++ j ) {			const point = P[ span - p + j ];			const Nj = N[ j ];			const wNj = point.w * Nj;			C.x += point.x * wNj;			C.y += point.y * wNj;			C.z += point.z * wNj;			C.w += point.w * Nj;		}		return C;	}	/*Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.span : span in which u liesu    : parametric pointp    : degreen    : number of derivatives to calculateU    : knot vectorreturns array[n+1][p+1] with basis functions derivatives*/	function calcBasisFunctionDerivatives( span, u, p, n, U ) {		const zeroArr = [];		for ( let i = 0; i <= p; ++ i ) zeroArr[ i ] = 0.0;		const ders = [];		for ( let i = 0; i <= n; ++ i ) ders[ i ] = zeroArr.slice( 0 );		const ndu = [];		for ( let i = 0; i <= p; ++ i ) ndu[ i ] = zeroArr.slice( 0 );		ndu[ 0 ][ 0 ] = 1.0;		const left = zeroArr.slice( 0 );		const right = zeroArr.slice( 0 );		for ( let j = 1; j <= p; ++ j ) {			left[ j ] = u - U[ span + 1 - j ];			right[ j ] = U[ span + j ] - u;			let saved = 0.0;			for ( let r = 0; r < j; ++ r ) {				const rv = right[ r + 1 ];				const lv = left[ j - r ];				ndu[ j ][ r ] = rv + lv;				const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];				ndu[ r ][ j ] = saved + rv * temp;				saved = lv * temp;			}			ndu[ j ][ j ] = saved;		}		for ( let j = 0; j <= p; ++ j ) {			ders[ 0 ][ j ] = ndu[ j ][ p ];		}		for ( let r = 0; r <= p; ++ r ) {			let s1 = 0;			let s2 = 1;			const a = [];			for ( let i = 0; i <= p; ++ i ) {				a[ i ] = zeroArr.slice( 0 );			}			a[ 0 ][ 0 ] = 1.0;			for ( let k = 1; k <= n; ++ k ) {				let d = 0.0;				const rk = r - k;				const pk = p - k;				if ( r >= k ) {					a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];					d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];				}				const j1 = rk >= - 1 ? 1 : - rk;				const j2 = r - 1 <= pk ? k - 1 : p - r;				for ( let j = j1; j <= j2; ++ j ) {					a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];					d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];				}				if ( r <= pk ) {					a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];					d += a[ s2 ][ k ] * ndu[ r ][ pk ];				}				ders[ k ][ r ] = d;				const j = s1;				s1 = s2;				s2 = j;			}		}		let r = p;		for ( let k = 1; k <= n; ++ k ) {			for ( let j = 0; j <= p; ++ j ) {				ders[ k ][ j ] *= r;			}			r *= p - k;		}		return ders;	}	/*	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.	p  : degree	U  : knot vector	P  : control points	u  : Parametric points	nd : number of derivatives	returns array[d+1] with derivatives	*/	function calcBSplineDerivatives( p, U, P, u, nd ) {		const du = nd < p ? nd : p;		const CK = [];		const span = findSpan( p, u, U );		const nders = calcBasisFunctionDerivatives( span, u, p, du, U );		const Pw = [];		for ( let i = 0; i < P.length; ++ i ) {			const point = P[ i ].clone();			const w = point.w;			point.x *= w;			point.y *= w;			point.z *= w;			Pw[ i ] = point;		}		for ( let k = 0; k <= du; ++ k ) {			const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );			for ( let j = 1; j <= p; ++ j ) {				point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );			}			CK[ k ] = point;		}		for ( let k = du + 1; k <= nd + 1; ++ k ) {			CK[ k ] = new THREE.Vector4( 0, 0, 0 );		}		return CK;	}	/*Calculate "K over I"returns k!/(i!(k-i)!)*/	function calcKoverI( k, i ) {		let nom = 1;		for ( let j = 2; j <= k; ++ j ) {			nom *= j;		}		let denom = 1;		for ( let j = 2; j <= i; ++ j ) {			denom *= j;		}		for ( let j = 2; j <= k - i; ++ j ) {			denom *= j;		}		return nom / denom;	}	/*Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.Pders : result of function calcBSplineDerivativesreturns array with derivatives for rational curve.*/	function calcRationalCurveDerivatives( Pders ) {		const nd = Pders.length;		const Aders = [];		const wders = [];		for ( let i = 0; i < nd; ++ i ) {			const point = Pders[ i ];			Aders[ i ] = new THREE.Vector3( point.x, point.y, point.z );			wders[ i ] = point.w;		}		const CK = [];		for ( let k = 0; k < nd; ++ k ) {			const v = Aders[ k ].clone();			for ( let i = 1; i <= k; ++ i ) {				v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );			}			CK[ k ] = v.divideScalar( wders[ 0 ] );		}		return CK;	}	/*Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.p  : degreeU  : knot vectorP  : control points in homogeneous spaceu  : parametric pointsnd : number of derivativesreturns array with derivatives.*/	function calcNURBSDerivatives( p, U, P, u, nd ) {		const Pders = calcBSplineDerivatives( p, U, P, u, nd );		return calcRationalCurveDerivatives( Pders );	}	/*Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.p1, p2 : degrees of B-Spline surfaceU1, U2 : knot vectorsP      : control points (x, y, z, w)u, v   : parametric valuesreturns point for given (u, v)*/	function calcSurfacePoint( p, q, U, V, P, u, v, target ) {		const uspan = findSpan( p, u, U );		const vspan = findSpan( q, v, V );		const Nu = calcBasisFunctions( uspan, u, p, U );		const Nv = calcBasisFunctions( vspan, v, q, V );		const temp = [];		for ( let l = 0; l <= q; ++ l ) {			temp[ l ] = new THREE.Vector4( 0, 0, 0, 0 );			for ( let k = 0; k <= p; ++ k ) {				const point = P[ uspan - p + k ][ vspan - q + l ].clone();				const w = point.w;				point.x *= w;				point.y *= w;				point.z *= w;				temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );			}		}		const Sw = new THREE.Vector4( 0, 0, 0, 0 );		for ( let l = 0; l <= q; ++ l ) {			Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );		}		Sw.divideScalar( Sw.w );		target.set( Sw.x, Sw.y, Sw.z );	}	THREE.NURBSUtils = {};	THREE.NURBSUtils.calcBSplineDerivatives = calcBSplineDerivatives;	THREE.NURBSUtils.calcBSplinePoint = calcBSplinePoint;	THREE.NURBSUtils.calcBasisFunctionDerivatives = calcBasisFunctionDerivatives;	THREE.NURBSUtils.calcBasisFunctions = calcBasisFunctions;	THREE.NURBSUtils.calcKoverI = calcKoverI;	THREE.NURBSUtils.calcNURBSDerivatives = calcNURBSDerivatives;	THREE.NURBSUtils.calcRationalCurveDerivatives = calcRationalCurveDerivatives;	THREE.NURBSUtils.calcSurfacePoint = calcSurfacePoint;	THREE.NURBSUtils.findSpan = findSpan;} )();
 |