| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 | <?phprequire_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');/** * PHPExcel_Logarithmic_Best_Fit * * Copyright (c) 2006 - 2015 PHPExcel * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA * * @category   PHPExcel * @package    PHPExcel_Shared_Trend * @copyright  Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel) * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL * @version    ##VERSION##, ##DATE## */class PHPExcel_Logarithmic_Best_Fit extends PHPExcel_Best_Fit{    /**     * Algorithm type to use for best-fit     * (Name of this trend class)     *     * @var    string     **/    protected $bestFitType        = 'logarithmic';    /**     * Return the Y-Value for a specified value of X     *     * @param     float        $xValue            X-Value     * @return     float                        Y-Value     **/    public function getValueOfYForX($xValue)    {        return $this->getIntersect() + $this->getSlope() * log($xValue - $this->xOffset);    }    /**     * Return the X-Value for a specified value of Y     *     * @param     float        $yValue            Y-Value     * @return     float                        X-Value     **/    public function getValueOfXForY($yValue)    {        return exp(($yValue - $this->getIntersect()) / $this->getSlope());    }    /**     * Return the Equation of the best-fit line     *     * @param     int        $dp        Number of places of decimal precision to display     * @return     string     **/    public function getEquation($dp = 0)    {        $slope = $this->getSlope($dp);        $intersect = $this->getIntersect($dp);        return 'Y = '.$intersect.' + '.$slope.' * log(X)';    }    /**     * Execute the regression and calculate the goodness of fit for a set of X and Y data values     *     * @param     float[]    $yValues    The set of Y-values for this regression     * @param     float[]    $xValues    The set of X-values for this regression     * @param     boolean    $const     */    private function logarithmicRegression($yValues, $xValues, $const)    {        foreach ($xValues as &$value) {            if ($value < 0.0) {                $value = 0 - log(abs($value));            } elseif ($value > 0.0) {                $value = log($value);            }        }        unset($value);        $this->leastSquareFit($yValues, $xValues, $const);    }    /**     * Define the regression and calculate the goodness of fit for a set of X and Y data values     *     * @param    float[]        $yValues    The set of Y-values for this regression     * @param    float[]        $xValues    The set of X-values for this regression     * @param    boolean        $const     */    public function __construct($yValues, $xValues = array(), $const = true)    {        if (parent::__construct($yValues, $xValues) !== false) {            $this->logarithmicRegression($yValues, $xValues, $const);        }    }}
 |