| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 | ( function () {	/** * NURBS curve object * * Derives from THREE.Curve, overriding getPoint and getTangent. * * Implementation is based on (x, y [, z=0 [, w=1]]) control points with w=weight. * **/	class NURBSCurve extends THREE.Curve {		constructor( degree, knots			/* array of reals */			, controlPoints			/* array of Vector(2|3|4) */			, startKnot			/* index in knots */			, endKnot			/* index in knots */		) {			super();			this.degree = degree;			this.knots = knots;			this.controlPoints = []; // Used by periodic NURBS to remove hidden spans			this.startKnot = startKnot || 0;			this.endKnot = endKnot || this.knots.length - 1;			for ( let i = 0; i < controlPoints.length; ++ i ) {				// ensure THREE.Vector4 for control points				const point = controlPoints[ i ];				this.controlPoints[ i ] = new THREE.Vector4( point.x, point.y, point.z, point.w );			}		}		getPoint( t, optionalTarget = new THREE.Vector3() ) {			const point = optionalTarget;			const u = this.knots[ this.startKnot ] + t * ( this.knots[ this.endKnot ] - this.knots[ this.startKnot ] ); // linear mapping t->u			// following results in (wx, wy, wz, w) homogeneous point			const hpoint = THREE.NURBSUtils.calcBSplinePoint( this.degree, this.knots, this.controlPoints, u );			if ( hpoint.w !== 1.0 ) {				// project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1)				hpoint.divideScalar( hpoint.w );			}			return point.set( hpoint.x, hpoint.y, hpoint.z );		}		getTangent( t, optionalTarget = new THREE.Vector3() ) {			const tangent = optionalTarget;			const u = this.knots[ 0 ] + t * ( this.knots[ this.knots.length - 1 ] - this.knots[ 0 ] );			const ders = THREE.NURBSUtils.calcNURBSDerivatives( this.degree, this.knots, this.controlPoints, u, 1 );			tangent.copy( ders[ 1 ] ).normalize();			return tangent;		}	}	THREE.NURBSCurve = NURBSCurve;} )();
 |