| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538235392354023541235422354323544235452354623547235482354923550235512355223553235542355523556235572355823559235602356123562235632356423565235662356723568235692357023571235722357323574235752357623577235782357923580235812358223583235842358523586235872358823589235902359123592235932359423595235962359723598235992360023601236022360323604236052360623607236082360923610236112361223613236142361523616236172361823619236202362123622236232362423625236262362723628236292363023631236322363323634236352363623637236382363923640236412364223643236442364523646236472364823649236502365123652236532365423655236562365723658236592366023661236622366323664236652366623667236682366923670236712367223673236742367523676236772367823679236802368123682236832368423685236862368723688236892369023691236922369323694236952369623697236982369923700237012370223703237042370523706237072370823709237102371123712237132371423715237162371723718237192372023721237222372323724237252372623727237282372923730237312373223733237342373523736237372373823739237402374123742237432374423745237462374723748237492375023751237522375323754237552375623757237582375923760237612376223763237642376523766237672376823769237702377123772237732377423775237762377723778237792378023781237822378323784237852378623787237882378923790237912379223793237942379523796237972379823799238002380123802238032380423805238062380723808238092381023811238122381323814238152381623817238182381923820238212382223823238242382523826238272382823829238302383123832238332383423835238362383723838238392384023841238422384323844238452384623847238482384923850238512385223853238542385523856238572385823859238602386123862238632386423865238662386723868238692387023871238722387323874238752387623877238782387923880238812388223883238842388523886238872388823889238902389123892238932389423895238962389723898238992390023901239022390323904239052390623907239082390923910239112391223913239142391523916239172391823919239202392123922239232392423925239262392723928239292393023931239322393323934239352393623937239382393923940239412394223943239442394523946239472394823949239502395123952239532395423955239562395723958239592396023961239622396323964239652396623967239682396923970239712397223973239742397523976239772397823979239802398123982239832398423985239862398723988239892399023991239922399323994239952399623997239982399924000240012400224003240042400524006240072400824009240102401124012240132401424015240162401724018240192402024021240222402324024240252402624027240282402924030240312403224033240342403524036240372403824039240402404124042240432404424045240462404724048240492405024051240522405324054240552405624057240582405924060240612406224063240642406524066240672406824069240702407124072240732407424075240762407724078240792408024081240822408324084240852408624087240882408924090240912409224093240942409524096240972409824099241002410124102241032410424105241062410724108241092411024111241122411324114241152411624117241182411924120241212412224123241242412524126241272412824129241302413124132241332413424135241362413724138241392414024141241422414324144241452414624147241482414924150241512415224153241542415524156241572415824159241602416124162241632416424165241662416724168241692417024171241722417324174241752417624177241782417924180241812418224183241842418524186241872418824189241902419124192241932419424195241962419724198241992420024201242022420324204242052420624207242082420924210242112421224213242142421524216242172421824219242202422124222242232422424225242262422724228242292423024231242322423324234242352423624237242382423924240242412424224243242442424524246242472424824249242502425124252242532425424255242562425724258242592426024261242622426324264242652426624267242682426924270242712427224273242742427524276242772427824279242802428124282242832428424285242862428724288242892429024291242922429324294242952429624297242982429924300243012430224303243042430524306243072430824309243102431124312243132431424315243162431724318243192432024321243222432324324243252432624327243282432924330243312433224333243342433524336243372433824339243402434124342243432434424345243462434724348243492435024351243522435324354243552435624357243582435924360243612436224363243642436524366243672436824369243702437124372243732437424375243762437724378243792438024381243822438324384243852438624387243882438924390243912439224393243942439524396243972439824399244002440124402244032440424405244062440724408244092441024411244122441324414244152441624417244182441924420244212442224423244242442524426244272442824429244302443124432244332443424435244362443724438244392444024441244422444324444244452444624447244482444924450244512445224453244542445524456244572445824459244602446124462244632446424465244662446724468244692447024471244722447324474244752447624477244782447924480244812448224483244842448524486244872448824489244902449124492244932449424495244962449724498244992450024501245022450324504245052450624507245082450924510245112451224513245142451524516245172451824519245202452124522245232452424525245262452724528245292453024531245322453324534245352453624537245382453924540245412454224543245442454524546245472454824549245502455124552245532455424555245562455724558245592456024561245622456324564245652456624567245682456924570245712457224573245742457524576245772457824579245802458124582245832458424585245862458724588245892459024591245922459324594245952459624597245982459924600246012460224603246042460524606246072460824609246102461124612246132461424615246162461724618246192462024621246222462324624246252462624627246282462924630246312463224633246342463524636246372463824639246402464124642246432464424645246462464724648246492465024651246522465324654246552465624657246582465924660246612466224663246642466524666246672466824669246702467124672246732467424675246762467724678246792468024681246822468324684246852468624687246882468924690246912469224693246942469524696246972469824699247002470124702247032470424705247062470724708247092471024711247122471324714247152471624717247182471924720247212472224723247242472524726247272472824729247302473124732247332473424735247362473724738247392474024741247422474324744247452474624747247482474924750247512475224753247542475524756247572475824759247602476124762247632476424765247662476724768247692477024771247722477324774247752477624777247782477924780247812478224783247842478524786247872478824789247902479124792247932479424795247962479724798247992480024801248022480324804248052480624807248082480924810248112481224813248142481524816248172481824819248202482124822248232482424825248262482724828248292483024831248322483324834248352483624837248382483924840248412484224843248442484524846248472484824849248502485124852248532485424855248562485724858248592486024861248622486324864248652486624867248682486924870248712487224873248742487524876248772487824879248802488124882248832488424885248862488724888248892489024891248922489324894248952489624897248982489924900249012490224903249042490524906249072490824909249102491124912249132491424915249162491724918249192492024921249222492324924249252492624927249282492924930249312493224933249342493524936249372493824939249402494124942249432494424945249462494724948249492495024951249522495324954249552495624957249582495924960249612496224963249642496524966249672496824969249702497124972249732497424975249762497724978249792498024981249822498324984249852498624987249882498924990249912499224993249942499524996249972499824999250002500125002250032500425005250062500725008250092501025011250122501325014250152501625017250182501925020250212502225023250242502525026250272502825029250302503125032250332503425035250362503725038250392504025041250422504325044250452504625047250482504925050250512505225053250542505525056250572505825059250602506125062250632506425065250662506725068250692507025071250722507325074250752507625077250782507925080250812508225083250842508525086250872508825089250902509125092250932509425095250962509725098250992510025101251022510325104251052510625107251082510925110251112511225113251142511525116251172511825119251202512125122251232512425125251262512725128251292513025131251322513325134251352513625137251382513925140251412514225143251442514525146251472514825149251502515125152251532515425155251562515725158251592516025161251622516325164251652516625167251682516925170251712517225173251742517525176251772517825179251802518125182251832518425185251862518725188251892519025191251922519325194251952519625197251982519925200252012520225203252042520525206252072520825209252102521125212252132521425215252162521725218252192522025221252222522325224252252522625227252282522925230252312523225233252342523525236252372523825239252402524125242252432524425245252462524725248252492525025251252522525325254252552525625257252582525925260252612526225263252642526525266252672526825269252702527125272252732527425275252762527725278252792528025281252822528325284252852528625287252882528925290252912529225293252942529525296252972529825299253002530125302253032530425305253062530725308253092531025311253122531325314253152531625317253182531925320253212532225323253242532525326253272532825329253302533125332253332533425335253362533725338253392534025341253422534325344253452534625347253482534925350253512535225353253542535525356253572535825359253602536125362253632536425365253662536725368253692537025371253722537325374253752537625377253782537925380253812538225383253842538525386253872538825389253902539125392253932539425395253962539725398253992540025401254022540325404254052540625407254082540925410254112541225413254142541525416254172541825419254202542125422254232542425425254262542725428254292543025431254322543325434254352543625437254382543925440254412544225443254442544525446254472544825449254502545125452254532545425455254562545725458254592546025461254622546325464254652546625467254682546925470254712547225473254742547525476254772547825479254802548125482254832548425485254862548725488254892549025491254922549325494254952549625497254982549925500255012550225503255042550525506255072550825509255102551125512255132551425515255162551725518255192552025521255222552325524255252552625527255282552925530255312553225533255342553525536255372553825539255402554125542255432554425545255462554725548255492555025551255522555325554255552555625557255582555925560255612556225563255642556525566255672556825569255702557125572255732557425575255762557725578255792558025581255822558325584255852558625587255882558925590255912559225593255942559525596255972559825599256002560125602256032560425605256062560725608256092561025611256122561325614256152561625617256182561925620256212562225623256242562525626256272562825629256302563125632256332563425635256362563725638256392564025641256422564325644256452564625647256482564925650256512565225653256542565525656256572565825659256602566125662256632566425665256662566725668256692567025671256722567325674256752567625677256782567925680256812568225683256842568525686256872568825689256902569125692256932569425695256962569725698256992570025701257022570325704257052570625707257082570925710257112571225713257142571525716257172571825719257202572125722257232572425725257262572725728257292573025731257322573325734257352573625737257382573925740257412574225743257442574525746257472574825749257502575125752257532575425755257562575725758257592576025761257622576325764257652576625767257682576925770257712577225773257742577525776257772577825779257802578125782257832578425785257862578725788257892579025791257922579325794257952579625797257982579925800258012580225803258042580525806258072580825809258102581125812258132581425815258162581725818258192582025821258222582325824258252582625827258282582925830258312583225833258342583525836258372583825839258402584125842258432584425845258462584725848258492585025851258522585325854258552585625857258582585925860258612586225863258642586525866258672586825869258702587125872258732587425875258762587725878258792588025881258822588325884258852588625887258882588925890258912589225893258942589525896258972589825899259002590125902259032590425905259062590725908259092591025911259122591325914259152591625917259182591925920259212592225923259242592525926259272592825929259302593125932259332593425935259362593725938259392594025941259422594325944259452594625947259482594925950259512595225953259542595525956259572595825959259602596125962259632596425965259662596725968259692597025971259722597325974259752597625977259782597925980259812598225983259842598525986259872598825989259902599125992259932599425995259962599725998259992600026001260022600326004260052600626007260082600926010260112601226013260142601526016260172601826019260202602126022260232602426025260262602726028260292603026031260322603326034260352603626037260382603926040260412604226043260442604526046260472604826049260502605126052260532605426055260562605726058260592606026061260622606326064260652606626067260682606926070260712607226073260742607526076260772607826079260802608126082260832608426085260862608726088260892609026091260922609326094260952609626097260982609926100261012610226103261042610526106261072610826109261102611126112261132611426115261162611726118261192612026121261222612326124261252612626127261282612926130261312613226133261342613526136261372613826139261402614126142261432614426145261462614726148261492615026151261522615326154261552615626157261582615926160261612616226163261642616526166261672616826169261702617126172261732617426175261762617726178261792618026181261822618326184261852618626187261882618926190261912619226193261942619526196261972619826199262002620126202262032620426205262062620726208262092621026211262122621326214262152621626217262182621926220262212622226223262242622526226262272622826229262302623126232262332623426235262362623726238262392624026241262422624326244262452624626247262482624926250262512625226253262542625526256262572625826259262602626126262262632626426265262662626726268262692627026271262722627326274262752627626277262782627926280262812628226283262842628526286262872628826289262902629126292262932629426295262962629726298262992630026301263022630326304263052630626307263082630926310263112631226313263142631526316263172631826319263202632126322263232632426325263262632726328263292633026331263322633326334263352633626337263382633926340263412634226343263442634526346263472634826349263502635126352263532635426355263562635726358263592636026361263622636326364263652636626367263682636926370263712637226373263742637526376263772637826379263802638126382263832638426385263862638726388263892639026391263922639326394263952639626397263982639926400264012640226403264042640526406264072640826409264102641126412264132641426415264162641726418264192642026421264222642326424264252642626427264282642926430264312643226433264342643526436264372643826439264402644126442264432644426445264462644726448264492645026451264522645326454264552645626457264582645926460264612646226463264642646526466264672646826469264702647126472264732647426475264762647726478264792648026481264822648326484264852648626487264882648926490264912649226493264942649526496264972649826499265002650126502265032650426505265062650726508265092651026511265122651326514265152651626517265182651926520265212652226523265242652526526265272652826529265302653126532265332653426535265362653726538265392654026541265422654326544265452654626547265482654926550265512655226553265542655526556265572655826559265602656126562265632656426565265662656726568265692657026571265722657326574265752657626577265782657926580265812658226583265842658526586265872658826589265902659126592265932659426595265962659726598265992660026601266022660326604266052660626607266082660926610266112661226613266142661526616266172661826619266202662126622266232662426625266262662726628266292663026631266322663326634266352663626637266382663926640266412664226643266442664526646266472664826649266502665126652266532665426655266562665726658266592666026661266622666326664266652666626667266682666926670266712667226673266742667526676266772667826679266802668126682266832668426685266862668726688266892669026691266922669326694266952669626697266982669926700267012670226703267042670526706267072670826709267102671126712267132671426715267162671726718267192672026721267222672326724267252672626727267282672926730267312673226733267342673526736267372673826739267402674126742267432674426745267462674726748267492675026751267522675326754267552675626757267582675926760267612676226763267642676526766267672676826769267702677126772267732677426775267762677726778267792678026781267822678326784267852678626787267882678926790267912679226793267942679526796267972679826799268002680126802268032680426805268062680726808268092681026811268122681326814268152681626817268182681926820268212682226823268242682526826268272682826829268302683126832268332683426835268362683726838268392684026841268422684326844268452684626847268482684926850268512685226853268542685526856268572685826859268602686126862268632686426865268662686726868268692687026871268722687326874268752687626877268782687926880268812688226883268842688526886268872688826889268902689126892268932689426895268962689726898268992690026901269022690326904269052690626907269082690926910269112691226913269142691526916269172691826919269202692126922269232692426925269262692726928269292693026931269322693326934269352693626937269382693926940269412694226943269442694526946269472694826949269502695126952269532695426955269562695726958269592696026961269622696326964269652696626967269682696926970269712697226973269742697526976269772697826979269802698126982269832698426985269862698726988269892699026991269922699326994269952699626997269982699927000270012700227003270042700527006270072700827009270102701127012270132701427015270162701727018270192702027021270222702327024270252702627027270282702927030270312703227033270342703527036270372703827039270402704127042270432704427045270462704727048270492705027051270522705327054270552705627057270582705927060270612706227063270642706527066270672706827069270702707127072270732707427075270762707727078270792708027081270822708327084270852708627087270882708927090270912709227093270942709527096270972709827099271002710127102271032710427105271062710727108271092711027111271122711327114271152711627117271182711927120271212712227123271242712527126271272712827129271302713127132271332713427135271362713727138271392714027141271422714327144271452714627147271482714927150271512715227153271542715527156271572715827159271602716127162271632716427165271662716727168271692717027171271722717327174271752717627177271782717927180271812718227183271842718527186271872718827189271902719127192271932719427195271962719727198271992720027201272022720327204272052720627207272082720927210272112721227213272142721527216272172721827219272202722127222272232722427225272262722727228272292723027231272322723327234272352723627237272382723927240272412724227243272442724527246272472724827249272502725127252272532725427255272562725727258272592726027261272622726327264272652726627267272682726927270272712727227273272742727527276272772727827279272802728127282272832728427285272862728727288272892729027291272922729327294272952729627297272982729927300273012730227303273042730527306273072730827309273102731127312273132731427315273162731727318273192732027321273222732327324273252732627327273282732927330273312733227333273342733527336273372733827339273402734127342273432734427345273462734727348273492735027351273522735327354273552735627357273582735927360273612736227363273642736527366273672736827369273702737127372273732737427375273762737727378273792738027381273822738327384273852738627387273882738927390273912739227393273942739527396273972739827399274002740127402274032740427405274062740727408274092741027411274122741327414274152741627417274182741927420274212742227423274242742527426274272742827429274302743127432274332743427435274362743727438274392744027441274422744327444274452744627447274482744927450274512745227453274542745527456274572745827459274602746127462274632746427465274662746727468274692747027471274722747327474274752747627477274782747927480274812748227483274842748527486274872748827489274902749127492274932749427495274962749727498274992750027501275022750327504275052750627507275082750927510275112751227513275142751527516275172751827519275202752127522275232752427525275262752727528275292753027531275322753327534275352753627537275382753927540275412754227543275442754527546275472754827549275502755127552275532755427555275562755727558275592756027561275622756327564275652756627567275682756927570275712757227573275742757527576275772757827579275802758127582275832758427585275862758727588275892759027591275922759327594275952759627597275982759927600276012760227603276042760527606276072760827609276102761127612276132761427615276162761727618276192762027621276222762327624276252762627627276282762927630276312763227633276342763527636276372763827639276402764127642276432764427645276462764727648276492765027651276522765327654276552765627657276582765927660276612766227663276642766527666276672766827669276702767127672276732767427675276762767727678276792768027681276822768327684276852768627687276882768927690276912769227693276942769527696276972769827699277002770127702277032770427705277062770727708277092771027711277122771327714277152771627717277182771927720277212772227723277242772527726277272772827729277302773127732277332773427735277362773727738277392774027741277422774327744277452774627747277482774927750277512775227753277542775527756277572775827759277602776127762277632776427765277662776727768277692777027771277722777327774277752777627777277782777927780277812778227783277842778527786277872778827789277902779127792277932779427795277962779727798277992780027801278022780327804278052780627807278082780927810278112781227813278142781527816278172781827819278202782127822278232782427825278262782727828278292783027831278322783327834278352783627837278382783927840278412784227843278442784527846278472784827849278502785127852278532785427855278562785727858278592786027861278622786327864278652786627867278682786927870278712787227873278742787527876278772787827879278802788127882278832788427885278862788727888278892789027891278922789327894278952789627897278982789927900279012790227903279042790527906279072790827909279102791127912279132791427915279162791727918279192792027921279222792327924279252792627927279282792927930279312793227933279342793527936279372793827939279402794127942279432794427945279462794727948279492795027951279522795327954279552795627957279582795927960279612796227963279642796527966279672796827969279702797127972279732797427975279762797727978279792798027981279822798327984279852798627987279882798927990279912799227993279942799527996279972799827999280002800128002280032800428005280062800728008280092801028011280122801328014280152801628017280182801928020280212802228023280242802528026280272802828029280302803128032280332803428035280362803728038280392804028041280422804328044280452804628047280482804928050280512805228053280542805528056280572805828059280602806128062280632806428065280662806728068280692807028071280722807328074280752807628077280782807928080280812808228083280842808528086280872808828089280902809128092280932809428095280962809728098280992810028101281022810328104281052810628107281082810928110281112811228113281142811528116281172811828119281202812128122281232812428125281262812728128281292813028131281322813328134281352813628137281382813928140281412814228143281442814528146281472814828149281502815128152281532815428155281562815728158281592816028161281622816328164281652816628167281682816928170281712817228173281742817528176281772817828179281802818128182281832818428185281862818728188281892819028191281922819328194281952819628197281982819928200282012820228203282042820528206282072820828209282102821128212282132821428215282162821728218282192822028221282222822328224282252822628227282282822928230282312823228233282342823528236282372823828239282402824128242282432824428245282462824728248282492825028251282522825328254282552825628257282582825928260282612826228263282642826528266282672826828269282702827128272282732827428275282762827728278282792828028281282822828328284282852828628287282882828928290282912829228293282942829528296282972829828299283002830128302283032830428305283062830728308283092831028311283122831328314283152831628317283182831928320283212832228323283242832528326283272832828329283302833128332283332833428335283362833728338283392834028341283422834328344283452834628347283482834928350283512835228353283542835528356283572835828359283602836128362283632836428365283662836728368283692837028371283722837328374283752837628377283782837928380283812838228383283842838528386283872838828389283902839128392283932839428395283962839728398283992840028401284022840328404284052840628407284082840928410284112841228413284142841528416284172841828419284202842128422284232842428425284262842728428284292843028431284322843328434284352843628437284382843928440284412844228443284442844528446284472844828449284502845128452284532845428455284562845728458284592846028461284622846328464284652846628467284682846928470284712847228473284742847528476284772847828479284802848128482284832848428485284862848728488284892849028491284922849328494284952849628497284982849928500285012850228503285042850528506285072850828509285102851128512285132851428515285162851728518285192852028521285222852328524285252852628527285282852928530285312853228533285342853528536285372853828539285402854128542285432854428545285462854728548285492855028551285522855328554285552855628557285582855928560285612856228563285642856528566285672856828569285702857128572285732857428575285762857728578285792858028581285822858328584285852858628587285882858928590285912859228593285942859528596285972859828599286002860128602286032860428605286062860728608286092861028611286122861328614286152861628617286182861928620286212862228623286242862528626286272862828629286302863128632286332863428635286362863728638286392864028641286422864328644286452864628647286482864928650286512865228653286542865528656286572865828659286602866128662286632866428665286662866728668286692867028671286722867328674286752867628677286782867928680286812868228683286842868528686286872868828689286902869128692286932869428695286962869728698286992870028701287022870328704287052870628707287082870928710287112871228713287142871528716287172871828719287202872128722287232872428725287262872728728287292873028731287322873328734287352873628737287382873928740287412874228743287442874528746287472874828749287502875128752287532875428755287562875728758287592876028761287622876328764287652876628767287682876928770287712877228773287742877528776287772877828779287802878128782287832878428785287862878728788287892879028791287922879328794287952879628797287982879928800288012880228803288042880528806288072880828809288102881128812288132881428815288162881728818288192882028821288222882328824288252882628827288282882928830288312883228833288342883528836288372883828839288402884128842288432884428845288462884728848288492885028851288522885328854288552885628857288582885928860288612886228863288642886528866288672886828869288702887128872288732887428875288762887728878288792888028881288822888328884288852888628887288882888928890288912889228893288942889528896288972889828899289002890128902289032890428905289062890728908289092891028911289122891328914289152891628917289182891928920289212892228923289242892528926289272892828929289302893128932289332893428935289362893728938289392894028941289422894328944289452894628947289482894928950289512895228953289542895528956289572895828959289602896128962289632896428965289662896728968289692897028971289722897328974289752897628977289782897928980289812898228983289842898528986289872898828989289902899128992289932899428995289962899728998289992900029001290022900329004290052900629007290082900929010290112901229013290142901529016290172901829019290202902129022290232902429025290262902729028290292903029031290322903329034290352903629037290382903929040290412904229043290442904529046290472904829049290502905129052290532905429055290562905729058290592906029061290622906329064290652906629067290682906929070290712907229073290742907529076290772907829079290802908129082290832908429085290862908729088290892909029091290922909329094290952909629097290982909929100291012910229103291042910529106291072910829109291102911129112291132911429115291162911729118291192912029121291222912329124291252912629127291282912929130291312913229133291342913529136291372913829139291402914129142291432914429145291462914729148291492915029151291522915329154291552915629157291582915929160291612916229163291642916529166291672916829169291702917129172291732917429175291762917729178291792918029181291822918329184291852918629187291882918929190291912919229193291942919529196291972919829199292002920129202292032920429205292062920729208292092921029211292122921329214292152921629217292182921929220292212922229223292242922529226292272922829229292302923129232292332923429235292362923729238292392924029241292422924329244292452924629247292482924929250292512925229253292542925529256292572925829259292602926129262292632926429265292662926729268292692927029271292722927329274292752927629277292782927929280292812928229283292842928529286292872928829289292902929129292292932929429295292962929729298292992930029301293022930329304293052930629307293082930929310293112931229313293142931529316293172931829319293202932129322293232932429325293262932729328293292933029331293322933329334293352933629337293382933929340293412934229343293442934529346293472934829349293502935129352293532935429355293562935729358293592936029361293622936329364293652936629367293682936929370293712937229373293742937529376293772937829379293802938129382293832938429385293862938729388293892939029391293922939329394293952939629397293982939929400294012940229403294042940529406294072940829409294102941129412294132941429415294162941729418294192942029421294222942329424294252942629427294282942929430294312943229433294342943529436294372943829439294402944129442294432944429445294462944729448294492945029451294522945329454294552945629457294582945929460294612946229463294642946529466294672946829469294702947129472294732947429475294762947729478294792948029481294822948329484294852948629487294882948929490294912949229493294942949529496294972949829499295002950129502295032950429505295062950729508295092951029511295122951329514295152951629517295182951929520295212952229523295242952529526295272952829529295302953129532295332953429535295362953729538295392954029541295422954329544295452954629547295482954929550295512955229553295542955529556295572955829559295602956129562295632956429565295662956729568295692957029571295722957329574295752957629577295782957929580295812958229583295842958529586295872958829589295902959129592295932959429595295962959729598295992960029601296022960329604296052960629607296082960929610296112961229613296142961529616296172961829619296202962129622296232962429625296262962729628296292963029631296322963329634296352963629637296382963929640296412964229643296442964529646296472964829649296502965129652296532965429655296562965729658296592966029661296622966329664296652966629667296682966929670296712967229673296742967529676296772967829679296802968129682296832968429685296862968729688296892969029691296922969329694296952969629697296982969929700297012970229703297042970529706297072970829709297102971129712297132971429715297162971729718297192972029721297222972329724297252972629727297282972929730297312973229733297342973529736297372973829739297402974129742297432974429745297462974729748297492975029751297522975329754297552975629757297582975929760297612976229763297642976529766297672976829769297702977129772297732977429775297762977729778297792978029781297822978329784297852978629787297882978929790297912979229793297942979529796297972979829799298002980129802298032980429805298062980729808298092981029811298122981329814298152981629817298182981929820298212982229823298242982529826298272982829829298302983129832298332983429835298362983729838298392984029841298422984329844298452984629847298482984929850298512985229853298542985529856298572985829859298602986129862298632986429865298662986729868298692987029871298722987329874298752987629877298782987929880298812988229883298842988529886298872988829889298902989129892298932989429895298962989729898298992990029901299022990329904299052990629907299082990929910299112991229913299142991529916299172991829919299202992129922299232992429925299262992729928299292993029931299322993329934299352993629937299382993929940299412994229943299442994529946299472994829949299502995129952299532995429955299562995729958299592996029961299622996329964299652996629967299682996929970299712997229973299742997529976299772997829979299802998129982299832998429985299862998729988299892999029991299922999329994299952999629997299982999930000300013000230003300043000530006300073000830009300103001130012300133001430015300163001730018300193002030021300223002330024300253002630027300283002930030300313003230033300343003530036300373003830039300403004130042300433004430045300463004730048300493005030051300523005330054300553005630057300583005930060300613006230063300643006530066300673006830069300703007130072300733007430075300763007730078300793008030081300823008330084300853008630087300883008930090300913009230093300943009530096300973009830099301003010130102301033010430105301063010730108301093011030111301123011330114301153011630117301183011930120301213012230123301243012530126301273012830129301303013130132301333013430135301363013730138301393014030141301423014330144301453014630147301483014930150301513015230153301543015530156301573015830159301603016130162301633016430165301663016730168301693017030171301723017330174301753017630177301783017930180301813018230183301843018530186301873018830189301903019130192301933019430195301963019730198301993020030201302023020330204302053020630207302083020930210302113021230213302143021530216302173021830219302203022130222302233022430225302263022730228302293023030231302323023330234302353023630237302383023930240302413024230243302443024530246302473024830249302503025130252302533025430255302563025730258302593026030261302623026330264302653026630267302683026930270302713027230273302743027530276302773027830279302803028130282302833028430285302863028730288302893029030291302923029330294302953029630297302983029930300303013030230303303043030530306303073030830309303103031130312303133031430315303163031730318303193032030321303223032330324303253032630327303283032930330303313033230333303343033530336303373033830339303403034130342303433034430345303463034730348303493035030351303523035330354303553035630357303583035930360303613036230363303643036530366303673036830369303703037130372303733037430375303763037730378303793038030381303823038330384303853038630387303883038930390303913039230393303943039530396303973039830399304003040130402304033040430405304063040730408304093041030411304123041330414304153041630417304183041930420304213042230423304243042530426304273042830429304303043130432304333043430435304363043730438304393044030441304423044330444304453044630447304483044930450304513045230453304543045530456304573045830459304603046130462304633046430465304663046730468304693047030471304723047330474304753047630477304783047930480304813048230483304843048530486304873048830489304903049130492304933049430495304963049730498304993050030501305023050330504305053050630507305083050930510305113051230513305143051530516305173051830519305203052130522305233052430525305263052730528305293053030531305323053330534305353053630537305383053930540305413054230543305443054530546305473054830549305503055130552305533055430555305563055730558305593056030561305623056330564305653056630567305683056930570305713057230573305743057530576305773057830579305803058130582305833058430585305863058730588305893059030591305923059330594305953059630597305983059930600306013060230603306043060530606306073060830609306103061130612306133061430615306163061730618306193062030621306223062330624306253062630627306283062930630306313063230633306343063530636306373063830639306403064130642306433064430645306463064730648306493065030651306523065330654306553065630657306583065930660306613066230663306643066530666306673066830669306703067130672306733067430675306763067730678306793068030681306823068330684306853068630687306883068930690306913069230693306943069530696306973069830699307003070130702307033070430705307063070730708307093071030711307123071330714307153071630717307183071930720307213072230723307243072530726307273072830729307303073130732307333073430735307363073730738307393074030741307423074330744307453074630747307483074930750307513075230753307543075530756307573075830759307603076130762307633076430765307663076730768307693077030771307723077330774307753077630777307783077930780307813078230783307843078530786307873078830789307903079130792307933079430795307963079730798307993080030801308023080330804308053080630807308083080930810308113081230813308143081530816308173081830819308203082130822308233082430825308263082730828308293083030831308323083330834308353083630837308383083930840308413084230843308443084530846308473084830849308503085130852308533085430855308563085730858308593086030861308623086330864308653086630867308683086930870308713087230873308743087530876308773087830879308803088130882308833088430885308863088730888308893089030891308923089330894308953089630897308983089930900309013090230903309043090530906309073090830909309103091130912309133091430915309163091730918309193092030921309223092330924309253092630927309283092930930309313093230933309343093530936309373093830939309403094130942309433094430945309463094730948309493095030951309523095330954309553095630957309583095930960309613096230963309643096530966309673096830969309703097130972309733097430975309763097730978309793098030981309823098330984309853098630987309883098930990309913099230993309943099530996309973099830999310003100131002310033100431005310063100731008310093101031011310123101331014310153101631017310183101931020310213102231023310243102531026310273102831029310303103131032310333103431035310363103731038310393104031041310423104331044310453104631047310483104931050310513105231053310543105531056310573105831059310603106131062310633106431065310663106731068310693107031071310723107331074310753107631077310783107931080310813108231083310843108531086310873108831089310903109131092310933109431095310963109731098310993110031101311023110331104311053110631107311083110931110311113111231113311143111531116311173111831119311203112131122311233112431125311263112731128311293113031131311323113331134311353113631137311383113931140311413114231143311443114531146311473114831149311503115131152311533115431155311563115731158311593116031161311623116331164311653116631167311683116931170311713117231173311743117531176311773117831179311803118131182311833118431185311863118731188311893119031191311923119331194311953119631197311983119931200312013120231203312043120531206312073120831209312103121131212312133121431215312163121731218312193122031221312223122331224312253122631227312283122931230312313123231233312343123531236312373123831239312403124131242312433124431245312463124731248312493125031251312523125331254312553125631257312583125931260312613126231263312643126531266312673126831269312703127131272312733127431275312763127731278312793128031281312823128331284312853128631287312883128931290312913129231293312943129531296312973129831299313003130131302313033130431305313063130731308313093131031311313123131331314313153131631317313183131931320313213132231323313243132531326313273132831329313303133131332313333133431335313363133731338313393134031341313423134331344313453134631347313483134931350313513135231353313543135531356313573135831359313603136131362313633136431365313663136731368313693137031371313723137331374313753137631377313783137931380313813138231383313843138531386313873138831389313903139131392313933139431395313963139731398313993140031401314023140331404314053140631407314083140931410314113141231413314143141531416314173141831419314203142131422314233142431425314263142731428314293143031431314323143331434314353143631437314383143931440314413144231443314443144531446314473144831449314503145131452314533145431455314563145731458314593146031461314623146331464314653146631467314683146931470314713147231473314743147531476314773147831479314803148131482314833148431485314863148731488314893149031491314923149331494314953149631497314983149931500315013150231503315043150531506315073150831509315103151131512315133151431515315163151731518315193152031521315223152331524315253152631527315283152931530315313153231533315343153531536315373153831539315403154131542315433154431545315463154731548315493155031551315523155331554315553155631557315583155931560315613156231563315643156531566315673156831569315703157131572315733157431575315763157731578315793158031581315823158331584315853158631587315883158931590315913159231593315943159531596315973159831599316003160131602316033160431605316063160731608316093161031611316123161331614316153161631617316183161931620316213162231623316243162531626316273162831629316303163131632316333163431635316363163731638316393164031641316423164331644316453164631647316483164931650316513165231653316543165531656316573165831659316603166131662316633166431665316663166731668316693167031671316723167331674316753167631677316783167931680316813168231683316843168531686316873168831689316903169131692316933169431695316963169731698316993170031701317023170331704317053170631707317083170931710317113171231713317143171531716317173171831719317203172131722317233172431725317263172731728317293173031731317323173331734317353173631737317383173931740317413174231743317443174531746317473174831749317503175131752317533175431755317563175731758317593176031761317623176331764317653176631767317683176931770317713177231773317743177531776317773177831779317803178131782317833178431785317863178731788317893179031791317923179331794317953179631797317983179931800318013180231803318043180531806318073180831809318103181131812318133181431815318163181731818318193182031821318223182331824318253182631827318283182931830318313183231833318343183531836318373183831839318403184131842318433184431845318463184731848318493185031851318523185331854318553185631857318583185931860318613186231863318643186531866318673186831869318703187131872318733187431875318763187731878318793188031881318823188331884318853188631887318883188931890318913189231893318943189531896318973189831899319003190131902319033190431905319063190731908319093191031911319123191331914319153191631917319183191931920319213192231923319243192531926319273192831929319303193131932319333193431935319363193731938319393194031941319423194331944319453194631947319483194931950319513195231953319543195531956319573195831959319603196131962319633196431965319663196731968319693197031971319723197331974319753197631977319783197931980319813198231983319843198531986319873198831989319903199131992319933199431995319963199731998319993200032001320023200332004320053200632007320083200932010320113201232013320143201532016320173201832019320203202132022320233202432025320263202732028320293203032031320323203332034320353203632037320383203932040320413204232043320443204532046320473204832049320503205132052320533205432055320563205732058320593206032061320623206332064320653206632067320683206932070320713207232073320743207532076320773207832079320803208132082320833208432085320863208732088320893209032091320923209332094320953209632097320983209932100321013210232103321043210532106321073210832109321103211132112321133211432115321163211732118321193212032121321223212332124321253212632127321283212932130321313213232133321343213532136321373213832139321403214132142321433214432145321463214732148321493215032151321523215332154321553215632157321583215932160321613216232163321643216532166321673216832169321703217132172321733217432175321763217732178321793218032181321823218332184321853218632187321883218932190321913219232193321943219532196321973219832199322003220132202322033220432205322063220732208322093221032211322123221332214322153221632217322183221932220322213222232223322243222532226322273222832229322303223132232322333223432235322363223732238322393224032241322423224332244322453224632247322483224932250322513225232253322543225532256322573225832259322603226132262322633226432265322663226732268322693227032271322723227332274322753227632277322783227932280322813228232283322843228532286322873228832289322903229132292322933229432295322963229732298322993230032301323023230332304323053230632307323083230932310323113231232313323143231532316323173231832319323203232132322323233232432325323263232732328323293233032331323323233332334323353233632337323383233932340323413234232343323443234532346323473234832349323503235132352323533235432355323563235732358323593236032361323623236332364323653236632367323683236932370323713237232373323743237532376323773237832379323803238132382323833238432385323863238732388323893239032391323923239332394323953239632397323983239932400324013240232403324043240532406324073240832409324103241132412324133241432415324163241732418324193242032421324223242332424324253242632427324283242932430324313243232433324343243532436324373243832439324403244132442324433244432445324463244732448324493245032451324523245332454324553245632457324583245932460324613246232463324643246532466324673246832469324703247132472324733247432475324763247732478324793248032481324823248332484324853248632487324883248932490324913249232493324943249532496324973249832499325003250132502325033250432505325063250732508325093251032511325123251332514325153251632517325183251932520325213252232523325243252532526325273252832529325303253132532325333253432535325363253732538325393254032541325423254332544325453254632547325483254932550325513255232553325543255532556325573255832559325603256132562325633256432565325663256732568325693257032571325723257332574325753257632577325783257932580325813258232583325843258532586325873258832589325903259132592325933259432595325963259732598325993260032601326023260332604326053260632607326083260932610326113261232613326143261532616326173261832619326203262132622326233262432625326263262732628326293263032631326323263332634326353263632637326383263932640326413264232643326443264532646326473264832649326503265132652326533265432655326563265732658326593266032661326623266332664326653266632667326683266932670326713267232673326743267532676326773267832679326803268132682326833268432685326863268732688326893269032691326923269332694326953269632697326983269932700327013270232703327043270532706327073270832709327103271132712327133271432715327163271732718327193272032721327223272332724327253272632727327283272932730327313273232733327343273532736327373273832739327403274132742327433274432745327463274732748327493275032751327523275332754327553275632757327583275932760327613276232763327643276532766327673276832769327703277132772327733277432775327763277732778327793278032781327823278332784327853278632787327883278932790327913279232793327943279532796327973279832799328003280132802328033280432805328063280732808328093281032811328123281332814328153281632817328183281932820328213282232823328243282532826328273282832829328303283132832328333283432835328363283732838328393284032841328423284332844328453284632847328483284932850328513285232853328543285532856328573285832859328603286132862328633286432865328663286732868328693287032871328723287332874328753287632877328783287932880328813288232883328843288532886328873288832889328903289132892328933289432895328963289732898328993290032901329023290332904329053290632907329083290932910329113291232913329143291532916329173291832919329203292132922329233292432925329263292732928329293293032931329323293332934329353293632937329383293932940329413294232943329443294532946329473294832949329503295132952329533295432955329563295732958329593296032961329623296332964329653296632967329683296932970329713297232973329743297532976329773297832979329803298132982329833298432985329863298732988329893299032991329923299332994329953299632997329983299933000330013300233003330043300533006330073300833009330103301133012330133301433015330163301733018330193302033021330223302333024330253302633027330283302933030330313303233033330343303533036330373303833039330403304133042330433304433045330463304733048330493305033051330523305333054330553305633057330583305933060330613306233063330643306533066330673306833069330703307133072330733307433075330763307733078330793308033081330823308333084330853308633087330883308933090330913309233093330943309533096330973309833099331003310133102331033310433105331063310733108331093311033111331123311333114331153311633117331183311933120331213312233123331243312533126331273312833129331303313133132331333313433135331363313733138331393314033141331423314333144331453314633147331483314933150331513315233153331543315533156331573315833159331603316133162331633316433165331663316733168331693317033171331723317333174331753317633177331783317933180331813318233183331843318533186331873318833189331903319133192331933319433195331963319733198331993320033201332023320333204332053320633207332083320933210332113321233213332143321533216332173321833219332203322133222332233322433225332263322733228332293323033231332323323333234332353323633237332383323933240332413324233243332443324533246332473324833249332503325133252332533325433255332563325733258332593326033261332623326333264332653326633267332683326933270332713327233273332743327533276332773327833279332803328133282332833328433285332863328733288332893329033291332923329333294332953329633297332983329933300333013330233303333043330533306333073330833309333103331133312333133331433315333163331733318333193332033321333223332333324333253332633327333283332933330333313333233333333343333533336333373333833339333403334133342333433334433345333463334733348333493335033351333523335333354333553335633357333583335933360333613336233363333643336533366333673336833369333703337133372333733337433375333763337733378333793338033381333823338333384333853338633387333883338933390333913339233393333943339533396333973339833399334003340133402334033340433405334063340733408334093341033411334123341333414334153341633417334183341933420334213342233423334243342533426334273342833429334303343133432334333343433435334363343733438334393344033441334423344333444334453344633447334483344933450334513345233453334543345533456334573345833459334603346133462334633346433465334663346733468334693347033471334723347333474334753347633477334783347933480334813348233483334843348533486334873348833489334903349133492334933349433495334963349733498334993350033501335023350333504335053350633507335083350933510335113351233513335143351533516335173351833519335203352133522335233352433525335263352733528335293353033531335323353333534335353353633537335383353933540335413354233543335443354533546335473354833549335503355133552335533355433555335563355733558335593356033561335623356333564335653356633567335683356933570335713357233573335743357533576335773357833579335803358133582335833358433585335863358733588335893359033591335923359333594335953359633597335983359933600336013360233603336043360533606336073360833609336103361133612336133361433615336163361733618336193362033621336223362333624336253362633627336283362933630336313363233633336343363533636336373363833639336403364133642336433364433645336463364733648336493365033651336523365333654336553365633657336583365933660336613366233663336643366533666336673366833669336703367133672336733367433675336763367733678336793368033681336823368333684336853368633687336883368933690336913369233693336943369533696336973369833699337003370133702337033370433705337063370733708337093371033711337123371333714337153371633717337183371933720337213372233723337243372533726337273372833729337303373133732337333373433735337363373733738337393374033741337423374333744337453374633747337483374933750337513375233753337543375533756337573375833759337603376133762337633376433765337663376733768337693377033771337723377333774337753377633777337783377933780337813378233783337843378533786337873378833789337903379133792337933379433795337963379733798337993380033801338023380333804338053380633807338083380933810338113381233813338143381533816338173381833819338203382133822338233382433825338263382733828338293383033831338323383333834338353383633837338383383933840338413384233843338443384533846338473384833849338503385133852338533385433855338563385733858338593386033861338623386333864338653386633867338683386933870338713387233873338743387533876338773387833879338803388133882338833388433885338863388733888338893389033891338923389333894338953389633897338983389933900339013390233903339043390533906339073390833909339103391133912339133391433915339163391733918339193392033921339223392333924339253392633927339283392933930339313393233933339343393533936339373393833939339403394133942339433394433945339463394733948339493395033951339523395333954339553395633957339583395933960339613396233963339643396533966339673396833969339703397133972339733397433975339763397733978339793398033981339823398333984339853398633987339883398933990339913399233993339943399533996339973399833999340003400134002340033400434005340063400734008340093401034011340123401334014340153401634017340183401934020340213402234023340243402534026340273402834029340303403134032340333403434035340363403734038340393404034041340423404334044340453404634047340483404934050340513405234053340543405534056340573405834059340603406134062340633406434065340663406734068340693407034071340723407334074340753407634077340783407934080340813408234083340843408534086340873408834089340903409134092340933409434095340963409734098340993410034101341023410334104341053410634107341083410934110341113411234113341143411534116341173411834119341203412134122341233412434125341263412734128341293413034131341323413334134341353413634137341383413934140341413414234143341443414534146341473414834149341503415134152341533415434155341563415734158341593416034161341623416334164341653416634167341683416934170341713417234173341743417534176341773417834179341803418134182341833418434185341863418734188341893419034191341923419334194341953419634197341983419934200342013420234203342043420534206342073420834209342103421134212342133421434215342163421734218342193422034221342223422334224342253422634227342283422934230342313423234233342343423534236342373423834239342403424134242342433424434245342463424734248342493425034251342523425334254342553425634257342583425934260342613426234263342643426534266342673426834269342703427134272342733427434275342763427734278342793428034281342823428334284342853428634287342883428934290342913429234293342943429534296342973429834299343003430134302343033430434305343063430734308343093431034311343123431334314343153431634317343183431934320343213432234323343243432534326343273432834329343303433134332343333433434335343363433734338343393434034341343423434334344343453434634347343483434934350343513435234353343543435534356343573435834359343603436134362343633436434365343663436734368343693437034371343723437334374343753437634377343783437934380343813438234383343843438534386343873438834389343903439134392343933439434395343963439734398343993440034401344023440334404344053440634407344083440934410344113441234413344143441534416344173441834419344203442134422344233442434425344263442734428344293443034431344323443334434344353443634437344383443934440344413444234443344443444534446344473444834449344503445134452344533445434455344563445734458344593446034461344623446334464344653446634467344683446934470344713447234473344743447534476344773447834479344803448134482344833448434485344863448734488344893449034491344923449334494344953449634497344983449934500345013450234503345043450534506345073450834509345103451134512345133451434515345163451734518345193452034521345223452334524345253452634527345283452934530345313453234533345343453534536345373453834539345403454134542345433454434545345463454734548345493455034551345523455334554345553455634557345583455934560345613456234563345643456534566345673456834569345703457134572345733457434575345763457734578345793458034581345823458334584345853458634587345883458934590345913459234593345943459534596345973459834599346003460134602346033460434605346063460734608346093461034611346123461334614346153461634617346183461934620346213462234623346243462534626346273462834629346303463134632346333463434635346363463734638346393464034641346423464334644346453464634647346483464934650346513465234653346543465534656346573465834659346603466134662346633466434665346663466734668346693467034671346723467334674346753467634677346783467934680346813468234683346843468534686346873468834689346903469134692346933469434695346963469734698346993470034701347023470334704347053470634707347083470934710347113471234713347143471534716347173471834719347203472134722347233472434725347263472734728347293473034731347323473334734347353473634737347383473934740347413474234743347443474534746347473474834749347503475134752347533475434755347563475734758347593476034761347623476334764347653476634767347683476934770347713477234773347743477534776347773477834779347803478134782347833478434785347863478734788347893479034791347923479334794347953479634797347983479934800348013480234803348043480534806348073480834809348103481134812348133481434815348163481734818348193482034821348223482334824348253482634827348283482934830348313483234833348343483534836348373483834839348403484134842348433484434845348463484734848348493485034851348523485334854348553485634857348583485934860348613486234863348643486534866348673486834869348703487134872348733487434875348763487734878348793488034881348823488334884348853488634887348883488934890348913489234893348943489534896348973489834899349003490134902349033490434905349063490734908349093491034911349123491334914349153491634917349183491934920349213492234923349243492534926349273492834929349303493134932349333493434935349363493734938349393494034941349423494334944349453494634947349483494934950349513495234953349543495534956349573495834959349603496134962349633496434965349663496734968349693497034971349723497334974349753497634977349783497934980349813498234983349843498534986349873498834989349903499134992349933499434995349963499734998349993500035001350023500335004350053500635007350083500935010350113501235013350143501535016350173501835019350203502135022350233502435025350263502735028350293503035031350323503335034350353503635037350383503935040350413504235043350443504535046350473504835049350503505135052350533505435055350563505735058350593506035061350623506335064350653506635067350683506935070350713507235073350743507535076350773507835079350803508135082350833508435085350863508735088350893509035091350923509335094350953509635097350983509935100351013510235103351043510535106351073510835109351103511135112351133511435115351163511735118351193512035121351223512335124351253512635127351283512935130351313513235133351343513535136351373513835139351403514135142351433514435145351463514735148351493515035151351523515335154351553515635157351583515935160351613516235163351643516535166351673516835169351703517135172351733517435175351763517735178351793518035181351823518335184351853518635187351883518935190351913519235193351943519535196351973519835199352003520135202352033520435205352063520735208352093521035211352123521335214352153521635217352183521935220352213522235223352243522535226352273522835229352303523135232352333523435235352363523735238352393524035241352423524335244352453524635247352483524935250352513525235253352543525535256352573525835259352603526135262352633526435265352663526735268352693527035271352723527335274352753527635277352783527935280352813528235283352843528535286352873528835289352903529135292352933529435295352963529735298352993530035301353023530335304353053530635307353083530935310353113531235313353143531535316353173531835319353203532135322353233532435325353263532735328353293533035331353323533335334353353533635337353383533935340353413534235343353443534535346353473534835349353503535135352353533535435355353563535735358353593536035361353623536335364353653536635367353683536935370353713537235373353743537535376353773537835379353803538135382353833538435385353863538735388353893539035391353923539335394353953539635397353983539935400354013540235403354043540535406354073540835409354103541135412354133541435415354163541735418354193542035421354223542335424354253542635427354283542935430354313543235433354343543535436354373543835439354403544135442354433544435445354463544735448354493545035451354523545335454354553545635457354583545935460354613546235463354643546535466354673546835469354703547135472354733547435475354763547735478354793548035481354823548335484354853548635487354883548935490354913549235493354943549535496354973549835499355003550135502355033550435505355063550735508355093551035511355123551335514355153551635517355183551935520355213552235523355243552535526355273552835529355303553135532355333553435535355363553735538355393554035541355423554335544355453554635547355483554935550355513555235553355543555535556355573555835559355603556135562355633556435565355663556735568355693557035571355723557335574355753557635577355783557935580355813558235583355843558535586355873558835589355903559135592355933559435595355963559735598355993560035601356023560335604356053560635607356083560935610356113561235613356143561535616356173561835619356203562135622356233562435625356263562735628356293563035631356323563335634356353563635637356383563935640356413564235643356443564535646356473564835649356503565135652356533565435655356563565735658356593566035661356623566335664356653566635667356683566935670356713567235673356743567535676356773567835679356803568135682356833568435685356863568735688356893569035691356923569335694356953569635697356983569935700357013570235703357043570535706357073570835709357103571135712357133571435715357163571735718357193572035721357223572335724357253572635727357283572935730357313573235733357343573535736357373573835739357403574135742357433574435745357463574735748357493575035751357523575335754357553575635757357583575935760357613576235763357643576535766357673576835769357703577135772357733577435775357763577735778357793578035781357823578335784357853578635787357883578935790357913579235793357943579535796357973579835799358003580135802358033580435805358063580735808358093581035811358123581335814358153581635817358183581935820358213582235823358243582535826358273582835829358303583135832358333583435835358363583735838358393584035841358423584335844358453584635847358483584935850358513585235853358543585535856358573585835859358603586135862358633586435865358663586735868358693587035871358723587335874358753587635877358783587935880358813588235883358843588535886358873588835889358903589135892358933589435895358963589735898358993590035901359023590335904359053590635907359083590935910359113591235913359143591535916359173591835919359203592135922359233592435925359263592735928359293593035931359323593335934359353593635937359383593935940359413594235943359443594535946359473594835949359503595135952359533595435955359563595735958359593596035961359623596335964359653596635967359683596935970359713597235973359743597535976359773597835979359803598135982359833598435985359863598735988359893599035991359923599335994359953599635997359983599936000360013600236003360043600536006360073600836009360103601136012360133601436015360163601736018360193602036021360223602336024360253602636027360283602936030360313603236033360343603536036360373603836039360403604136042360433604436045360463604736048360493605036051360523605336054360553605636057360583605936060360613606236063360643606536066360673606836069360703607136072360733607436075360763607736078360793608036081360823608336084360853608636087360883608936090360913609236093360943609536096360973609836099361003610136102361033610436105361063610736108361093611036111361123611336114361153611636117361183611936120361213612236123361243612536126361273612836129361303613136132361333613436135361363613736138361393614036141361423614336144361453614636147361483614936150361513615236153361543615536156361573615836159361603616136162361633616436165361663616736168361693617036171361723617336174361753617636177361783617936180361813618236183361843618536186361873618836189361903619136192361933619436195361963619736198361993620036201362023620336204362053620636207362083620936210362113621236213362143621536216362173621836219362203622136222362233622436225362263622736228362293623036231362323623336234362353623636237362383623936240362413624236243362443624536246362473624836249362503625136252362533625436255362563625736258362593626036261362623626336264362653626636267362683626936270362713627236273362743627536276362773627836279362803628136282362833628436285362863628736288362893629036291362923629336294362953629636297362983629936300363013630236303363043630536306363073630836309363103631136312363133631436315363163631736318363193632036321363223632336324363253632636327363283632936330363313633236333363343633536336363373633836339363403634136342363433634436345363463634736348363493635036351363523635336354363553635636357363583635936360363613636236363363643636536366363673636836369363703637136372363733637436375363763637736378363793638036381363823638336384363853638636387363883638936390363913639236393363943639536396363973639836399364003640136402364033640436405364063640736408364093641036411364123641336414364153641636417364183641936420364213642236423364243642536426364273642836429364303643136432364333643436435364363643736438364393644036441364423644336444364453644636447364483644936450364513645236453364543645536456364573645836459364603646136462364633646436465364663646736468364693647036471364723647336474364753647636477364783647936480364813648236483 | /** * @license * Copyright 2010-2021 Three.js Authors * SPDX-License-Identifier: MIT */(function (global, factory) {	typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :	typeof define === 'function' && define.amd ? define(['exports'], factory) :	(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {}));})(this, (function (exports) { 'use strict';	const REVISION = '135';	const MOUSE = {		LEFT: 0,		MIDDLE: 1,		RIGHT: 2,		ROTATE: 0,		DOLLY: 1,		PAN: 2	};	const TOUCH = {		ROTATE: 0,		PAN: 1,		DOLLY_PAN: 2,		DOLLY_ROTATE: 3	};	const CullFaceNone = 0;	const CullFaceBack = 1;	const CullFaceFront = 2;	const CullFaceFrontBack = 3;	const BasicShadowMap = 0;	const PCFShadowMap = 1;	const PCFSoftShadowMap = 2;	const VSMShadowMap = 3;	const FrontSide = 0;	const BackSide = 1;	const DoubleSide = 2;	const FlatShading = 1;	const SmoothShading = 2;	const NoBlending = 0;	const NormalBlending = 1;	const AdditiveBlending = 2;	const SubtractiveBlending = 3;	const MultiplyBlending = 4;	const CustomBlending = 5;	const AddEquation = 100;	const SubtractEquation = 101;	const ReverseSubtractEquation = 102;	const MinEquation = 103;	const MaxEquation = 104;	const ZeroFactor = 200;	const OneFactor = 201;	const SrcColorFactor = 202;	const OneMinusSrcColorFactor = 203;	const SrcAlphaFactor = 204;	const OneMinusSrcAlphaFactor = 205;	const DstAlphaFactor = 206;	const OneMinusDstAlphaFactor = 207;	const DstColorFactor = 208;	const OneMinusDstColorFactor = 209;	const SrcAlphaSaturateFactor = 210;	const NeverDepth = 0;	const AlwaysDepth = 1;	const LessDepth = 2;	const LessEqualDepth = 3;	const EqualDepth = 4;	const GreaterEqualDepth = 5;	const GreaterDepth = 6;	const NotEqualDepth = 7;	const MultiplyOperation = 0;	const MixOperation = 1;	const AddOperation = 2;	const NoToneMapping = 0;	const LinearToneMapping = 1;	const ReinhardToneMapping = 2;	const CineonToneMapping = 3;	const ACESFilmicToneMapping = 4;	const CustomToneMapping = 5;	const UVMapping = 300;	const CubeReflectionMapping = 301;	const CubeRefractionMapping = 302;	const EquirectangularReflectionMapping = 303;	const EquirectangularRefractionMapping = 304;	const CubeUVReflectionMapping = 306;	const CubeUVRefractionMapping = 307;	const RepeatWrapping = 1000;	const ClampToEdgeWrapping = 1001;	const MirroredRepeatWrapping = 1002;	const NearestFilter = 1003;	const NearestMipmapNearestFilter = 1004;	const NearestMipMapNearestFilter = 1004;	const NearestMipmapLinearFilter = 1005;	const NearestMipMapLinearFilter = 1005;	const LinearFilter = 1006;	const LinearMipmapNearestFilter = 1007;	const LinearMipMapNearestFilter = 1007;	const LinearMipmapLinearFilter = 1008;	const LinearMipMapLinearFilter = 1008;	const UnsignedByteType = 1009;	const ByteType = 1010;	const ShortType = 1011;	const UnsignedShortType = 1012;	const IntType = 1013;	const UnsignedIntType = 1014;	const FloatType = 1015;	const HalfFloatType = 1016;	const UnsignedShort4444Type = 1017;	const UnsignedShort5551Type = 1018;	const UnsignedShort565Type = 1019;	const UnsignedInt248Type = 1020;	const AlphaFormat = 1021;	const RGBFormat = 1022;	const RGBAFormat = 1023;	const LuminanceFormat = 1024;	const LuminanceAlphaFormat = 1025;	const RGBEFormat = RGBAFormat;	const DepthFormat = 1026;	const DepthStencilFormat = 1027;	const RedFormat = 1028;	const RedIntegerFormat = 1029;	const RGFormat = 1030;	const RGIntegerFormat = 1031;	const RGBIntegerFormat = 1032;	const RGBAIntegerFormat = 1033;	const RGB_S3TC_DXT1_Format = 33776;	const RGBA_S3TC_DXT1_Format = 33777;	const RGBA_S3TC_DXT3_Format = 33778;	const RGBA_S3TC_DXT5_Format = 33779;	const RGB_PVRTC_4BPPV1_Format = 35840;	const RGB_PVRTC_2BPPV1_Format = 35841;	const RGBA_PVRTC_4BPPV1_Format = 35842;	const RGBA_PVRTC_2BPPV1_Format = 35843;	const RGB_ETC1_Format = 36196;	const RGB_ETC2_Format = 37492;	const RGBA_ETC2_EAC_Format = 37496;	const RGBA_ASTC_4x4_Format = 37808;	const RGBA_ASTC_5x4_Format = 37809;	const RGBA_ASTC_5x5_Format = 37810;	const RGBA_ASTC_6x5_Format = 37811;	const RGBA_ASTC_6x6_Format = 37812;	const RGBA_ASTC_8x5_Format = 37813;	const RGBA_ASTC_8x6_Format = 37814;	const RGBA_ASTC_8x8_Format = 37815;	const RGBA_ASTC_10x5_Format = 37816;	const RGBA_ASTC_10x6_Format = 37817;	const RGBA_ASTC_10x8_Format = 37818;	const RGBA_ASTC_10x10_Format = 37819;	const RGBA_ASTC_12x10_Format = 37820;	const RGBA_ASTC_12x12_Format = 37821;	const RGBA_BPTC_Format = 36492;	const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;	const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;	const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;	const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;	const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;	const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;	const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;	const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;	const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;	const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;	const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;	const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;	const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;	const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;	const LoopOnce = 2200;	const LoopRepeat = 2201;	const LoopPingPong = 2202;	const InterpolateDiscrete = 2300;	const InterpolateLinear = 2301;	const InterpolateSmooth = 2302;	const ZeroCurvatureEnding = 2400;	const ZeroSlopeEnding = 2401;	const WrapAroundEnding = 2402;	const NormalAnimationBlendMode = 2500;	const AdditiveAnimationBlendMode = 2501;	const TrianglesDrawMode = 0;	const TriangleStripDrawMode = 1;	const TriangleFanDrawMode = 2;	const LinearEncoding = 3000;	const sRGBEncoding = 3001;	const GammaEncoding = 3007;	const RGBEEncoding = 3002;	const RGBM7Encoding = 3004;	const RGBM16Encoding = 3005;	const RGBDEncoding = 3006;	const BasicDepthPacking = 3200;	const RGBADepthPacking = 3201;	const TangentSpaceNormalMap = 0;	const ObjectSpaceNormalMap = 1;	const ZeroStencilOp = 0;	const KeepStencilOp = 7680;	const ReplaceStencilOp = 7681;	const IncrementStencilOp = 7682;	const DecrementStencilOp = 7683;	const IncrementWrapStencilOp = 34055;	const DecrementWrapStencilOp = 34056;	const InvertStencilOp = 5386;	const NeverStencilFunc = 512;	const LessStencilFunc = 513;	const EqualStencilFunc = 514;	const LessEqualStencilFunc = 515;	const GreaterStencilFunc = 516;	const NotEqualStencilFunc = 517;	const GreaterEqualStencilFunc = 518;	const AlwaysStencilFunc = 519;	const StaticDrawUsage = 35044;	const DynamicDrawUsage = 35048;	const StreamDrawUsage = 35040;	const StaticReadUsage = 35045;	const DynamicReadUsage = 35049;	const StreamReadUsage = 35041;	const StaticCopyUsage = 35046;	const DynamicCopyUsage = 35050;	const StreamCopyUsage = 35042;	const GLSL1 = '100';	const GLSL3 = '300 es';	/**	 * https://github.com/mrdoob/eventdispatcher.js/	 */	class EventDispatcher {		addEventListener(type, listener) {			if (this._listeners === undefined) this._listeners = {};			const listeners = this._listeners;			if (listeners[type] === undefined) {				listeners[type] = [];			}			if (listeners[type].indexOf(listener) === -1) {				listeners[type].push(listener);			}		}		hasEventListener(type, listener) {			if (this._listeners === undefined) return false;			const listeners = this._listeners;			return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1;		}		removeEventListener(type, listener) {			if (this._listeners === undefined) return;			const listeners = this._listeners;			const listenerArray = listeners[type];			if (listenerArray !== undefined) {				const index = listenerArray.indexOf(listener);				if (index !== -1) {					listenerArray.splice(index, 1);				}			}		}		dispatchEvent(event) {			if (this._listeners === undefined) return;			const listeners = this._listeners;			const listenerArray = listeners[event.type];			if (listenerArray !== undefined) {				event.target = this; // Make a copy, in case listeners are removed while iterating.				const array = listenerArray.slice(0);				for (let i = 0, l = array.length; i < l; i++) {					array[i].call(this, event);				}				event.target = null;			}		}	}	const _lut = [];	for (let i = 0; i < 256; i++) {		_lut[i] = (i < 16 ? '0' : '') + i.toString(16);	}	let _seed = 1234567;	const DEG2RAD = Math.PI / 180;	const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136	function generateUUID() {		const d0 = Math.random() * 0xffffffff | 0;		const d1 = Math.random() * 0xffffffff | 0;		const d2 = Math.random() * 0xffffffff | 0;		const d3 = Math.random() * 0xffffffff | 0;		const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space.		return uuid.toUpperCase();	}	function clamp(value, min, max) {		return Math.max(min, Math.min(max, value));	} // compute euclidian modulo of m % n	// https://en.wikipedia.org/wiki/Modulo_operation	function euclideanModulo(n, m) {		return (n % m + m) % m;	} // Linear mapping from range <a1, a2> to range <b1, b2>	function mapLinear(x, a1, a2, b1, b2) {		return b1 + (x - a1) * (b2 - b1) / (a2 - a1);	} // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/	function inverseLerp(x, y, value) {		if (x !== y) {			return (value - x) / (y - x);		} else {			return 0;		}	} // https://en.wikipedia.org/wiki/Linear_interpolation	function lerp(x, y, t) {		return (1 - t) * x + t * y;	} // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/	function damp(x, y, lambda, dt) {		return lerp(x, y, 1 - Math.exp(-lambda * dt));	} // https://www.desmos.com/calculator/vcsjnyz7x4	function pingpong(x, length = 1) {		return length - Math.abs(euclideanModulo(x, length * 2) - length);	} // http://en.wikipedia.org/wiki/Smoothstep	function smoothstep(x, min, max) {		if (x <= min) return 0;		if (x >= max) return 1;		x = (x - min) / (max - min);		return x * x * (3 - 2 * x);	}	function smootherstep(x, min, max) {		if (x <= min) return 0;		if (x >= max) return 1;		x = (x - min) / (max - min);		return x * x * x * (x * (x * 6 - 15) + 10);	} // Random integer from <low, high> interval	function randInt(low, high) {		return low + Math.floor(Math.random() * (high - low + 1));	} // Random float from <low, high> interval	function randFloat(low, high) {		return low + Math.random() * (high - low);	} // Random float from <-range/2, range/2> interval	function randFloatSpread(range) {		return range * (0.5 - Math.random());	} // Deterministic pseudo-random float in the interval [ 0, 1 ]	function seededRandom(s) {		if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm		_seed = _seed * 16807 % 2147483647;		return (_seed - 1) / 2147483646;	}	function degToRad(degrees) {		return degrees * DEG2RAD;	}	function radToDeg(radians) {		return radians * RAD2DEG;	}	function isPowerOfTwo(value) {		return (value & value - 1) === 0 && value !== 0;	}	function ceilPowerOfTwo(value) {		return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2));	}	function floorPowerOfTwo(value) {		return Math.pow(2, Math.floor(Math.log(value) / Math.LN2));	}	function setQuaternionFromProperEuler(q, a, b, c, order) {		// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles		// rotations are applied to the axes in the order specified by 'order'		// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'		// angles are in radians		const cos = Math.cos;		const sin = Math.sin;		const c2 = cos(b / 2);		const s2 = sin(b / 2);		const c13 = cos((a + c) / 2);		const s13 = sin((a + c) / 2);		const c1_3 = cos((a - c) / 2);		const s1_3 = sin((a - c) / 2);		const c3_1 = cos((c - a) / 2);		const s3_1 = sin((c - a) / 2);		switch (order) {			case 'XYX':				q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13);				break;			case 'YZY':				q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13);				break;			case 'ZXZ':				q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13);				break;			case 'XZX':				q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13);				break;			case 'YXY':				q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13);				break;			case 'ZYZ':				q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13);				break;			default:				console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order);		}	}	var MathUtils = /*#__PURE__*/Object.freeze({		__proto__: null,		DEG2RAD: DEG2RAD,		RAD2DEG: RAD2DEG,		generateUUID: generateUUID,		clamp: clamp,		euclideanModulo: euclideanModulo,		mapLinear: mapLinear,		inverseLerp: inverseLerp,		lerp: lerp,		damp: damp,		pingpong: pingpong,		smoothstep: smoothstep,		smootherstep: smootherstep,		randInt: randInt,		randFloat: randFloat,		randFloatSpread: randFloatSpread,		seededRandom: seededRandom,		degToRad: degToRad,		radToDeg: radToDeg,		isPowerOfTwo: isPowerOfTwo,		ceilPowerOfTwo: ceilPowerOfTwo,		floorPowerOfTwo: floorPowerOfTwo,		setQuaternionFromProperEuler: setQuaternionFromProperEuler	});	class Vector2 {		constructor(x = 0, y = 0) {			this.x = x;			this.y = y;		}		get width() {			return this.x;		}		set width(value) {			this.x = value;		}		get height() {			return this.y;		}		set height(value) {			this.y = value;		}		set(x, y) {			this.x = x;			this.y = y;			return this;		}		setScalar(scalar) {			this.x = scalar;			this.y = scalar;			return this;		}		setX(x) {			this.x = x;			return this;		}		setY(y) {			this.y = y;			return this;		}		setComponent(index, value) {			switch (index) {				case 0:					this.x = value;					break;				case 1:					this.y = value;					break;				default:					throw new Error('index is out of range: ' + index);			}			return this;		}		getComponent(index) {			switch (index) {				case 0:					return this.x;				case 1:					return this.y;				default:					throw new Error('index is out of range: ' + index);			}		}		clone() {			return new this.constructor(this.x, this.y);		}		copy(v) {			this.x = v.x;			this.y = v.y;			return this;		}		add(v, w) {			if (w !== undefined) {				console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');				return this.addVectors(v, w);			}			this.x += v.x;			this.y += v.y;			return this;		}		addScalar(s) {			this.x += s;			this.y += s;			return this;		}		addVectors(a, b) {			this.x = a.x + b.x;			this.y = a.y + b.y;			return this;		}		addScaledVector(v, s) {			this.x += v.x * s;			this.y += v.y * s;			return this;		}		sub(v, w) {			if (w !== undefined) {				console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');				return this.subVectors(v, w);			}			this.x -= v.x;			this.y -= v.y;			return this;		}		subScalar(s) {			this.x -= s;			this.y -= s;			return this;		}		subVectors(a, b) {			this.x = a.x - b.x;			this.y = a.y - b.y;			return this;		}		multiply(v) {			this.x *= v.x;			this.y *= v.y;			return this;		}		multiplyScalar(scalar) {			this.x *= scalar;			this.y *= scalar;			return this;		}		divide(v) {			this.x /= v.x;			this.y /= v.y;			return this;		}		divideScalar(scalar) {			return this.multiplyScalar(1 / scalar);		}		applyMatrix3(m) {			const x = this.x,						y = this.y;			const e = m.elements;			this.x = e[0] * x + e[3] * y + e[6];			this.y = e[1] * x + e[4] * y + e[7];			return this;		}		min(v) {			this.x = Math.min(this.x, v.x);			this.y = Math.min(this.y, v.y);			return this;		}		max(v) {			this.x = Math.max(this.x, v.x);			this.y = Math.max(this.y, v.y);			return this;		}		clamp(min, max) {			// assumes min < max, componentwise			this.x = Math.max(min.x, Math.min(max.x, this.x));			this.y = Math.max(min.y, Math.min(max.y, this.y));			return this;		}		clampScalar(minVal, maxVal) {			this.x = Math.max(minVal, Math.min(maxVal, this.x));			this.y = Math.max(minVal, Math.min(maxVal, this.y));			return this;		}		clampLength(min, max) {			const length = this.length();			return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));		}		floor() {			this.x = Math.floor(this.x);			this.y = Math.floor(this.y);			return this;		}		ceil() {			this.x = Math.ceil(this.x);			this.y = Math.ceil(this.y);			return this;		}		round() {			this.x = Math.round(this.x);			this.y = Math.round(this.y);			return this;		}		roundToZero() {			this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);			this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);			return this;		}		negate() {			this.x = -this.x;			this.y = -this.y;			return this;		}		dot(v) {			return this.x * v.x + this.y * v.y;		}		cross(v) {			return this.x * v.y - this.y * v.x;		}		lengthSq() {			return this.x * this.x + this.y * this.y;		}		length() {			return Math.sqrt(this.x * this.x + this.y * this.y);		}		manhattanLength() {			return Math.abs(this.x) + Math.abs(this.y);		}		normalize() {			return this.divideScalar(this.length() || 1);		}		angle() {			// computes the angle in radians with respect to the positive x-axis			const angle = Math.atan2(-this.y, -this.x) + Math.PI;			return angle;		}		distanceTo(v) {			return Math.sqrt(this.distanceToSquared(v));		}		distanceToSquared(v) {			const dx = this.x - v.x,						dy = this.y - v.y;			return dx * dx + dy * dy;		}		manhattanDistanceTo(v) {			return Math.abs(this.x - v.x) + Math.abs(this.y - v.y);		}		setLength(length) {			return this.normalize().multiplyScalar(length);		}		lerp(v, alpha) {			this.x += (v.x - this.x) * alpha;			this.y += (v.y - this.y) * alpha;			return this;		}		lerpVectors(v1, v2, alpha) {			this.x = v1.x + (v2.x - v1.x) * alpha;			this.y = v1.y + (v2.y - v1.y) * alpha;			return this;		}		equals(v) {			return v.x === this.x && v.y === this.y;		}		fromArray(array, offset = 0) {			this.x = array[offset];			this.y = array[offset + 1];			return this;		}		toArray(array = [], offset = 0) {			array[offset] = this.x;			array[offset + 1] = this.y;			return array;		}		fromBufferAttribute(attribute, index, offset) {			if (offset !== undefined) {				console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().');			}			this.x = attribute.getX(index);			this.y = attribute.getY(index);			return this;		}		rotateAround(center, angle) {			const c = Math.cos(angle),						s = Math.sin(angle);			const x = this.x - center.x;			const y = this.y - center.y;			this.x = x * c - y * s + center.x;			this.y = x * s + y * c + center.y;			return this;		}		random() {			this.x = Math.random();			this.y = Math.random();			return this;		}		*[Symbol.iterator]() {			yield this.x;			yield this.y;		}	}	Vector2.prototype.isVector2 = true;	class Matrix3 {		constructor() {			this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];			if (arguments.length > 0) {				console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.');			}		}		set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {			const te = this.elements;			te[0] = n11;			te[1] = n21;			te[2] = n31;			te[3] = n12;			te[4] = n22;			te[5] = n32;			te[6] = n13;			te[7] = n23;			te[8] = n33;			return this;		}		identity() {			this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);			return this;		}		copy(m) {			const te = this.elements;			const me = m.elements;			te[0] = me[0];			te[1] = me[1];			te[2] = me[2];			te[3] = me[3];			te[4] = me[4];			te[5] = me[5];			te[6] = me[6];			te[7] = me[7];			te[8] = me[8];			return this;		}		extractBasis(xAxis, yAxis, zAxis) {			xAxis.setFromMatrix3Column(this, 0);			yAxis.setFromMatrix3Column(this, 1);			zAxis.setFromMatrix3Column(this, 2);			return this;		}		setFromMatrix4(m) {			const me = m.elements;			this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);			return this;		}		multiply(m) {			return this.multiplyMatrices(this, m);		}		premultiply(m) {			return this.multiplyMatrices(m, this);		}		multiplyMatrices(a, b) {			const ae = a.elements;			const be = b.elements;			const te = this.elements;			const a11 = ae[0],						a12 = ae[3],						a13 = ae[6];			const a21 = ae[1],						a22 = ae[4],						a23 = ae[7];			const a31 = ae[2],						a32 = ae[5],						a33 = ae[8];			const b11 = be[0],						b12 = be[3],						b13 = be[6];			const b21 = be[1],						b22 = be[4],						b23 = be[7];			const b31 = be[2],						b32 = be[5],						b33 = be[8];			te[0] = a11 * b11 + a12 * b21 + a13 * b31;			te[3] = a11 * b12 + a12 * b22 + a13 * b32;			te[6] = a11 * b13 + a12 * b23 + a13 * b33;			te[1] = a21 * b11 + a22 * b21 + a23 * b31;			te[4] = a21 * b12 + a22 * b22 + a23 * b32;			te[7] = a21 * b13 + a22 * b23 + a23 * b33;			te[2] = a31 * b11 + a32 * b21 + a33 * b31;			te[5] = a31 * b12 + a32 * b22 + a33 * b32;			te[8] = a31 * b13 + a32 * b23 + a33 * b33;			return this;		}		multiplyScalar(s) {			const te = this.elements;			te[0] *= s;			te[3] *= s;			te[6] *= s;			te[1] *= s;			te[4] *= s;			te[7] *= s;			te[2] *= s;			te[5] *= s;			te[8] *= s;			return this;		}		determinant() {			const te = this.elements;			const a = te[0],						b = te[1],						c = te[2],						d = te[3],						e = te[4],						f = te[5],						g = te[6],						h = te[7],						i = te[8];			return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;		}		invert() {			const te = this.elements,						n11 = te[0],						n21 = te[1],						n31 = te[2],						n12 = te[3],						n22 = te[4],						n32 = te[5],						n13 = te[6],						n23 = te[7],						n33 = te[8],						t11 = n33 * n22 - n32 * n23,						t12 = n32 * n13 - n33 * n12,						t13 = n23 * n12 - n22 * n13,						det = n11 * t11 + n21 * t12 + n31 * t13;			if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);			const detInv = 1 / det;			te[0] = t11 * detInv;			te[1] = (n31 * n23 - n33 * n21) * detInv;			te[2] = (n32 * n21 - n31 * n22) * detInv;			te[3] = t12 * detInv;			te[4] = (n33 * n11 - n31 * n13) * detInv;			te[5] = (n31 * n12 - n32 * n11) * detInv;			te[6] = t13 * detInv;			te[7] = (n21 * n13 - n23 * n11) * detInv;			te[8] = (n22 * n11 - n21 * n12) * detInv;			return this;		}		transpose() {			let tmp;			const m = this.elements;			tmp = m[1];			m[1] = m[3];			m[3] = tmp;			tmp = m[2];			m[2] = m[6];			m[6] = tmp;			tmp = m[5];			m[5] = m[7];			m[7] = tmp;			return this;		}		getNormalMatrix(matrix4) {			return this.setFromMatrix4(matrix4).invert().transpose();		}		transposeIntoArray(r) {			const m = this.elements;			r[0] = m[0];			r[1] = m[3];			r[2] = m[6];			r[3] = m[1];			r[4] = m[4];			r[5] = m[7];			r[6] = m[2];			r[7] = m[5];			r[8] = m[8];			return this;		}		setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {			const c = Math.cos(rotation);			const s = Math.sin(rotation);			this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1);			return this;		}		scale(sx, sy) {			const te = this.elements;			te[0] *= sx;			te[3] *= sx;			te[6] *= sx;			te[1] *= sy;			te[4] *= sy;			te[7] *= sy;			return this;		}		rotate(theta) {			const c = Math.cos(theta);			const s = Math.sin(theta);			const te = this.elements;			const a11 = te[0],						a12 = te[3],						a13 = te[6];			const a21 = te[1],						a22 = te[4],						a23 = te[7];			te[0] = c * a11 + s * a21;			te[3] = c * a12 + s * a22;			te[6] = c * a13 + s * a23;			te[1] = -s * a11 + c * a21;			te[4] = -s * a12 + c * a22;			te[7] = -s * a13 + c * a23;			return this;		}		translate(tx, ty) {			const te = this.elements;			te[0] += tx * te[2];			te[3] += tx * te[5];			te[6] += tx * te[8];			te[1] += ty * te[2];			te[4] += ty * te[5];			te[7] += ty * te[8];			return this;		}		equals(matrix) {			const te = this.elements;			const me = matrix.elements;			for (let i = 0; i < 9; i++) {				if (te[i] !== me[i]) return false;			}			return true;		}		fromArray(array, offset = 0) {			for (let i = 0; i < 9; i++) {				this.elements[i] = array[i + offset];			}			return this;		}		toArray(array = [], offset = 0) {			const te = this.elements;			array[offset] = te[0];			array[offset + 1] = te[1];			array[offset + 2] = te[2];			array[offset + 3] = te[3];			array[offset + 4] = te[4];			array[offset + 5] = te[5];			array[offset + 6] = te[6];			array[offset + 7] = te[7];			array[offset + 8] = te[8];			return array;		}		clone() {			return new this.constructor().fromArray(this.elements);		}	}	Matrix3.prototype.isMatrix3 = true;	function arrayMax(array) {		if (array.length === 0) return -Infinity;		let max = array[0];		for (let i = 1, l = array.length; i < l; ++i) {			if (array[i] > max) max = array[i];		}		return max;	}	const TYPED_ARRAYS = {		Int8Array: Int8Array,		Uint8Array: Uint8Array,		Uint8ClampedArray: Uint8ClampedArray,		Int16Array: Int16Array,		Uint16Array: Uint16Array,		Int32Array: Int32Array,		Uint32Array: Uint32Array,		Float32Array: Float32Array,		Float64Array: Float64Array	};	function getTypedArray(type, buffer) {		return new TYPED_ARRAYS[type](buffer);	}	function createElementNS(name) {		return document.createElementNS('http://www.w3.org/1999/xhtml', name);	}	/**		* cyrb53 hash for string from: https://stackoverflow.com/a/52171480		*		* Public Domain, @bryc - https://stackoverflow.com/users/815680/bryc		*		* It is roughly similar to the well-known MurmurHash/xxHash algorithms. It uses a combination		* of multiplication and Xorshift to generate the hash, but not as thorough. As a result it's		* faster than either would be in JavaScript and significantly simpler to implement. Keep in		* mind this is not a secure algorithm, if privacy/security is a concern, this is not for you.		*		* @param {string} str		* @param {number} seed, default 0		* @returns number		*/	function hashString(str, seed = 0) {		let h1 = 0xdeadbeef ^ seed,				h2 = 0x41c6ce57 ^ seed;		for (let i = 0, ch; i < str.length; i++) {			ch = str.charCodeAt(i);			h1 = Math.imul(h1 ^ ch, 2654435761);			h2 = Math.imul(h2 ^ ch, 1597334677);		}		h1 = Math.imul(h1 ^ h1 >>> 16, 2246822507) ^ Math.imul(h2 ^ h2 >>> 13, 3266489909);		h2 = Math.imul(h2 ^ h2 >>> 16, 2246822507) ^ Math.imul(h1 ^ h1 >>> 13, 3266489909);		return 4294967296 * (2097151 & h2) + (h1 >>> 0);	}	let _canvas;	class ImageUtils {		static getDataURL(image) {			if (/^data:/i.test(image.src)) {				return image.src;			}			if (typeof HTMLCanvasElement == 'undefined') {				return image.src;			}			let canvas;			if (image instanceof HTMLCanvasElement) {				canvas = image;			} else {				if (_canvas === undefined) _canvas = createElementNS('canvas');				_canvas.width = image.width;				_canvas.height = image.height;				const context = _canvas.getContext('2d');				if (image instanceof ImageData) {					context.putImageData(image, 0, 0);				} else {					context.drawImage(image, 0, 0, image.width, image.height);				}				canvas = _canvas;			}			if (canvas.width > 2048 || canvas.height > 2048) {				console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image);				return canvas.toDataURL('image/jpeg', 0.6);			} else {				return canvas.toDataURL('image/png');			}		}	}	let textureId = 0;	class Texture extends EventDispatcher {		constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) {			super();			Object.defineProperty(this, 'id', {				value: textureId++			});			this.uuid = generateUUID();			this.name = '';			this.image = image;			this.mipmaps = [];			this.mapping = mapping;			this.wrapS = wrapS;			this.wrapT = wrapT;			this.magFilter = magFilter;			this.minFilter = minFilter;			this.anisotropy = anisotropy;			this.format = format;			this.internalFormat = null;			this.type = type;			this.offset = new Vector2(0, 0);			this.repeat = new Vector2(1, 1);			this.center = new Vector2(0, 0);			this.rotation = 0;			this.matrixAutoUpdate = true;			this.matrix = new Matrix3();			this.generateMipmaps = true;			this.premultiplyAlpha = false;			this.flipY = true;			this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)			// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.			//			// Also changing the encoding after already used by a Material will not automatically make the Material			// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.			this.encoding = encoding;			this.userData = {};			this.version = 0;			this.onUpdate = null;			this.isRenderTargetTexture = false;		}		updateMatrix() {			this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y);		}		clone() {			return new this.constructor().copy(this);		}		copy(source) {			this.name = source.name;			this.image = source.image;			this.mipmaps = source.mipmaps.slice(0);			this.mapping = source.mapping;			this.wrapS = source.wrapS;			this.wrapT = source.wrapT;			this.magFilter = source.magFilter;			this.minFilter = source.minFilter;			this.anisotropy = source.anisotropy;			this.format = source.format;			this.internalFormat = source.internalFormat;			this.type = source.type;			this.offset.copy(source.offset);			this.repeat.copy(source.repeat);			this.center.copy(source.center);			this.rotation = source.rotation;			this.matrixAutoUpdate = source.matrixAutoUpdate;			this.matrix.copy(source.matrix);			this.generateMipmaps = source.generateMipmaps;			this.premultiplyAlpha = source.premultiplyAlpha;			this.flipY = source.flipY;			this.unpackAlignment = source.unpackAlignment;			this.encoding = source.encoding;			this.userData = JSON.parse(JSON.stringify(source.userData));			return this;		}		toJSON(meta) {			const isRootObject = meta === undefined || typeof meta === 'string';			if (!isRootObject && meta.textures[this.uuid] !== undefined) {				return meta.textures[this.uuid];			}			const output = {				metadata: {					version: 4.5,					type: 'Texture',					generator: 'Texture.toJSON'				},				uuid: this.uuid,				name: this.name,				mapping: this.mapping,				repeat: [this.repeat.x, this.repeat.y],				offset: [this.offset.x, this.offset.y],				center: [this.center.x, this.center.y],				rotation: this.rotation,				wrap: [this.wrapS, this.wrapT],				format: this.format,				type: this.type,				encoding: this.encoding,				minFilter: this.minFilter,				magFilter: this.magFilter,				anisotropy: this.anisotropy,				flipY: this.flipY,				premultiplyAlpha: this.premultiplyAlpha,				unpackAlignment: this.unpackAlignment			};			if (this.image !== undefined) {				// TODO: Move to THREE.Image				const image = this.image;				if (image.uuid === undefined) {					image.uuid = generateUUID(); // UGH				}				if (!isRootObject && meta.images[image.uuid] === undefined) {					let url;					if (Array.isArray(image)) {						// process array of images e.g. CubeTexture						url = [];						for (let i = 0, l = image.length; i < l; i++) {							// check cube texture with data textures							if (image[i].isDataTexture) {								url.push(serializeImage(image[i].image));							} else {								url.push(serializeImage(image[i]));							}						}					} else {						// process single image						url = serializeImage(image);					}					meta.images[image.uuid] = {						uuid: image.uuid,						url: url					};				}				output.image = image.uuid;			}			if (JSON.stringify(this.userData) !== '{}') output.userData = this.userData;			if (!isRootObject) {				meta.textures[this.uuid] = output;			}			return output;		}		dispose() {			this.dispatchEvent({				type: 'dispose'			});		}		transformUv(uv) {			if (this.mapping !== UVMapping) return uv;			uv.applyMatrix3(this.matrix);			if (uv.x < 0 || uv.x > 1) {				switch (this.wrapS) {					case RepeatWrapping:						uv.x = uv.x - Math.floor(uv.x);						break;					case ClampToEdgeWrapping:						uv.x = uv.x < 0 ? 0 : 1;						break;					case MirroredRepeatWrapping:						if (Math.abs(Math.floor(uv.x) % 2) === 1) {							uv.x = Math.ceil(uv.x) - uv.x;						} else {							uv.x = uv.x - Math.floor(uv.x);						}						break;				}			}			if (uv.y < 0 || uv.y > 1) {				switch (this.wrapT) {					case RepeatWrapping:						uv.y = uv.y - Math.floor(uv.y);						break;					case ClampToEdgeWrapping:						uv.y = uv.y < 0 ? 0 : 1;						break;					case MirroredRepeatWrapping:						if (Math.abs(Math.floor(uv.y) % 2) === 1) {							uv.y = Math.ceil(uv.y) - uv.y;						} else {							uv.y = uv.y - Math.floor(uv.y);						}						break;				}			}			if (this.flipY) {				uv.y = 1 - uv.y;			}			return uv;		}		set needsUpdate(value) {			if (value === true) this.version++;		}	}	Texture.DEFAULT_IMAGE = undefined;	Texture.DEFAULT_MAPPING = UVMapping;	Texture.prototype.isTexture = true;	function serializeImage(image) {		if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {			// default images			return ImageUtils.getDataURL(image);		} else {			if (image.data) {				// images of DataTexture				return {					data: Array.prototype.slice.call(image.data),					width: image.width,					height: image.height,					type: image.data.constructor.name				};			} else {				console.warn('THREE.Texture: Unable to serialize Texture.');				return {};			}		}	}	class Vector4 {		constructor(x = 0, y = 0, z = 0, w = 1) {			this.x = x;			this.y = y;			this.z = z;			this.w = w;		}		get width() {			return this.z;		}		set width(value) {			this.z = value;		}		get height() {			return this.w;		}		set height(value) {			this.w = value;		}		set(x, y, z, w) {			this.x = x;			this.y = y;			this.z = z;			this.w = w;			return this;		}		setScalar(scalar) {			this.x = scalar;			this.y = scalar;			this.z = scalar;			this.w = scalar;			return this;		}		setX(x) {			this.x = x;			return this;		}		setY(y) {			this.y = y;			return this;		}		setZ(z) {			this.z = z;			return this;		}		setW(w) {			this.w = w;			return this;		}		setComponent(index, value) {			switch (index) {				case 0:					this.x = value;					break;				case 1:					this.y = value;					break;				case 2:					this.z = value;					break;				case 3:					this.w = value;					break;				default:					throw new Error('index is out of range: ' + index);			}			return this;		}		getComponent(index) {			switch (index) {				case 0:					return this.x;				case 1:					return this.y;				case 2:					return this.z;				case 3:					return this.w;				default:					throw new Error('index is out of range: ' + index);			}		}		clone() {			return new this.constructor(this.x, this.y, this.z, this.w);		}		copy(v) {			this.x = v.x;			this.y = v.y;			this.z = v.z;			this.w = v.w !== undefined ? v.w : 1;			return this;		}		add(v, w) {			if (w !== undefined) {				console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');				return this.addVectors(v, w);			}			this.x += v.x;			this.y += v.y;			this.z += v.z;			this.w += v.w;			return this;		}		addScalar(s) {			this.x += s;			this.y += s;			this.z += s;			this.w += s;			return this;		}		addVectors(a, b) {			this.x = a.x + b.x;			this.y = a.y + b.y;			this.z = a.z + b.z;			this.w = a.w + b.w;			return this;		}		addScaledVector(v, s) {			this.x += v.x * s;			this.y += v.y * s;			this.z += v.z * s;			this.w += v.w * s;			return this;		}		sub(v, w) {			if (w !== undefined) {				console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');				return this.subVectors(v, w);			}			this.x -= v.x;			this.y -= v.y;			this.z -= v.z;			this.w -= v.w;			return this;		}		subScalar(s) {			this.x -= s;			this.y -= s;			this.z -= s;			this.w -= s;			return this;		}		subVectors(a, b) {			this.x = a.x - b.x;			this.y = a.y - b.y;			this.z = a.z - b.z;			this.w = a.w - b.w;			return this;		}		multiply(v) {			this.x *= v.x;			this.y *= v.y;			this.z *= v.z;			this.w *= v.w;			return this;		}		multiplyScalar(scalar) {			this.x *= scalar;			this.y *= scalar;			this.z *= scalar;			this.w *= scalar;			return this;		}		applyMatrix4(m) {			const x = this.x,						y = this.y,						z = this.z,						w = this.w;			const e = m.elements;			this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;			this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;			this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;			this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;			return this;		}		divideScalar(scalar) {			return this.multiplyScalar(1 / scalar);		}		setAxisAngleFromQuaternion(q) {			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm			// q is assumed to be normalized			this.w = 2 * Math.acos(q.w);			const s = Math.sqrt(1 - q.w * q.w);			if (s < 0.0001) {				this.x = 1;				this.y = 0;				this.z = 0;			} else {				this.x = q.x / s;				this.y = q.y / s;				this.z = q.z / s;			}			return this;		}		setAxisAngleFromRotationMatrix(m) {			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)			let angle, x, y, z; // variables for result			const epsilon = 0.01,						// margin to allow for rounding errors			epsilon2 = 0.1,						// margin to distinguish between 0 and 180 degrees			te = m.elements,						m11 = te[0],						m12 = te[4],						m13 = te[8],						m21 = te[1],						m22 = te[5],						m23 = te[9],						m31 = te[2],						m32 = te[6],						m33 = te[10];			if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) {				// singularity found				// first check for identity matrix which must have +1 for all terms				// in leading diagonal and zero in other terms				if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) {					// this singularity is identity matrix so angle = 0					this.set(1, 0, 0, 0);					return this; // zero angle, arbitrary axis				} // otherwise this singularity is angle = 180				angle = Math.PI;				const xx = (m11 + 1) / 2;				const yy = (m22 + 1) / 2;				const zz = (m33 + 1) / 2;				const xy = (m12 + m21) / 4;				const xz = (m13 + m31) / 4;				const yz = (m23 + m32) / 4;				if (xx > yy && xx > zz) {					// m11 is the largest diagonal term					if (xx < epsilon) {						x = 0;						y = 0.707106781;						z = 0.707106781;					} else {						x = Math.sqrt(xx);						y = xy / x;						z = xz / x;					}				} else if (yy > zz) {					// m22 is the largest diagonal term					if (yy < epsilon) {						x = 0.707106781;						y = 0;						z = 0.707106781;					} else {						y = Math.sqrt(yy);						x = xy / y;						z = yz / y;					}				} else {					// m33 is the largest diagonal term so base result on this					if (zz < epsilon) {						x = 0.707106781;						y = 0.707106781;						z = 0;					} else {						z = Math.sqrt(zz);						x = xz / z;						y = yz / z;					}				}				this.set(x, y, z, angle);				return this; // return 180 deg rotation			} // as we have reached here there are no singularities so we can handle normally			let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize			if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be			// caught by singularity test above, but I've left it in just in case			this.x = (m32 - m23) / s;			this.y = (m13 - m31) / s;			this.z = (m21 - m12) / s;			this.w = Math.acos((m11 + m22 + m33 - 1) / 2);			return this;		}		min(v) {			this.x = Math.min(this.x, v.x);			this.y = Math.min(this.y, v.y);			this.z = Math.min(this.z, v.z);			this.w = Math.min(this.w, v.w);			return this;		}		max(v) {			this.x = Math.max(this.x, v.x);			this.y = Math.max(this.y, v.y);			this.z = Math.max(this.z, v.z);			this.w = Math.max(this.w, v.w);			return this;		}		clamp(min, max) {			// assumes min < max, componentwise			this.x = Math.max(min.x, Math.min(max.x, this.x));			this.y = Math.max(min.y, Math.min(max.y, this.y));			this.z = Math.max(min.z, Math.min(max.z, this.z));			this.w = Math.max(min.w, Math.min(max.w, this.w));			return this;		}		clampScalar(minVal, maxVal) {			this.x = Math.max(minVal, Math.min(maxVal, this.x));			this.y = Math.max(minVal, Math.min(maxVal, this.y));			this.z = Math.max(minVal, Math.min(maxVal, this.z));			this.w = Math.max(minVal, Math.min(maxVal, this.w));			return this;		}		clampLength(min, max) {			const length = this.length();			return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));		}		floor() {			this.x = Math.floor(this.x);			this.y = Math.floor(this.y);			this.z = Math.floor(this.z);			this.w = Math.floor(this.w);			return this;		}		ceil() {			this.x = Math.ceil(this.x);			this.y = Math.ceil(this.y);			this.z = Math.ceil(this.z);			this.w = Math.ceil(this.w);			return this;		}		round() {			this.x = Math.round(this.x);			this.y = Math.round(this.y);			this.z = Math.round(this.z);			this.w = Math.round(this.w);			return this;		}		roundToZero() {			this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);			this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);			this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);			this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w);			return this;		}		negate() {			this.x = -this.x;			this.y = -this.y;			this.z = -this.z;			this.w = -this.w;			return this;		}		dot(v) {			return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;		}		lengthSq() {			return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;		}		length() {			return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);		}		manhattanLength() {			return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);		}		normalize() {			return this.divideScalar(this.length() || 1);		}		setLength(length) {			return this.normalize().multiplyScalar(length);		}		lerp(v, alpha) {			this.x += (v.x - this.x) * alpha;			this.y += (v.y - this.y) * alpha;			this.z += (v.z - this.z) * alpha;			this.w += (v.w - this.w) * alpha;			return this;		}		lerpVectors(v1, v2, alpha) {			this.x = v1.x + (v2.x - v1.x) * alpha;			this.y = v1.y + (v2.y - v1.y) * alpha;			this.z = v1.z + (v2.z - v1.z) * alpha;			this.w = v1.w + (v2.w - v1.w) * alpha;			return this;		}		equals(v) {			return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w;		}		fromArray(array, offset = 0) {			this.x = array[offset];			this.y = array[offset + 1];			this.z = array[offset + 2];			this.w = array[offset + 3];			return this;		}		toArray(array = [], offset = 0) {			array[offset] = this.x;			array[offset + 1] = this.y;			array[offset + 2] = this.z;			array[offset + 3] = this.w;			return array;		}		fromBufferAttribute(attribute, index, offset) {			if (offset !== undefined) {				console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');			}			this.x = attribute.getX(index);			this.y = attribute.getY(index);			this.z = attribute.getZ(index);			this.w = attribute.getW(index);			return this;		}		random() {			this.x = Math.random();			this.y = Math.random();			this.z = Math.random();			this.w = Math.random();			return this;		}		*[Symbol.iterator]() {			yield this.x;			yield this.y;			yield this.z;			yield this.w;		}	}	Vector4.prototype.isVector4 = true;	/*	 In options, we can specify:	 * Texture parameters for an auto-generated target texture	 * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers	*/	class WebGLRenderTarget extends EventDispatcher {		constructor(width, height, options = {}) {			super();			this.width = width;			this.height = height;			this.depth = 1;			this.scissor = new Vector4(0, 0, width, height);			this.scissorTest = false;			this.viewport = new Vector4(0, 0, width, height);			this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);			this.texture.isRenderTargetTexture = true;			this.texture.image = {				width: width,				height: height,				depth: 1			};			this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;			this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null;			this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;			this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;			this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;			this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;		}		setTexture(texture) {			texture.image = {				width: this.width,				height: this.height,				depth: this.depth			};			this.texture = texture;		}		setSize(width, height, depth = 1) {			if (this.width !== width || this.height !== height || this.depth !== depth) {				this.width = width;				this.height = height;				this.depth = depth;				this.texture.image.width = width;				this.texture.image.height = height;				this.texture.image.depth = depth;				this.dispose();			}			this.viewport.set(0, 0, width, height);			this.scissor.set(0, 0, width, height);		}		clone() {			return new this.constructor().copy(this);		}		copy(source) {			this.width = source.width;			this.height = source.height;			this.depth = source.depth;			this.viewport.copy(source.viewport);			this.texture = source.texture.clone();			this.texture.image = { ...this.texture.image			}; // See #20328.			this.depthBuffer = source.depthBuffer;			this.stencilBuffer = source.stencilBuffer;			this.depthTexture = source.depthTexture;			return this;		}		dispose() {			this.dispatchEvent({				type: 'dispose'			});		}	}	WebGLRenderTarget.prototype.isWebGLRenderTarget = true;	class WebGLMultipleRenderTargets extends WebGLRenderTarget {		constructor(width, height, count) {			super(width, height);			const texture = this.texture;			this.texture = [];			for (let i = 0; i < count; i++) {				this.texture[i] = texture.clone();			}		}		setSize(width, height, depth = 1) {			if (this.width !== width || this.height !== height || this.depth !== depth) {				this.width = width;				this.height = height;				this.depth = depth;				for (let i = 0, il = this.texture.length; i < il; i++) {					this.texture[i].image.width = width;					this.texture[i].image.height = height;					this.texture[i].image.depth = depth;				}				this.dispose();			}			this.viewport.set(0, 0, width, height);			this.scissor.set(0, 0, width, height);			return this;		}		copy(source) {			this.dispose();			this.width = source.width;			this.height = source.height;			this.depth = source.depth;			this.viewport.set(0, 0, this.width, this.height);			this.scissor.set(0, 0, this.width, this.height);			this.depthBuffer = source.depthBuffer;			this.stencilBuffer = source.stencilBuffer;			this.depthTexture = source.depthTexture;			this.texture.length = 0;			for (let i = 0, il = source.texture.length; i < il; i++) {				this.texture[i] = source.texture[i].clone();			}			return this;		}	}	WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true;	class WebGLMultisampleRenderTarget extends WebGLRenderTarget {		constructor(width, height, options = {}) {			super(width, height, options);			this.samples = 4;			this.ignoreDepthForMultisampleCopy = options.ignoreDepth !== undefined ? options.ignoreDepth : true;			this.useRenderToTexture = options.useRenderToTexture !== undefined ? options.useRenderToTexture : false;			this.useRenderbuffer = this.useRenderToTexture === false;		}		copy(source) {			super.copy.call(this, source);			this.samples = source.samples;			this.useRenderToTexture = source.useRenderToTexture;			this.useRenderbuffer = source.useRenderbuffer;			return this;		}	}	WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true;	class Quaternion {		constructor(x = 0, y = 0, z = 0, w = 1) {			this._x = x;			this._y = y;			this._z = z;			this._w = w;		}		static slerp(qa, qb, qm, t) {			console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.');			return qm.slerpQuaternions(qa, qb, t);		}		static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {			// fuzz-free, array-based Quaternion SLERP operation			let x0 = src0[srcOffset0 + 0],					y0 = src0[srcOffset0 + 1],					z0 = src0[srcOffset0 + 2],					w0 = src0[srcOffset0 + 3];			const x1 = src1[srcOffset1 + 0],						y1 = src1[srcOffset1 + 1],						z1 = src1[srcOffset1 + 2],						w1 = src1[srcOffset1 + 3];			if (t === 0) {				dst[dstOffset + 0] = x0;				dst[dstOffset + 1] = y0;				dst[dstOffset + 2] = z0;				dst[dstOffset + 3] = w0;				return;			}			if (t === 1) {				dst[dstOffset + 0] = x1;				dst[dstOffset + 1] = y1;				dst[dstOffset + 2] = z1;				dst[dstOffset + 3] = w1;				return;			}			if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {				let s = 1 - t;				const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,							dir = cos >= 0 ? 1 : -1,							sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems:				if (sqrSin > Number.EPSILON) {					const sin = Math.sqrt(sqrSin),								len = Math.atan2(sin, cos * dir);					s = Math.sin(s * len) / sin;					t = Math.sin(t * len) / sin;				}				const tDir = t * dir;				x0 = x0 * s + x1 * tDir;				y0 = y0 * s + y1 * tDir;				z0 = z0 * s + z1 * tDir;				w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp:				if (s === 1 - t) {					const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);					x0 *= f;					y0 *= f;					z0 *= f;					w0 *= f;				}			}			dst[dstOffset] = x0;			dst[dstOffset + 1] = y0;			dst[dstOffset + 2] = z0;			dst[dstOffset + 3] = w0;		}		static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {			const x0 = src0[srcOffset0];			const y0 = src0[srcOffset0 + 1];			const z0 = src0[srcOffset0 + 2];			const w0 = src0[srcOffset0 + 3];			const x1 = src1[srcOffset1];			const y1 = src1[srcOffset1 + 1];			const z1 = src1[srcOffset1 + 2];			const w1 = src1[srcOffset1 + 3];			dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;			dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;			dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;			dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;			return dst;		}		get x() {			return this._x;		}		set x(value) {			this._x = value;			this._onChangeCallback();		}		get y() {			return this._y;		}		set y(value) {			this._y = value;			this._onChangeCallback();		}		get z() {			return this._z;		}		set z(value) {			this._z = value;			this._onChangeCallback();		}		get w() {			return this._w;		}		set w(value) {			this._w = value;			this._onChangeCallback();		}		set(x, y, z, w) {			this._x = x;			this._y = y;			this._z = z;			this._w = w;			this._onChangeCallback();			return this;		}		clone() {			return new this.constructor(this._x, this._y, this._z, this._w);		}		copy(quaternion) {			this._x = quaternion.x;			this._y = quaternion.y;			this._z = quaternion.z;			this._w = quaternion.w;			this._onChangeCallback();			return this;		}		setFromEuler(euler, update) {			if (!(euler && euler.isEuler)) {				throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');			}			const x = euler._x,						y = euler._y,						z = euler._z,						order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/			// 	20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/			//	content/SpinCalc.m			const cos = Math.cos;			const sin = Math.sin;			const c1 = cos(x / 2);			const c2 = cos(y / 2);			const c3 = cos(z / 2);			const s1 = sin(x / 2);			const s2 = sin(y / 2);			const s3 = sin(z / 2);			switch (order) {				case 'XYZ':					this._x = s1 * c2 * c3 + c1 * s2 * s3;					this._y = c1 * s2 * c3 - s1 * c2 * s3;					this._z = c1 * c2 * s3 + s1 * s2 * c3;					this._w = c1 * c2 * c3 - s1 * s2 * s3;					break;				case 'YXZ':					this._x = s1 * c2 * c3 + c1 * s2 * s3;					this._y = c1 * s2 * c3 - s1 * c2 * s3;					this._z = c1 * c2 * s3 - s1 * s2 * c3;					this._w = c1 * c2 * c3 + s1 * s2 * s3;					break;				case 'ZXY':					this._x = s1 * c2 * c3 - c1 * s2 * s3;					this._y = c1 * s2 * c3 + s1 * c2 * s3;					this._z = c1 * c2 * s3 + s1 * s2 * c3;					this._w = c1 * c2 * c3 - s1 * s2 * s3;					break;				case 'ZYX':					this._x = s1 * c2 * c3 - c1 * s2 * s3;					this._y = c1 * s2 * c3 + s1 * c2 * s3;					this._z = c1 * c2 * s3 - s1 * s2 * c3;					this._w = c1 * c2 * c3 + s1 * s2 * s3;					break;				case 'YZX':					this._x = s1 * c2 * c3 + c1 * s2 * s3;					this._y = c1 * s2 * c3 + s1 * c2 * s3;					this._z = c1 * c2 * s3 - s1 * s2 * c3;					this._w = c1 * c2 * c3 - s1 * s2 * s3;					break;				case 'XZY':					this._x = s1 * c2 * c3 - c1 * s2 * s3;					this._y = c1 * s2 * c3 - s1 * c2 * s3;					this._z = c1 * c2 * s3 + s1 * s2 * c3;					this._w = c1 * c2 * c3 + s1 * s2 * s3;					break;				default:					console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);			}			if (update !== false) this._onChangeCallback();			return this;		}		setFromAxisAngle(axis, angle) {			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm			// assumes axis is normalized			const halfAngle = angle / 2,						s = Math.sin(halfAngle);			this._x = axis.x * s;			this._y = axis.y * s;			this._z = axis.z * s;			this._w = Math.cos(halfAngle);			this._onChangeCallback();			return this;		}		setFromRotationMatrix(m) {			// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)			const te = m.elements,						m11 = te[0],						m12 = te[4],						m13 = te[8],						m21 = te[1],						m22 = te[5],						m23 = te[9],						m31 = te[2],						m32 = te[6],						m33 = te[10],						trace = m11 + m22 + m33;			if (trace > 0) {				const s = 0.5 / Math.sqrt(trace + 1.0);				this._w = 0.25 / s;				this._x = (m32 - m23) * s;				this._y = (m13 - m31) * s;				this._z = (m21 - m12) * s;			} else if (m11 > m22 && m11 > m33) {				const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);				this._w = (m32 - m23) / s;				this._x = 0.25 * s;				this._y = (m12 + m21) / s;				this._z = (m13 + m31) / s;			} else if (m22 > m33) {				const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);				this._w = (m13 - m31) / s;				this._x = (m12 + m21) / s;				this._y = 0.25 * s;				this._z = (m23 + m32) / s;			} else {				const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);				this._w = (m21 - m12) / s;				this._x = (m13 + m31) / s;				this._y = (m23 + m32) / s;				this._z = 0.25 * s;			}			this._onChangeCallback();			return this;		}		setFromUnitVectors(vFrom, vTo) {			// assumes direction vectors vFrom and vTo are normalized			let r = vFrom.dot(vTo) + 1;			if (r < Number.EPSILON) {				// vFrom and vTo point in opposite directions				r = 0;				if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {					this._x = -vFrom.y;					this._y = vFrom.x;					this._z = 0;					this._w = r;				} else {					this._x = 0;					this._y = -vFrom.z;					this._z = vFrom.y;					this._w = r;				}			} else {				// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3				this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;				this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;				this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;				this._w = r;			}			return this.normalize();		}		angleTo(q) {			return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));		}		rotateTowards(q, step) {			const angle = this.angleTo(q);			if (angle === 0) return this;			const t = Math.min(1, step / angle);			this.slerp(q, t);			return this;		}		identity() {			return this.set(0, 0, 0, 1);		}		invert() {			// quaternion is assumed to have unit length			return this.conjugate();		}		conjugate() {			this._x *= -1;			this._y *= -1;			this._z *= -1;			this._onChangeCallback();			return this;		}		dot(v) {			return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;		}		lengthSq() {			return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;		}		length() {			return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);		}		normalize() {			let l = this.length();			if (l === 0) {				this._x = 0;				this._y = 0;				this._z = 0;				this._w = 1;			} else {				l = 1 / l;				this._x = this._x * l;				this._y = this._y * l;				this._z = this._z * l;				this._w = this._w * l;			}			this._onChangeCallback();			return this;		}		multiply(q, p) {			if (p !== undefined) {				console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');				return this.multiplyQuaternions(q, p);			}			return this.multiplyQuaternions(this, q);		}		premultiply(q) {			return this.multiplyQuaternions(q, this);		}		multiplyQuaternions(a, b) {			// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm			const qax = a._x,						qay = a._y,						qaz = a._z,						qaw = a._w;			const qbx = b._x,						qby = b._y,						qbz = b._z,						qbw = b._w;			this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;			this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;			this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;			this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;			this._onChangeCallback();			return this;		}		slerp(qb, t) {			if (t === 0) return this;			if (t === 1) return this.copy(qb);			const x = this._x,						y = this._y,						z = this._z,						w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/			let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;			if (cosHalfTheta < 0) {				this._w = -qb._w;				this._x = -qb._x;				this._y = -qb._y;				this._z = -qb._z;				cosHalfTheta = -cosHalfTheta;			} else {				this.copy(qb);			}			if (cosHalfTheta >= 1.0) {				this._w = w;				this._x = x;				this._y = y;				this._z = z;				return this;			}			const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;			if (sqrSinHalfTheta <= Number.EPSILON) {				const s = 1 - t;				this._w = s * w + t * this._w;				this._x = s * x + t * this._x;				this._y = s * y + t * this._y;				this._z = s * z + t * this._z;				this.normalize();				this._onChangeCallback();				return this;			}			const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);			const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);			const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,						ratioB = Math.sin(t * halfTheta) / sinHalfTheta;			this._w = w * ratioA + this._w * ratioB;			this._x = x * ratioA + this._x * ratioB;			this._y = y * ratioA + this._y * ratioB;			this._z = z * ratioA + this._z * ratioB;			this._onChangeCallback();			return this;		}		slerpQuaternions(qa, qb, t) {			this.copy(qa).slerp(qb, t);		}		random() {			// Derived from http://planning.cs.uiuc.edu/node198.html			// Note, this source uses w, x, y, z ordering,			// so we swap the order below.			const u1 = Math.random();			const sqrt1u1 = Math.sqrt(1 - u1);			const sqrtu1 = Math.sqrt(u1);			const u2 = 2 * Math.PI * Math.random();			const u3 = 2 * Math.PI * Math.random();			return this.set(sqrt1u1 * Math.cos(u2), sqrtu1 * Math.sin(u3), sqrtu1 * Math.cos(u3), sqrt1u1 * Math.sin(u2));		}		equals(quaternion) {			return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w;		}		fromArray(array, offset = 0) {			this._x = array[offset];			this._y = array[offset + 1];			this._z = array[offset + 2];			this._w = array[offset + 3];			this._onChangeCallback();			return this;		}		toArray(array = [], offset = 0) {			array[offset] = this._x;			array[offset + 1] = this._y;			array[offset + 2] = this._z;			array[offset + 3] = this._w;			return array;		}		fromBufferAttribute(attribute, index) {			this._x = attribute.getX(index);			this._y = attribute.getY(index);			this._z = attribute.getZ(index);			this._w = attribute.getW(index);			return this;		}		_onChange(callback) {			this._onChangeCallback = callback;			return this;		}		_onChangeCallback() {}	}	Quaternion.prototype.isQuaternion = true;	class Vector3 {		constructor(x = 0, y = 0, z = 0) {			this.x = x;			this.y = y;			this.z = z;		}		set(x, y, z) {			if (z === undefined) z = this.z; // sprite.scale.set(x,y)			this.x = x;			this.y = y;			this.z = z;			return this;		}		setScalar(scalar) {			this.x = scalar;			this.y = scalar;			this.z = scalar;			return this;		}		setX(x) {			this.x = x;			return this;		}		setY(y) {			this.y = y;			return this;		}		setZ(z) {			this.z = z;			return this;		}		setComponent(index, value) {			switch (index) {				case 0:					this.x = value;					break;				case 1:					this.y = value;					break;				case 2:					this.z = value;					break;				default:					throw new Error('index is out of range: ' + index);			}			return this;		}		getComponent(index) {			switch (index) {				case 0:					return this.x;				case 1:					return this.y;				case 2:					return this.z;				default:					throw new Error('index is out of range: ' + index);			}		}		clone() {			return new this.constructor(this.x, this.y, this.z);		}		copy(v) {			this.x = v.x;			this.y = v.y;			this.z = v.z;			return this;		}		add(v, w) {			if (w !== undefined) {				console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');				return this.addVectors(v, w);			}			this.x += v.x;			this.y += v.y;			this.z += v.z;			return this;		}		addScalar(s) {			this.x += s;			this.y += s;			this.z += s;			return this;		}		addVectors(a, b) {			this.x = a.x + b.x;			this.y = a.y + b.y;			this.z = a.z + b.z;			return this;		}		addScaledVector(v, s) {			this.x += v.x * s;			this.y += v.y * s;			this.z += v.z * s;			return this;		}		sub(v, w) {			if (w !== undefined) {				console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');				return this.subVectors(v, w);			}			this.x -= v.x;			this.y -= v.y;			this.z -= v.z;			return this;		}		subScalar(s) {			this.x -= s;			this.y -= s;			this.z -= s;			return this;		}		subVectors(a, b) {			this.x = a.x - b.x;			this.y = a.y - b.y;			this.z = a.z - b.z;			return this;		}		multiply(v, w) {			if (w !== undefined) {				console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.');				return this.multiplyVectors(v, w);			}			this.x *= v.x;			this.y *= v.y;			this.z *= v.z;			return this;		}		multiplyScalar(scalar) {			this.x *= scalar;			this.y *= scalar;			this.z *= scalar;			return this;		}		multiplyVectors(a, b) {			this.x = a.x * b.x;			this.y = a.y * b.y;			this.z = a.z * b.z;			return this;		}		applyEuler(euler) {			if (!(euler && euler.isEuler)) {				console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.');			}			return this.applyQuaternion(_quaternion$4.setFromEuler(euler));		}		applyAxisAngle(axis, angle) {			return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle));		}		applyMatrix3(m) {			const x = this.x,						y = this.y,						z = this.z;			const e = m.elements;			this.x = e[0] * x + e[3] * y + e[6] * z;			this.y = e[1] * x + e[4] * y + e[7] * z;			this.z = e[2] * x + e[5] * y + e[8] * z;			return this;		}		applyNormalMatrix(m) {			return this.applyMatrix3(m).normalize();		}		applyMatrix4(m) {			const x = this.x,						y = this.y,						z = this.z;			const e = m.elements;			const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);			this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;			this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;			this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;			return this;		}		applyQuaternion(q) {			const x = this.x,						y = this.y,						z = this.z;			const qx = q.x,						qy = q.y,						qz = q.z,						qw = q.w; // calculate quat * vector			const ix = qw * x + qy * z - qz * y;			const iy = qw * y + qz * x - qx * z;			const iz = qw * z + qx * y - qy * x;			const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat			this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;			this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;			this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;			return this;		}		project(camera) {			return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);		}		unproject(camera) {			return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);		}		transformDirection(m) {			// input: THREE.Matrix4 affine matrix			// vector interpreted as a direction			const x = this.x,						y = this.y,						z = this.z;			const e = m.elements;			this.x = e[0] * x + e[4] * y + e[8] * z;			this.y = e[1] * x + e[5] * y + e[9] * z;			this.z = e[2] * x + e[6] * y + e[10] * z;			return this.normalize();		}		divide(v) {			this.x /= v.x;			this.y /= v.y;			this.z /= v.z;			return this;		}		divideScalar(scalar) {			return this.multiplyScalar(1 / scalar);		}		min(v) {			this.x = Math.min(this.x, v.x);			this.y = Math.min(this.y, v.y);			this.z = Math.min(this.z, v.z);			return this;		}		max(v) {			this.x = Math.max(this.x, v.x);			this.y = Math.max(this.y, v.y);			this.z = Math.max(this.z, v.z);			return this;		}		clamp(min, max) {			// assumes min < max, componentwise			this.x = Math.max(min.x, Math.min(max.x, this.x));			this.y = Math.max(min.y, Math.min(max.y, this.y));			this.z = Math.max(min.z, Math.min(max.z, this.z));			return this;		}		clampScalar(minVal, maxVal) {			this.x = Math.max(minVal, Math.min(maxVal, this.x));			this.y = Math.max(minVal, Math.min(maxVal, this.y));			this.z = Math.max(minVal, Math.min(maxVal, this.z));			return this;		}		clampLength(min, max) {			const length = this.length();			return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));		}		floor() {			this.x = Math.floor(this.x);			this.y = Math.floor(this.y);			this.z = Math.floor(this.z);			return this;		}		ceil() {			this.x = Math.ceil(this.x);			this.y = Math.ceil(this.y);			this.z = Math.ceil(this.z);			return this;		}		round() {			this.x = Math.round(this.x);			this.y = Math.round(this.y);			this.z = Math.round(this.z);			return this;		}		roundToZero() {			this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);			this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);			this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);			return this;		}		negate() {			this.x = -this.x;			this.y = -this.y;			this.z = -this.z;			return this;		}		dot(v) {			return this.x * v.x + this.y * v.y + this.z * v.z;		} // TODO lengthSquared?		lengthSq() {			return this.x * this.x + this.y * this.y + this.z * this.z;		}		length() {			return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);		}		manhattanLength() {			return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);		}		normalize() {			return this.divideScalar(this.length() || 1);		}		setLength(length) {			return this.normalize().multiplyScalar(length);		}		lerp(v, alpha) {			this.x += (v.x - this.x) * alpha;			this.y += (v.y - this.y) * alpha;			this.z += (v.z - this.z) * alpha;			return this;		}		lerpVectors(v1, v2, alpha) {			this.x = v1.x + (v2.x - v1.x) * alpha;			this.y = v1.y + (v2.y - v1.y) * alpha;			this.z = v1.z + (v2.z - v1.z) * alpha;			return this;		}		cross(v, w) {			if (w !== undefined) {				console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.');				return this.crossVectors(v, w);			}			return this.crossVectors(this, v);		}		crossVectors(a, b) {			const ax = a.x,						ay = a.y,						az = a.z;			const bx = b.x,						by = b.y,						bz = b.z;			this.x = ay * bz - az * by;			this.y = az * bx - ax * bz;			this.z = ax * by - ay * bx;			return this;		}		projectOnVector(v) {			const denominator = v.lengthSq();			if (denominator === 0) return this.set(0, 0, 0);			const scalar = v.dot(this) / denominator;			return this.copy(v).multiplyScalar(scalar);		}		projectOnPlane(planeNormal) {			_vector$c.copy(this).projectOnVector(planeNormal);			return this.sub(_vector$c);		}		reflect(normal) {			// reflect incident vector off plane orthogonal to normal			// normal is assumed to have unit length			return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal)));		}		angleTo(v) {			const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());			if (denominator === 0) return Math.PI / 2;			const theta = this.dot(v) / denominator; // clamp, to handle numerical problems			return Math.acos(clamp(theta, -1, 1));		}		distanceTo(v) {			return Math.sqrt(this.distanceToSquared(v));		}		distanceToSquared(v) {			const dx = this.x - v.x,						dy = this.y - v.y,						dz = this.z - v.z;			return dx * dx + dy * dy + dz * dz;		}		manhattanDistanceTo(v) {			return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);		}		setFromSpherical(s) {			return this.setFromSphericalCoords(s.radius, s.phi, s.theta);		}		setFromSphericalCoords(radius, phi, theta) {			const sinPhiRadius = Math.sin(phi) * radius;			this.x = sinPhiRadius * Math.sin(theta);			this.y = Math.cos(phi) * radius;			this.z = sinPhiRadius * Math.cos(theta);			return this;		}		setFromCylindrical(c) {			return this.setFromCylindricalCoords(c.radius, c.theta, c.y);		}		setFromCylindricalCoords(radius, theta, y) {			this.x = radius * Math.sin(theta);			this.y = y;			this.z = radius * Math.cos(theta);			return this;		}		setFromMatrixPosition(m) {			const e = m.elements;			this.x = e[12];			this.y = e[13];			this.z = e[14];			return this;		}		setFromMatrixScale(m) {			const sx = this.setFromMatrixColumn(m, 0).length();			const sy = this.setFromMatrixColumn(m, 1).length();			const sz = this.setFromMatrixColumn(m, 2).length();			this.x = sx;			this.y = sy;			this.z = sz;			return this;		}		setFromMatrixColumn(m, index) {			return this.fromArray(m.elements, index * 4);		}		setFromMatrix3Column(m, index) {			return this.fromArray(m.elements, index * 3);		}		equals(v) {			return v.x === this.x && v.y === this.y && v.z === this.z;		}		fromArray(array, offset = 0) {			this.x = array[offset];			this.y = array[offset + 1];			this.z = array[offset + 2];			return this;		}		toArray(array = [], offset = 0) {			array[offset] = this.x;			array[offset + 1] = this.y;			array[offset + 2] = this.z;			return array;		}		fromBufferAttribute(attribute, index, offset) {			if (offset !== undefined) {				console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().');			}			this.x = attribute.getX(index);			this.y = attribute.getY(index);			this.z = attribute.getZ(index);			return this;		}		random() {			this.x = Math.random();			this.y = Math.random();			this.z = Math.random();			return this;		}		randomDirection() {			// Derived from https://mathworld.wolfram.com/SpherePointPicking.html			const u = (Math.random() - 0.5) * 2;			const t = Math.random() * Math.PI * 2;			const f = Math.sqrt(1 - u ** 2);			this.x = f * Math.cos(t);			this.y = f * Math.sin(t);			this.z = u;			return this;		}		*[Symbol.iterator]() {			yield this.x;			yield this.y;			yield this.z;		}	}	Vector3.prototype.isVector3 = true;	const _vector$c = /*@__PURE__*/new Vector3();	const _quaternion$4 = /*@__PURE__*/new Quaternion();	class Box3 {		constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) {			this.min = min;			this.max = max;		}		set(min, max) {			this.min.copy(min);			this.max.copy(max);			return this;		}		setFromArray(array) {			let minX = +Infinity;			let minY = +Infinity;			let minZ = +Infinity;			let maxX = -Infinity;			let maxY = -Infinity;			let maxZ = -Infinity;			for (let i = 0, l = array.length; i < l; i += 3) {				const x = array[i];				const y = array[i + 1];				const z = array[i + 2];				if (x < minX) minX = x;				if (y < minY) minY = y;				if (z < minZ) minZ = z;				if (x > maxX) maxX = x;				if (y > maxY) maxY = y;				if (z > maxZ) maxZ = z;			}			this.min.set(minX, minY, minZ);			this.max.set(maxX, maxY, maxZ);			return this;		}		setFromBufferAttribute(attribute) {			let minX = +Infinity;			let minY = +Infinity;			let minZ = +Infinity;			let maxX = -Infinity;			let maxY = -Infinity;			let maxZ = -Infinity;			for (let i = 0, l = attribute.count; i < l; i++) {				const x = attribute.getX(i);				const y = attribute.getY(i);				const z = attribute.getZ(i);				if (x < minX) minX = x;				if (y < minY) minY = y;				if (z < minZ) minZ = z;				if (x > maxX) maxX = x;				if (y > maxY) maxY = y;				if (z > maxZ) maxZ = z;			}			this.min.set(minX, minY, minZ);			this.max.set(maxX, maxY, maxZ);			return this;		}		setFromPoints(points) {			this.makeEmpty();			for (let i = 0, il = points.length; i < il; i++) {				this.expandByPoint(points[i]);			}			return this;		}		setFromCenterAndSize(center, size) {			const halfSize = _vector$b.copy(size).multiplyScalar(0.5);			this.min.copy(center).sub(halfSize);			this.max.copy(center).add(halfSize);			return this;		}		setFromObject(object) {			this.makeEmpty();			return this.expandByObject(object);		}		clone() {			return new this.constructor().copy(this);		}		copy(box) {			this.min.copy(box.min);			this.max.copy(box.max);			return this;		}		makeEmpty() {			this.min.x = this.min.y = this.min.z = +Infinity;			this.max.x = this.max.y = this.max.z = -Infinity;			return this;		}		isEmpty() {			// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes			return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z;		}		getCenter(target) {			return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);		}		getSize(target) {			return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min);		}		expandByPoint(point) {			this.min.min(point);			this.max.max(point);			return this;		}		expandByVector(vector) {			this.min.sub(vector);			this.max.add(vector);			return this;		}		expandByScalar(scalar) {			this.min.addScalar(-scalar);			this.max.addScalar(scalar);			return this;		}		expandByObject(object) {			// Computes the world-axis-aligned bounding box of an object (including its children),			// accounting for both the object's, and children's, world transforms			object.updateWorldMatrix(false, false);			const geometry = object.geometry;			if (geometry !== undefined) {				if (geometry.boundingBox === null) {					geometry.computeBoundingBox();				}				_box$3.copy(geometry.boundingBox);				_box$3.applyMatrix4(object.matrixWorld);				this.union(_box$3);			}			const children = object.children;			for (let i = 0, l = children.length; i < l; i++) {				this.expandByObject(children[i]);			}			return this;		}		containsPoint(point) {			return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;		}		containsBox(box) {			return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;		}		getParameter(point, target) {			// This can potentially have a divide by zero if the box			// has a size dimension of 0.			return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z));		}		intersectsBox(box) {			// using 6 splitting planes to rule out intersections.			return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;		}		intersectsSphere(sphere) {			// Find the point on the AABB closest to the sphere center.			this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect.			return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius;		}		intersectsPlane(plane) {			// We compute the minimum and maximum dot product values. If those values			// are on the same side (back or front) of the plane, then there is no intersection.			let min, max;			if (plane.normal.x > 0) {				min = plane.normal.x * this.min.x;				max = plane.normal.x * this.max.x;			} else {				min = plane.normal.x * this.max.x;				max = plane.normal.x * this.min.x;			}			if (plane.normal.y > 0) {				min += plane.normal.y * this.min.y;				max += plane.normal.y * this.max.y;			} else {				min += plane.normal.y * this.max.y;				max += plane.normal.y * this.min.y;			}			if (plane.normal.z > 0) {				min += plane.normal.z * this.min.z;				max += plane.normal.z * this.max.z;			} else {				min += plane.normal.z * this.max.z;				max += plane.normal.z * this.min.z;			}			return min <= -plane.constant && max >= -plane.constant;		}		intersectsTriangle(triangle) {			if (this.isEmpty()) {				return false;			} // compute box center and extents			this.getCenter(_center);			_extents.subVectors(this.max, _center); // translate triangle to aabb origin			_v0$2.subVectors(triangle.a, _center);			_v1$7.subVectors(triangle.b, _center);			_v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle			_f0.subVectors(_v1$7, _v0$2);			_f1.subVectors(_v2$3, _v1$7);			_f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb			// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation			// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)			let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0];			if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {				return false;			} // test 3 face normals from the aabb			axes = [1, 0, 0, 0, 1, 0, 0, 0, 1];			if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {				return false;			} // finally testing the face normal of the triangle			// use already existing triangle edge vectors here			_triangleNormal.crossVectors(_f0, _f1);			axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z];			return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents);		}		clampPoint(point, target) {			return target.copy(point).clamp(this.min, this.max);		}		distanceToPoint(point) {			const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max);			return clampedPoint.sub(point).length();		}		getBoundingSphere(target) {			this.getCenter(target.center);			target.radius = this.getSize(_vector$b).length() * 0.5;			return target;		}		intersect(box) {			this.min.max(box.min);			this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.			if (this.isEmpty()) this.makeEmpty();			return this;		}		union(box) {			this.min.min(box.min);			this.max.max(box.max);			return this;		}		applyMatrix4(matrix) {			// transform of empty box is an empty box.			if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below			_points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000			_points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001			_points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010			_points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011			_points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100			_points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101			_points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110			_points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111			this.setFromPoints(_points);			return this;		}		translate(offset) {			this.min.add(offset);			this.max.add(offset);			return this;		}		equals(box) {			return box.min.equals(this.min) && box.max.equals(this.max);		}	}	Box3.prototype.isBox3 = true;	const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()];	const _vector$b = /*@__PURE__*/new Vector3();	const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices	const _v0$2 = /*@__PURE__*/new Vector3();	const _v1$7 = /*@__PURE__*/new Vector3();	const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors	const _f0 = /*@__PURE__*/new Vector3();	const _f1 = /*@__PURE__*/new Vector3();	const _f2 = /*@__PURE__*/new Vector3();	const _center = /*@__PURE__*/new Vector3();	const _extents = /*@__PURE__*/new Vector3();	const _triangleNormal = /*@__PURE__*/new Vector3();	const _testAxis = /*@__PURE__*/new Vector3();	function satForAxes(axes, v0, v1, v2, extents) {		for (let i = 0, j = axes.length - 3; i <= j; i += 3) {			_testAxis.fromArray(axes, i); // project the aabb onto the seperating axis			const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis			const p0 = v0.dot(_testAxis);			const p1 = v1.dot(_testAxis);			const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r			if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) {				// points of the projected triangle are outside the projected half-length of the aabb				// the axis is seperating and we can exit				return false;			}		}		return true;	}	const _box$2 = /*@__PURE__*/new Box3();	const _v1$6 = /*@__PURE__*/new Vector3();	const _toFarthestPoint = /*@__PURE__*/new Vector3();	const _toPoint = /*@__PURE__*/new Vector3();	class Sphere {		constructor(center = new Vector3(), radius = -1) {			this.center = center;			this.radius = radius;		}		set(center, radius) {			this.center.copy(center);			this.radius = radius;			return this;		}		setFromPoints(points, optionalCenter) {			const center = this.center;			if (optionalCenter !== undefined) {				center.copy(optionalCenter);			} else {				_box$2.setFromPoints(points).getCenter(center);			}			let maxRadiusSq = 0;			for (let i = 0, il = points.length; i < il; i++) {				maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i]));			}			this.radius = Math.sqrt(maxRadiusSq);			return this;		}		copy(sphere) {			this.center.copy(sphere.center);			this.radius = sphere.radius;			return this;		}		isEmpty() {			return this.radius < 0;		}		makeEmpty() {			this.center.set(0, 0, 0);			this.radius = -1;			return this;		}		containsPoint(point) {			return point.distanceToSquared(this.center) <= this.radius * this.radius;		}		distanceToPoint(point) {			return point.distanceTo(this.center) - this.radius;		}		intersectsSphere(sphere) {			const radiusSum = this.radius + sphere.radius;			return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum;		}		intersectsBox(box) {			return box.intersectsSphere(this);		}		intersectsPlane(plane) {			return Math.abs(plane.distanceToPoint(this.center)) <= this.radius;		}		clampPoint(point, target) {			const deltaLengthSq = this.center.distanceToSquared(point);			target.copy(point);			if (deltaLengthSq > this.radius * this.radius) {				target.sub(this.center).normalize();				target.multiplyScalar(this.radius).add(this.center);			}			return target;		}		getBoundingBox(target) {			if (this.isEmpty()) {				// Empty sphere produces empty bounding box				target.makeEmpty();				return target;			}			target.set(this.center, this.center);			target.expandByScalar(this.radius);			return target;		}		applyMatrix4(matrix) {			this.center.applyMatrix4(matrix);			this.radius = this.radius * matrix.getMaxScaleOnAxis();			return this;		}		translate(offset) {			this.center.add(offset);			return this;		}		expandByPoint(point) {			// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671			_toPoint.subVectors(point, this.center);			const lengthSq = _toPoint.lengthSq();			if (lengthSq > this.radius * this.radius) {				const length = Math.sqrt(lengthSq);				const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius,				// and the other half to position. This gives a tighter enclosure, instead of if				// the whole missing distance were just added to radius.				this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length));				this.radius += missingRadiusHalf;			}			return this;		}		union(sphere) {			// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769			// To enclose another sphere into this sphere, we only need to enclose two points:			// 1) Enclose the farthest point on the other sphere into this sphere.			// 2) Enclose the opposite point of the farthest point into this sphere.			_toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius);			this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint));			this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint));			return this;		}		equals(sphere) {			return sphere.center.equals(this.center) && sphere.radius === this.radius;		}		clone() {			return new this.constructor().copy(this);		}	}	const _vector$a = /*@__PURE__*/new Vector3();	const _segCenter = /*@__PURE__*/new Vector3();	const _segDir = /*@__PURE__*/new Vector3();	const _diff = /*@__PURE__*/new Vector3();	const _edge1 = /*@__PURE__*/new Vector3();	const _edge2 = /*@__PURE__*/new Vector3();	const _normal$1 = /*@__PURE__*/new Vector3();	class Ray {		constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) {			this.origin = origin;			this.direction = direction;		}		set(origin, direction) {			this.origin.copy(origin);			this.direction.copy(direction);			return this;		}		copy(ray) {			this.origin.copy(ray.origin);			this.direction.copy(ray.direction);			return this;		}		at(t, target) {			return target.copy(this.direction).multiplyScalar(t).add(this.origin);		}		lookAt(v) {			this.direction.copy(v).sub(this.origin).normalize();			return this;		}		recast(t) {			this.origin.copy(this.at(t, _vector$a));			return this;		}		closestPointToPoint(point, target) {			target.subVectors(point, this.origin);			const directionDistance = target.dot(this.direction);			if (directionDistance < 0) {				return target.copy(this.origin);			}			return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);		}		distanceToPoint(point) {			return Math.sqrt(this.distanceSqToPoint(point));		}		distanceSqToPoint(point) {			const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray			if (directionDistance < 0) {				return this.origin.distanceToSquared(point);			}			_vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);			return _vector$a.distanceToSquared(point);		}		distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) {			// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h			// It returns the min distance between the ray and the segment			// defined by v0 and v1			// It can also set two optional targets :			// - The closest point on the ray			// - The closest point on the segment			_segCenter.copy(v0).add(v1).multiplyScalar(0.5);			_segDir.copy(v1).sub(v0).normalize();			_diff.copy(this.origin).sub(_segCenter);			const segExtent = v0.distanceTo(v1) * 0.5;			const a01 = -this.direction.dot(_segDir);			const b0 = _diff.dot(this.direction);			const b1 = -_diff.dot(_segDir);			const c = _diff.lengthSq();			const det = Math.abs(1 - a01 * a01);			let s0, s1, sqrDist, extDet;			if (det > 0) {				// The ray and segment are not parallel.				s0 = a01 * b1 - b0;				s1 = a01 * b0 - b1;				extDet = segExtent * det;				if (s0 >= 0) {					if (s1 >= -extDet) {						if (s1 <= extDet) {							// region 0							// Minimum at interior points of ray and segment.							const invDet = 1 / det;							s0 *= invDet;							s1 *= invDet;							sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c;						} else {							// region 1							s1 = segExtent;							s0 = Math.max(0, -(a01 * s1 + b0));							sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;						}					} else {						// region 5						s1 = -segExtent;						s0 = Math.max(0, -(a01 * s1 + b0));						sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;					}				} else {					if (s1 <= -extDet) {						// region 4						s0 = Math.max(0, -(-a01 * segExtent + b0));						s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);						sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;					} else if (s1 <= extDet) {						// region 3						s0 = 0;						s1 = Math.min(Math.max(-segExtent, -b1), segExtent);						sqrDist = s1 * (s1 + 2 * b1) + c;					} else {						// region 2						s0 = Math.max(0, -(a01 * segExtent + b0));						s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);						sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;					}				}			} else {				// Ray and segment are parallel.				s1 = a01 > 0 ? -segExtent : segExtent;				s0 = Math.max(0, -(a01 * s1 + b0));				sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;			}			if (optionalPointOnRay) {				optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin);			}			if (optionalPointOnSegment) {				optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter);			}			return sqrDist;		}		intersectSphere(sphere, target) {			_vector$a.subVectors(sphere.center, this.origin);			const tca = _vector$a.dot(this.direction);			const d2 = _vector$a.dot(_vector$a) - tca * tca;			const radius2 = sphere.radius * sphere.radius;			if (d2 > radius2) return null;			const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere			const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere			const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null			if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray:			// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,			// in order to always return an intersect point that is in front of the ray.			if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0			return this.at(t0, target);		}		intersectsSphere(sphere) {			return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius;		}		distanceToPlane(plane) {			const denominator = plane.normal.dot(this.direction);			if (denominator === 0) {				// line is coplanar, return origin				if (plane.distanceToPoint(this.origin) === 0) {					return 0;				} // Null is preferable to undefined since undefined means.... it is undefined				return null;			}			const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane			return t >= 0 ? t : null;		}		intersectPlane(plane, target) {			const t = this.distanceToPlane(plane);			if (t === null) {				return null;			}			return this.at(t, target);		}		intersectsPlane(plane) {			// check if the ray lies on the plane first			const distToPoint = plane.distanceToPoint(this.origin);			if (distToPoint === 0) {				return true;			}			const denominator = plane.normal.dot(this.direction);			if (denominator * distToPoint < 0) {				return true;			} // ray origin is behind the plane (and is pointing behind it)			return false;		}		intersectBox(box, target) {			let tmin, tmax, tymin, tymax, tzmin, tzmax;			const invdirx = 1 / this.direction.x,						invdiry = 1 / this.direction.y,						invdirz = 1 / this.direction.z;			const origin = this.origin;			if (invdirx >= 0) {				tmin = (box.min.x - origin.x) * invdirx;				tmax = (box.max.x - origin.x) * invdirx;			} else {				tmin = (box.max.x - origin.x) * invdirx;				tmax = (box.min.x - origin.x) * invdirx;			}			if (invdiry >= 0) {				tymin = (box.min.y - origin.y) * invdiry;				tymax = (box.max.y - origin.y) * invdiry;			} else {				tymin = (box.max.y - origin.y) * invdiry;				tymax = (box.min.y - origin.y) * invdiry;			}			if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN			// (result of 0 * Infinity). x !== x returns true if x is NaN			if (tymin > tmin || tmin !== tmin) tmin = tymin;			if (tymax < tmax || tmax !== tmax) tmax = tymax;			if (invdirz >= 0) {				tzmin = (box.min.z - origin.z) * invdirz;				tzmax = (box.max.z - origin.z) * invdirz;			} else {				tzmin = (box.max.z - origin.z) * invdirz;				tzmax = (box.min.z - origin.z) * invdirz;			}			if (tmin > tzmax || tzmin > tmax) return null;			if (tzmin > tmin || tmin !== tmin) tmin = tzmin;			if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side)			if (tmax < 0) return null;			return this.at(tmin >= 0 ? tmin : tmax, target);		}		intersectsBox(box) {			return this.intersectBox(box, _vector$a) !== null;		}		intersectTriangle(a, b, c, backfaceCulling, target) {			// Compute the offset origin, edges, and normal.			// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h			_edge1.subVectors(b, a);			_edge2.subVectors(c, a);			_normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,			// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by			//	 |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))			//	 |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))			//	 |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)			let DdN = this.direction.dot(_normal$1);			let sign;			if (DdN > 0) {				if (backfaceCulling) return null;				sign = 1;			} else if (DdN < 0) {				sign = -1;				DdN = -DdN;			} else {				return null;			}			_diff.subVectors(this.origin, a);			const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection			if (DdQxE2 < 0) {				return null;			}			const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection			if (DdE1xQ < 0) {				return null;			} // b1+b2 > 1, no intersection			if (DdQxE2 + DdE1xQ > DdN) {				return null;			} // Line intersects triangle, check if ray does.			const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection			if (QdN < 0) {				return null;			} // Ray intersects triangle.			return this.at(QdN / DdN, target);		}		applyMatrix4(matrix4) {			this.origin.applyMatrix4(matrix4);			this.direction.transformDirection(matrix4);			return this;		}		equals(ray) {			return ray.origin.equals(this.origin) && ray.direction.equals(this.direction);		}		clone() {			return new this.constructor().copy(this);		}	}	class Matrix4 {		constructor() {			this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];			if (arguments.length > 0) {				console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.');			}		}		set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) {			const te = this.elements;			te[0] = n11;			te[4] = n12;			te[8] = n13;			te[12] = n14;			te[1] = n21;			te[5] = n22;			te[9] = n23;			te[13] = n24;			te[2] = n31;			te[6] = n32;			te[10] = n33;			te[14] = n34;			te[3] = n41;			te[7] = n42;			te[11] = n43;			te[15] = n44;			return this;		}		identity() {			this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);			return this;		}		clone() {			return new Matrix4().fromArray(this.elements);		}		copy(m) {			const te = this.elements;			const me = m.elements;			te[0] = me[0];			te[1] = me[1];			te[2] = me[2];			te[3] = me[3];			te[4] = me[4];			te[5] = me[5];			te[6] = me[6];			te[7] = me[7];			te[8] = me[8];			te[9] = me[9];			te[10] = me[10];			te[11] = me[11];			te[12] = me[12];			te[13] = me[13];			te[14] = me[14];			te[15] = me[15];			return this;		}		copyPosition(m) {			const te = this.elements,						me = m.elements;			te[12] = me[12];			te[13] = me[13];			te[14] = me[14];			return this;		}		setFromMatrix3(m) {			const me = m.elements;			this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1);			return this;		}		extractBasis(xAxis, yAxis, zAxis) {			xAxis.setFromMatrixColumn(this, 0);			yAxis.setFromMatrixColumn(this, 1);			zAxis.setFromMatrixColumn(this, 2);			return this;		}		makeBasis(xAxis, yAxis, zAxis) {			this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1);			return this;		}		extractRotation(m) {			// this method does not support reflection matrices			const te = this.elements;			const me = m.elements;			const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length();			const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length();			const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length();			te[0] = me[0] * scaleX;			te[1] = me[1] * scaleX;			te[2] = me[2] * scaleX;			te[3] = 0;			te[4] = me[4] * scaleY;			te[5] = me[5] * scaleY;			te[6] = me[6] * scaleY;			te[7] = 0;			te[8] = me[8] * scaleZ;			te[9] = me[9] * scaleZ;			te[10] = me[10] * scaleZ;			te[11] = 0;			te[12] = 0;			te[13] = 0;			te[14] = 0;			te[15] = 1;			return this;		}		makeRotationFromEuler(euler) {			if (!(euler && euler.isEuler)) {				console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.');			}			const te = this.elements;			const x = euler.x,						y = euler.y,						z = euler.z;			const a = Math.cos(x),						b = Math.sin(x);			const c = Math.cos(y),						d = Math.sin(y);			const e = Math.cos(z),						f = Math.sin(z);			if (euler.order === 'XYZ') {				const ae = a * e,							af = a * f,							be = b * e,							bf = b * f;				te[0] = c * e;				te[4] = -c * f;				te[8] = d;				te[1] = af + be * d;				te[5] = ae - bf * d;				te[9] = -b * c;				te[2] = bf - ae * d;				te[6] = be + af * d;				te[10] = a * c;			} else if (euler.order === 'YXZ') {				const ce = c * e,							cf = c * f,							de = d * e,							df = d * f;				te[0] = ce + df * b;				te[4] = de * b - cf;				te[8] = a * d;				te[1] = a * f;				te[5] = a * e;				te[9] = -b;				te[2] = cf * b - de;				te[6] = df + ce * b;				te[10] = a * c;			} else if (euler.order === 'ZXY') {				const ce = c * e,							cf = c * f,							de = d * e,							df = d * f;				te[0] = ce - df * b;				te[4] = -a * f;				te[8] = de + cf * b;				te[1] = cf + de * b;				te[5] = a * e;				te[9] = df - ce * b;				te[2] = -a * d;				te[6] = b;				te[10] = a * c;			} else if (euler.order === 'ZYX') {				const ae = a * e,							af = a * f,							be = b * e,							bf = b * f;				te[0] = c * e;				te[4] = be * d - af;				te[8] = ae * d + bf;				te[1] = c * f;				te[5] = bf * d + ae;				te[9] = af * d - be;				te[2] = -d;				te[6] = b * c;				te[10] = a * c;			} else if (euler.order === 'YZX') {				const ac = a * c,							ad = a * d,							bc = b * c,							bd = b * d;				te[0] = c * e;				te[4] = bd - ac * f;				te[8] = bc * f + ad;				te[1] = f;				te[5] = a * e;				te[9] = -b * e;				te[2] = -d * e;				te[6] = ad * f + bc;				te[10] = ac - bd * f;			} else if (euler.order === 'XZY') {				const ac = a * c,							ad = a * d,							bc = b * c,							bd = b * d;				te[0] = c * e;				te[4] = -f;				te[8] = d * e;				te[1] = ac * f + bd;				te[5] = a * e;				te[9] = ad * f - bc;				te[2] = bc * f - ad;				te[6] = b * e;				te[10] = bd * f + ac;			} // bottom row			te[3] = 0;			te[7] = 0;			te[11] = 0; // last column			te[12] = 0;			te[13] = 0;			te[14] = 0;			te[15] = 1;			return this;		}		makeRotationFromQuaternion(q) {			return this.compose(_zero, q, _one);		}		lookAt(eye, target, up) {			const te = this.elements;			_z.subVectors(eye, target);			if (_z.lengthSq() === 0) {				// eye and target are in the same position				_z.z = 1;			}			_z.normalize();			_x.crossVectors(up, _z);			if (_x.lengthSq() === 0) {				// up and z are parallel				if (Math.abs(up.z) === 1) {					_z.x += 0.0001;				} else {					_z.z += 0.0001;				}				_z.normalize();				_x.crossVectors(up, _z);			}			_x.normalize();			_y.crossVectors(_z, _x);			te[0] = _x.x;			te[4] = _y.x;			te[8] = _z.x;			te[1] = _x.y;			te[5] = _y.y;			te[9] = _z.y;			te[2] = _x.z;			te[6] = _y.z;			te[10] = _z.z;			return this;		}		multiply(m, n) {			if (n !== undefined) {				console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.');				return this.multiplyMatrices(m, n);			}			return this.multiplyMatrices(this, m);		}		premultiply(m) {			return this.multiplyMatrices(m, this);		}		multiplyMatrices(a, b) {			const ae = a.elements;			const be = b.elements;			const te = this.elements;			const a11 = ae[0],						a12 = ae[4],						a13 = ae[8],						a14 = ae[12];			const a21 = ae[1],						a22 = ae[5],						a23 = ae[9],						a24 = ae[13];			const a31 = ae[2],						a32 = ae[6],						a33 = ae[10],						a34 = ae[14];			const a41 = ae[3],						a42 = ae[7],						a43 = ae[11],						a44 = ae[15];			const b11 = be[0],						b12 = be[4],						b13 = be[8],						b14 = be[12];			const b21 = be[1],						b22 = be[5],						b23 = be[9],						b24 = be[13];			const b31 = be[2],						b32 = be[6],						b33 = be[10],						b34 = be[14];			const b41 = be[3],						b42 = be[7],						b43 = be[11],						b44 = be[15];			te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;			te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;			te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;			te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;			te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;			te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;			te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;			te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;			te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;			te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;			te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;			te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;			te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;			te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;			te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;			te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;			return this;		}		multiplyScalar(s) {			const te = this.elements;			te[0] *= s;			te[4] *= s;			te[8] *= s;			te[12] *= s;			te[1] *= s;			te[5] *= s;			te[9] *= s;			te[13] *= s;			te[2] *= s;			te[6] *= s;			te[10] *= s;			te[14] *= s;			te[3] *= s;			te[7] *= s;			te[11] *= s;			te[15] *= s;			return this;		}		determinant() {			const te = this.elements;			const n11 = te[0],						n12 = te[4],						n13 = te[8],						n14 = te[12];			const n21 = te[1],						n22 = te[5],						n23 = te[9],						n24 = te[13];			const n31 = te[2],						n32 = te[6],						n33 = te[10],						n34 = te[14];			const n41 = te[3],						n42 = te[7],						n43 = te[11],						n44 = te[15]; //TODO: make this more efficient			//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )			return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31);		}		transpose() {			const te = this.elements;			let tmp;			tmp = te[1];			te[1] = te[4];			te[4] = tmp;			tmp = te[2];			te[2] = te[8];			te[8] = tmp;			tmp = te[6];			te[6] = te[9];			te[9] = tmp;			tmp = te[3];			te[3] = te[12];			te[12] = tmp;			tmp = te[7];			te[7] = te[13];			te[13] = tmp;			tmp = te[11];			te[11] = te[14];			te[14] = tmp;			return this;		}		setPosition(x, y, z) {			const te = this.elements;			if (x.isVector3) {				te[12] = x.x;				te[13] = x.y;				te[14] = x.z;			} else {				te[12] = x;				te[13] = y;				te[14] = z;			}			return this;		}		invert() {			// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm			const te = this.elements,						n11 = te[0],						n21 = te[1],						n31 = te[2],						n41 = te[3],						n12 = te[4],						n22 = te[5],						n32 = te[6],						n42 = te[7],						n13 = te[8],						n23 = te[9],						n33 = te[10],						n43 = te[11],						n14 = te[12],						n24 = te[13],						n34 = te[14],						n44 = te[15],						t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,						t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,						t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,						t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;			const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;			if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);			const detInv = 1 / det;			te[0] = t11 * detInv;			te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv;			te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv;			te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv;			te[4] = t12 * detInv;			te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv;			te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv;			te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv;			te[8] = t13 * detInv;			te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv;			te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv;			te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv;			te[12] = t14 * detInv;			te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv;			te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv;			te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv;			return this;		}		scale(v) {			const te = this.elements;			const x = v.x,						y = v.y,						z = v.z;			te[0] *= x;			te[4] *= y;			te[8] *= z;			te[1] *= x;			te[5] *= y;			te[9] *= z;			te[2] *= x;			te[6] *= y;			te[10] *= z;			te[3] *= x;			te[7] *= y;			te[11] *= z;			return this;		}		getMaxScaleOnAxis() {			const te = this.elements;			const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];			const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];			const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];			return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));		}		makeTranslation(x, y, z) {			this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);			return this;		}		makeRotationX(theta) {			const c = Math.cos(theta),						s = Math.sin(theta);			this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);			return this;		}		makeRotationY(theta) {			const c = Math.cos(theta),						s = Math.sin(theta);			this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);			return this;		}		makeRotationZ(theta) {			const c = Math.cos(theta),						s = Math.sin(theta);			this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);			return this;		}		makeRotationAxis(axis, angle) {			// Based on http://www.gamedev.net/reference/articles/article1199.asp			const c = Math.cos(angle);			const s = Math.sin(angle);			const t = 1 - c;			const x = axis.x,						y = axis.y,						z = axis.z;			const tx = t * x,						ty = t * y;			this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1);			return this;		}		makeScale(x, y, z) {			this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);			return this;		}		makeShear(xy, xz, yx, yz, zx, zy) {			this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1);			return this;		}		compose(position, quaternion, scale) {			const te = this.elements;			const x = quaternion._x,						y = quaternion._y,						z = quaternion._z,						w = quaternion._w;			const x2 = x + x,						y2 = y + y,						z2 = z + z;			const xx = x * x2,						xy = x * y2,						xz = x * z2;			const yy = y * y2,						yz = y * z2,						zz = z * z2;			const wx = w * x2,						wy = w * y2,						wz = w * z2;			const sx = scale.x,						sy = scale.y,						sz = scale.z;			te[0] = (1 - (yy + zz)) * sx;			te[1] = (xy + wz) * sx;			te[2] = (xz - wy) * sx;			te[3] = 0;			te[4] = (xy - wz) * sy;			te[5] = (1 - (xx + zz)) * sy;			te[6] = (yz + wx) * sy;			te[7] = 0;			te[8] = (xz + wy) * sz;			te[9] = (yz - wx) * sz;			te[10] = (1 - (xx + yy)) * sz;			te[11] = 0;			te[12] = position.x;			te[13] = position.y;			te[14] = position.z;			te[15] = 1;			return this;		}		decompose(position, quaternion, scale) {			const te = this.elements;			let sx = _v1$5.set(te[0], te[1], te[2]).length();			const sy = _v1$5.set(te[4], te[5], te[6]).length();			const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale			const det = this.determinant();			if (det < 0) sx = -sx;			position.x = te[12];			position.y = te[13];			position.z = te[14]; // scale the rotation part			_m1$2.copy(this);			const invSX = 1 / sx;			const invSY = 1 / sy;			const invSZ = 1 / sz;			_m1$2.elements[0] *= invSX;			_m1$2.elements[1] *= invSX;			_m1$2.elements[2] *= invSX;			_m1$2.elements[4] *= invSY;			_m1$2.elements[5] *= invSY;			_m1$2.elements[6] *= invSY;			_m1$2.elements[8] *= invSZ;			_m1$2.elements[9] *= invSZ;			_m1$2.elements[10] *= invSZ;			quaternion.setFromRotationMatrix(_m1$2);			scale.x = sx;			scale.y = sy;			scale.z = sz;			return this;		}		makePerspective(left, right, top, bottom, near, far) {			if (far === undefined) {				console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.');			}			const te = this.elements;			const x = 2 * near / (right - left);			const y = 2 * near / (top - bottom);			const a = (right + left) / (right - left);			const b = (top + bottom) / (top - bottom);			const c = -(far + near) / (far - near);			const d = -2 * far * near / (far - near);			te[0] = x;			te[4] = 0;			te[8] = a;			te[12] = 0;			te[1] = 0;			te[5] = y;			te[9] = b;			te[13] = 0;			te[2] = 0;			te[6] = 0;			te[10] = c;			te[14] = d;			te[3] = 0;			te[7] = 0;			te[11] = -1;			te[15] = 0;			return this;		}		makeOrthographic(left, right, top, bottom, near, far) {			const te = this.elements;			const w = 1.0 / (right - left);			const h = 1.0 / (top - bottom);			const p = 1.0 / (far - near);			const x = (right + left) * w;			const y = (top + bottom) * h;			const z = (far + near) * p;			te[0] = 2 * w;			te[4] = 0;			te[8] = 0;			te[12] = -x;			te[1] = 0;			te[5] = 2 * h;			te[9] = 0;			te[13] = -y;			te[2] = 0;			te[6] = 0;			te[10] = -2 * p;			te[14] = -z;			te[3] = 0;			te[7] = 0;			te[11] = 0;			te[15] = 1;			return this;		}		equals(matrix) {			const te = this.elements;			const me = matrix.elements;			for (let i = 0; i < 16; i++) {				if (te[i] !== me[i]) return false;			}			return true;		}		fromArray(array, offset = 0) {			for (let i = 0; i < 16; i++) {				this.elements[i] = array[i + offset];			}			return this;		}		toArray(array = [], offset = 0) {			const te = this.elements;			array[offset] = te[0];			array[offset + 1] = te[1];			array[offset + 2] = te[2];			array[offset + 3] = te[3];			array[offset + 4] = te[4];			array[offset + 5] = te[5];			array[offset + 6] = te[6];			array[offset + 7] = te[7];			array[offset + 8] = te[8];			array[offset + 9] = te[9];			array[offset + 10] = te[10];			array[offset + 11] = te[11];			array[offset + 12] = te[12];			array[offset + 13] = te[13];			array[offset + 14] = te[14];			array[offset + 15] = te[15];			return array;		}	}	Matrix4.prototype.isMatrix4 = true;	const _v1$5 = /*@__PURE__*/new Vector3();	const _m1$2 = /*@__PURE__*/new Matrix4();	const _zero = /*@__PURE__*/new Vector3(0, 0, 0);	const _one = /*@__PURE__*/new Vector3(1, 1, 1);	const _x = /*@__PURE__*/new Vector3();	const _y = /*@__PURE__*/new Vector3();	const _z = /*@__PURE__*/new Vector3();	const _matrix$1 = /*@__PURE__*/new Matrix4();	const _quaternion$3 = /*@__PURE__*/new Quaternion();	class Euler {		constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {			this._x = x;			this._y = y;			this._z = z;			this._order = order;		}		get x() {			return this._x;		}		set x(value) {			this._x = value;			this._onChangeCallback();		}		get y() {			return this._y;		}		set y(value) {			this._y = value;			this._onChangeCallback();		}		get z() {			return this._z;		}		set z(value) {			this._z = value;			this._onChangeCallback();		}		get order() {			return this._order;		}		set order(value) {			this._order = value;			this._onChangeCallback();		}		set(x, y, z, order = this._order) {			this._x = x;			this._y = y;			this._z = z;			this._order = order;			this._onChangeCallback();			return this;		}		clone() {			return new this.constructor(this._x, this._y, this._z, this._order);		}		copy(euler) {			this._x = euler._x;			this._y = euler._y;			this._z = euler._z;			this._order = euler._order;			this._onChangeCallback();			return this;		}		setFromRotationMatrix(m, order = this._order, update = true) {			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)			const te = m.elements;			const m11 = te[0],						m12 = te[4],						m13 = te[8];			const m21 = te[1],						m22 = te[5],						m23 = te[9];			const m31 = te[2],						m32 = te[6],						m33 = te[10];			switch (order) {				case 'XYZ':					this._y = Math.asin(clamp(m13, -1, 1));					if (Math.abs(m13) < 0.9999999) {						this._x = Math.atan2(-m23, m33);						this._z = Math.atan2(-m12, m11);					} else {						this._x = Math.atan2(m32, m22);						this._z = 0;					}					break;				case 'YXZ':					this._x = Math.asin(-clamp(m23, -1, 1));					if (Math.abs(m23) < 0.9999999) {						this._y = Math.atan2(m13, m33);						this._z = Math.atan2(m21, m22);					} else {						this._y = Math.atan2(-m31, m11);						this._z = 0;					}					break;				case 'ZXY':					this._x = Math.asin(clamp(m32, -1, 1));					if (Math.abs(m32) < 0.9999999) {						this._y = Math.atan2(-m31, m33);						this._z = Math.atan2(-m12, m22);					} else {						this._y = 0;						this._z = Math.atan2(m21, m11);					}					break;				case 'ZYX':					this._y = Math.asin(-clamp(m31, -1, 1));					if (Math.abs(m31) < 0.9999999) {						this._x = Math.atan2(m32, m33);						this._z = Math.atan2(m21, m11);					} else {						this._x = 0;						this._z = Math.atan2(-m12, m22);					}					break;				case 'YZX':					this._z = Math.asin(clamp(m21, -1, 1));					if (Math.abs(m21) < 0.9999999) {						this._x = Math.atan2(-m23, m22);						this._y = Math.atan2(-m31, m11);					} else {						this._x = 0;						this._y = Math.atan2(m13, m33);					}					break;				case 'XZY':					this._z = Math.asin(-clamp(m12, -1, 1));					if (Math.abs(m12) < 0.9999999) {						this._x = Math.atan2(m32, m22);						this._y = Math.atan2(m13, m11);					} else {						this._x = Math.atan2(-m23, m33);						this._y = 0;					}					break;				default:					console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order);			}			this._order = order;			if (update === true) this._onChangeCallback();			return this;		}		setFromQuaternion(q, order, update) {			_matrix$1.makeRotationFromQuaternion(q);			return this.setFromRotationMatrix(_matrix$1, order, update);		}		setFromVector3(v, order = this._order) {			return this.set(v.x, v.y, v.z, order);		}		reorder(newOrder) {			// WARNING: this discards revolution information -bhouston			_quaternion$3.setFromEuler(this);			return this.setFromQuaternion(_quaternion$3, newOrder);		}		equals(euler) {			return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order;		}		fromArray(array) {			this._x = array[0];			this._y = array[1];			this._z = array[2];			if (array[3] !== undefined) this._order = array[3];			this._onChangeCallback();			return this;		}		toArray(array = [], offset = 0) {			array[offset] = this._x;			array[offset + 1] = this._y;			array[offset + 2] = this._z;			array[offset + 3] = this._order;			return array;		}		toVector3(optionalResult) {			if (optionalResult) {				return optionalResult.set(this._x, this._y, this._z);			} else {				return new Vector3(this._x, this._y, this._z);			}		}		_onChange(callback) {			this._onChangeCallback = callback;			return this;		}		_onChangeCallback() {}	}	Euler.prototype.isEuler = true;	Euler.DefaultOrder = 'XYZ';	Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'];	class Layers {		constructor() {			this.mask = 1 | 0;		}		set(channel) {			this.mask = (1 << channel | 0) >>> 0;		}		enable(channel) {			this.mask |= 1 << channel | 0;		}		enableAll() {			this.mask = 0xffffffff | 0;		}		toggle(channel) {			this.mask ^= 1 << channel | 0;		}		disable(channel) {			this.mask &= ~(1 << channel | 0);		}		disableAll() {			this.mask = 0;		}		test(layers) {			return (this.mask & layers.mask) !== 0;		}		isEnabled(channel) {			return (this.mask & (1 << channel | 0)) !== 0;		}	}	let _object3DId = 0;	const _v1$4 = /*@__PURE__*/new Vector3();	const _q1 = /*@__PURE__*/new Quaternion();	const _m1$1 = /*@__PURE__*/new Matrix4();	const _target = /*@__PURE__*/new Vector3();	const _position$3 = /*@__PURE__*/new Vector3();	const _scale$2 = /*@__PURE__*/new Vector3();	const _quaternion$2 = /*@__PURE__*/new Quaternion();	const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0);	const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0);	const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1);	const _addedEvent = {		type: 'added'	};	const _removedEvent = {		type: 'removed'	};	class Object3D extends EventDispatcher {		constructor() {			super();			Object.defineProperty(this, 'id', {				value: _object3DId++			});			this.uuid = generateUUID();			this.name = '';			this.type = 'Object3D';			this.parent = null;			this.children = [];			this.up = Object3D.DefaultUp.clone();			const position = new Vector3();			const rotation = new Euler();			const quaternion = new Quaternion();			const scale = new Vector3(1, 1, 1);			function onRotationChange() {				quaternion.setFromEuler(rotation, false);			}			function onQuaternionChange() {				rotation.setFromQuaternion(quaternion, undefined, false);			}			rotation._onChange(onRotationChange);			quaternion._onChange(onQuaternionChange);			Object.defineProperties(this, {				position: {					configurable: true,					enumerable: true,					value: position				},				rotation: {					configurable: true,					enumerable: true,					value: rotation				},				quaternion: {					configurable: true,					enumerable: true,					value: quaternion				},				scale: {					configurable: true,					enumerable: true,					value: scale				},				modelViewMatrix: {					value: new Matrix4()				},				normalMatrix: {					value: new Matrix3()				}			});			this.matrix = new Matrix4();			this.matrixWorld = new Matrix4();			this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;			this.matrixWorldNeedsUpdate = false;			this.layers = new Layers();			this.visible = true;			this.castShadow = false;			this.receiveShadow = false;			this.frustumCulled = true;			this.renderOrder = 0;			this.animations = [];			this.userData = {};		}		onBeforeRender() {}		onAfterRender() {}		applyMatrix4(matrix) {			if (this.matrixAutoUpdate) this.updateMatrix();			this.matrix.premultiply(matrix);			this.matrix.decompose(this.position, this.quaternion, this.scale);		}		applyQuaternion(q) {			this.quaternion.premultiply(q);			return this;		}		setRotationFromAxisAngle(axis, angle) {			// assumes axis is normalized			this.quaternion.setFromAxisAngle(axis, angle);		}		setRotationFromEuler(euler) {			this.quaternion.setFromEuler(euler, true);		}		setRotationFromMatrix(m) {			// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)			this.quaternion.setFromRotationMatrix(m);		}		setRotationFromQuaternion(q) {			// assumes q is normalized			this.quaternion.copy(q);		}		rotateOnAxis(axis, angle) {			// rotate object on axis in object space			// axis is assumed to be normalized			_q1.setFromAxisAngle(axis, angle);			this.quaternion.multiply(_q1);			return this;		}		rotateOnWorldAxis(axis, angle) {			// rotate object on axis in world space			// axis is assumed to be normalized			// method assumes no rotated parent			_q1.setFromAxisAngle(axis, angle);			this.quaternion.premultiply(_q1);			return this;		}		rotateX(angle) {			return this.rotateOnAxis(_xAxis, angle);		}		rotateY(angle) {			return this.rotateOnAxis(_yAxis, angle);		}		rotateZ(angle) {			return this.rotateOnAxis(_zAxis, angle);		}		translateOnAxis(axis, distance) {			// translate object by distance along axis in object space			// axis is assumed to be normalized			_v1$4.copy(axis).applyQuaternion(this.quaternion);			this.position.add(_v1$4.multiplyScalar(distance));			return this;		}		translateX(distance) {			return this.translateOnAxis(_xAxis, distance);		}		translateY(distance) {			return this.translateOnAxis(_yAxis, distance);		}		translateZ(distance) {			return this.translateOnAxis(_zAxis, distance);		}		localToWorld(vector) {			return vector.applyMatrix4(this.matrixWorld);		}		worldToLocal(vector) {			return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert());		}		lookAt(x, y, z) {			// This method does not support objects having non-uniformly-scaled parent(s)			if (x.isVector3) {				_target.copy(x);			} else {				_target.set(x, y, z);			}			const parent = this.parent;			this.updateWorldMatrix(true, false);			_position$3.setFromMatrixPosition(this.matrixWorld);			if (this.isCamera || this.isLight) {				_m1$1.lookAt(_position$3, _target, this.up);			} else {				_m1$1.lookAt(_target, _position$3, this.up);			}			this.quaternion.setFromRotationMatrix(_m1$1);			if (parent) {				_m1$1.extractRotation(parent.matrixWorld);				_q1.setFromRotationMatrix(_m1$1);				this.quaternion.premultiply(_q1.invert());			}		}		add(object) {			if (arguments.length > 1) {				for (let i = 0; i < arguments.length; i++) {					this.add(arguments[i]);				}				return this;			}			if (object === this) {				console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object);				return this;			}			if (object && object.isObject3D) {				if (object.parent !== null) {					object.parent.remove(object);				}				object.parent = this;				this.children.push(object);				object.dispatchEvent(_addedEvent);			} else {				console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object);			}			return this;		}		remove(object) {			if (arguments.length > 1) {				for (let i = 0; i < arguments.length; i++) {					this.remove(arguments[i]);				}				return this;			}			const index = this.children.indexOf(object);			if (index !== -1) {				object.parent = null;				this.children.splice(index, 1);				object.dispatchEvent(_removedEvent);			}			return this;		}		removeFromParent() {			const parent = this.parent;			if (parent !== null) {				parent.remove(this);			}			return this;		}		clear() {			for (let i = 0; i < this.children.length; i++) {				const object = this.children[i];				object.parent = null;				object.dispatchEvent(_removedEvent);			}			this.children.length = 0;			return this;		}		attach(object) {			// adds object as a child of this, while maintaining the object's world transform			// Note: This method does not support scene graphs having non-uniformly-scaled nodes(s)			this.updateWorldMatrix(true, false);			_m1$1.copy(this.matrixWorld).invert();			if (object.parent !== null) {				object.parent.updateWorldMatrix(true, false);				_m1$1.multiply(object.parent.matrixWorld);			}			object.applyMatrix4(_m1$1);			this.add(object);			object.updateWorldMatrix(false, true);			return this;		}		getObjectById(id) {			return this.getObjectByProperty('id', id);		}		getObjectByName(name) {			return this.getObjectByProperty('name', name);		}		getObjectByProperty(name, value) {			if (this[name] === value) return this;			for (let i = 0, l = this.children.length; i < l; i++) {				const child = this.children[i];				const object = child.getObjectByProperty(name, value);				if (object !== undefined) {					return object;				}			}			return undefined;		}		getWorldPosition(target) {			this.updateWorldMatrix(true, false);			return target.setFromMatrixPosition(this.matrixWorld);		}		getWorldQuaternion(target) {			this.updateWorldMatrix(true, false);			this.matrixWorld.decompose(_position$3, target, _scale$2);			return target;		}		getWorldScale(target) {			this.updateWorldMatrix(true, false);			this.matrixWorld.decompose(_position$3, _quaternion$2, target);			return target;		}		getWorldDirection(target) {			this.updateWorldMatrix(true, false);			const e = this.matrixWorld.elements;			return target.set(e[8], e[9], e[10]).normalize();		}		raycast() {}		traverse(callback) {			callback(this);			const children = this.children;			for (let i = 0, l = children.length; i < l; i++) {				children[i].traverse(callback);			}		}		traverseVisible(callback) {			if (this.visible === false) return;			callback(this);			const children = this.children;			for (let i = 0, l = children.length; i < l; i++) {				children[i].traverseVisible(callback);			}		}		traverseAncestors(callback) {			const parent = this.parent;			if (parent !== null) {				callback(parent);				parent.traverseAncestors(callback);			}		}		updateMatrix() {			this.matrix.compose(this.position, this.quaternion, this.scale);			this.matrixWorldNeedsUpdate = true;		}		updateMatrixWorld(force) {			if (this.matrixAutoUpdate) this.updateMatrix();			if (this.matrixWorldNeedsUpdate || force) {				if (this.parent === null) {					this.matrixWorld.copy(this.matrix);				} else {					this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);				}				this.matrixWorldNeedsUpdate = false;				force = true;			} // update children			const children = this.children;			for (let i = 0, l = children.length; i < l; i++) {				children[i].updateMatrixWorld(force);			}		}		updateWorldMatrix(updateParents, updateChildren) {			const parent = this.parent;			if (updateParents === true && parent !== null) {				parent.updateWorldMatrix(true, false);			}			if (this.matrixAutoUpdate) this.updateMatrix();			if (this.parent === null) {				this.matrixWorld.copy(this.matrix);			} else {				this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);			} // update children			if (updateChildren === true) {				const children = this.children;				for (let i = 0, l = children.length; i < l; i++) {					children[i].updateWorldMatrix(false, true);				}			}		}		toJSON(meta) {			// meta is a string when called from JSON.stringify			const isRootObject = meta === undefined || typeof meta === 'string';			const output = {}; // meta is a hash used to collect geometries, materials.			// not providing it implies that this is the root object			// being serialized.			if (isRootObject) {				// initialize meta obj				meta = {					geometries: {},					materials: {},					textures: {},					images: {},					shapes: {},					skeletons: {},					animations: {}				};				output.metadata = {					version: 4.5,					type: 'Object',					generator: 'Object3D.toJSON'				};			} // standard Object3D serialization			const object = {};			object.uuid = this.uuid;			object.type = this.type;			if (this.name !== '') object.name = this.name;			if (this.castShadow === true) object.castShadow = true;			if (this.receiveShadow === true) object.receiveShadow = true;			if (this.visible === false) object.visible = false;			if (this.frustumCulled === false) object.frustumCulled = false;			if (this.renderOrder !== 0) object.renderOrder = this.renderOrder;			if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData;			object.layers = this.layers.mask;			object.matrix = this.matrix.toArray();			if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties			if (this.isInstancedMesh) {				object.type = 'InstancedMesh';				object.count = this.count;				object.instanceMatrix = this.instanceMatrix.toJSON();				if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON();			} //			function serialize(library, element) {				if (library[element.uuid] === undefined) {					library[element.uuid] = element.toJSON(meta);				}				return element.uuid;			}			if (this.isScene) {				if (this.background) {					if (this.background.isColor) {						object.background = this.background.toJSON();					} else if (this.background.isTexture) {						object.background = this.background.toJSON(meta).uuid;					}				}				if (this.environment && this.environment.isTexture) {					object.environment = this.environment.toJSON(meta).uuid;				}			} else if (this.isMesh || this.isLine || this.isPoints) {				object.geometry = serialize(meta.geometries, this.geometry);				const parameters = this.geometry.parameters;				if (parameters !== undefined && parameters.shapes !== undefined) {					const shapes = parameters.shapes;					if (Array.isArray(shapes)) {						for (let i = 0, l = shapes.length; i < l; i++) {							const shape = shapes[i];							serialize(meta.shapes, shape);						}					} else {						serialize(meta.shapes, shapes);					}				}			}			if (this.isSkinnedMesh) {				object.bindMode = this.bindMode;				object.bindMatrix = this.bindMatrix.toArray();				if (this.skeleton !== undefined) {					serialize(meta.skeletons, this.skeleton);					object.skeleton = this.skeleton.uuid;				}			}			if (this.material !== undefined) {				if (Array.isArray(this.material)) {					const uuids = [];					for (let i = 0, l = this.material.length; i < l; i++) {						uuids.push(serialize(meta.materials, this.material[i]));					}					object.material = uuids;				} else {					object.material = serialize(meta.materials, this.material);				}			} //			if (this.children.length > 0) {				object.children = [];				for (let i = 0; i < this.children.length; i++) {					object.children.push(this.children[i].toJSON(meta).object);				}			} //			if (this.animations.length > 0) {				object.animations = [];				for (let i = 0; i < this.animations.length; i++) {					const animation = this.animations[i];					object.animations.push(serialize(meta.animations, animation));				}			}			if (isRootObject) {				const geometries = extractFromCache(meta.geometries);				const materials = extractFromCache(meta.materials);				const textures = extractFromCache(meta.textures);				const images = extractFromCache(meta.images);				const shapes = extractFromCache(meta.shapes);				const skeletons = extractFromCache(meta.skeletons);				const animations = extractFromCache(meta.animations);				if (geometries.length > 0) output.geometries = geometries;				if (materials.length > 0) output.materials = materials;				if (textures.length > 0) output.textures = textures;				if (images.length > 0) output.images = images;				if (shapes.length > 0) output.shapes = shapes;				if (skeletons.length > 0) output.skeletons = skeletons;				if (animations.length > 0) output.animations = animations;			}			output.object = object;			return output; // extract data from the cache hash			// remove metadata on each item			// and return as array			function extractFromCache(cache) {				const values = [];				for (const key in cache) {					const data = cache[key];					delete data.metadata;					values.push(data);				}				return values;			}		}		clone(recursive) {			return new this.constructor().copy(this, recursive);		}		copy(source, recursive = true) {			this.name = source.name;			this.up.copy(source.up);			this.position.copy(source.position);			this.rotation.order = source.rotation.order;			this.quaternion.copy(source.quaternion);			this.scale.copy(source.scale);			this.matrix.copy(source.matrix);			this.matrixWorld.copy(source.matrixWorld);			this.matrixAutoUpdate = source.matrixAutoUpdate;			this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;			this.layers.mask = source.layers.mask;			this.visible = source.visible;			this.castShadow = source.castShadow;			this.receiveShadow = source.receiveShadow;			this.frustumCulled = source.frustumCulled;			this.renderOrder = source.renderOrder;			this.userData = JSON.parse(JSON.stringify(source.userData));			if (recursive === true) {				for (let i = 0; i < source.children.length; i++) {					const child = source.children[i];					this.add(child.clone());				}			}			return this;		}	}	Object3D.DefaultUp = new Vector3(0, 1, 0);	Object3D.DefaultMatrixAutoUpdate = true;	Object3D.prototype.isObject3D = true;	const _v0$1 = /*@__PURE__*/new Vector3();	const _v1$3 = /*@__PURE__*/new Vector3();	const _v2$2 = /*@__PURE__*/new Vector3();	const _v3$1 = /*@__PURE__*/new Vector3();	const _vab = /*@__PURE__*/new Vector3();	const _vac = /*@__PURE__*/new Vector3();	const _vbc = /*@__PURE__*/new Vector3();	const _vap = /*@__PURE__*/new Vector3();	const _vbp = /*@__PURE__*/new Vector3();	const _vcp = /*@__PURE__*/new Vector3();	class Triangle {		constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) {			this.a = a;			this.b = b;			this.c = c;		}		static getNormal(a, b, c, target) {			target.subVectors(c, b);			_v0$1.subVectors(a, b);			target.cross(_v0$1);			const targetLengthSq = target.lengthSq();			if (targetLengthSq > 0) {				return target.multiplyScalar(1 / Math.sqrt(targetLengthSq));			}			return target.set(0, 0, 0);		} // static/instance method to calculate barycentric coordinates		// based on: http://www.blackpawn.com/texts/pointinpoly/default.html		static getBarycoord(point, a, b, c, target) {			_v0$1.subVectors(c, a);			_v1$3.subVectors(b, a);			_v2$2.subVectors(point, a);			const dot00 = _v0$1.dot(_v0$1);			const dot01 = _v0$1.dot(_v1$3);			const dot02 = _v0$1.dot(_v2$2);			const dot11 = _v1$3.dot(_v1$3);			const dot12 = _v1$3.dot(_v2$2);			const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle			if (denom === 0) {				// arbitrary location outside of triangle?				// not sure if this is the best idea, maybe should be returning undefined				return target.set(-2, -1, -1);			}			const invDenom = 1 / denom;			const u = (dot11 * dot02 - dot01 * dot12) * invDenom;			const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1			return target.set(1 - u - v, v, u);		}		static containsPoint(point, a, b, c) {			this.getBarycoord(point, a, b, c, _v3$1);			return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1;		}		static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) {			this.getBarycoord(point, p1, p2, p3, _v3$1);			target.set(0, 0);			target.addScaledVector(uv1, _v3$1.x);			target.addScaledVector(uv2, _v3$1.y);			target.addScaledVector(uv3, _v3$1.z);			return target;		}		static isFrontFacing(a, b, c, direction) {			_v0$1.subVectors(c, b);			_v1$3.subVectors(a, b); // strictly front facing			return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false;		}		set(a, b, c) {			this.a.copy(a);			this.b.copy(b);			this.c.copy(c);			return this;		}		setFromPointsAndIndices(points, i0, i1, i2) {			this.a.copy(points[i0]);			this.b.copy(points[i1]);			this.c.copy(points[i2]);			return this;		}		setFromAttributeAndIndices(attribute, i0, i1, i2) {			this.a.fromBufferAttribute(attribute, i0);			this.b.fromBufferAttribute(attribute, i1);			this.c.fromBufferAttribute(attribute, i2);			return this;		}		clone() {			return new this.constructor().copy(this);		}		copy(triangle) {			this.a.copy(triangle.a);			this.b.copy(triangle.b);			this.c.copy(triangle.c);			return this;		}		getArea() {			_v0$1.subVectors(this.c, this.b);			_v1$3.subVectors(this.a, this.b);			return _v0$1.cross(_v1$3).length() * 0.5;		}		getMidpoint(target) {			return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3);		}		getNormal(target) {			return Triangle.getNormal(this.a, this.b, this.c, target);		}		getPlane(target) {			return target.setFromCoplanarPoints(this.a, this.b, this.c);		}		getBarycoord(point, target) {			return Triangle.getBarycoord(point, this.a, this.b, this.c, target);		}		getUV(point, uv1, uv2, uv3, target) {			return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target);		}		containsPoint(point) {			return Triangle.containsPoint(point, this.a, this.b, this.c);		}		isFrontFacing(direction) {			return Triangle.isFrontFacing(this.a, this.b, this.c, direction);		}		intersectsBox(box) {			return box.intersectsTriangle(this);		}		closestPointToPoint(p, target) {			const a = this.a,						b = this.b,						c = this.c;			let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson,			// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,			// under the accompanying license; see chapter 5.1.5 for detailed explanation.			// basically, we're distinguishing which of the voronoi regions of the triangle			// the point lies in with the minimum amount of redundant computation.			_vab.subVectors(b, a);			_vac.subVectors(c, a);			_vap.subVectors(p, a);			const d1 = _vab.dot(_vap);			const d2 = _vac.dot(_vap);			if (d1 <= 0 && d2 <= 0) {				// vertex region of A; barycentric coords (1, 0, 0)				return target.copy(a);			}			_vbp.subVectors(p, b);			const d3 = _vab.dot(_vbp);			const d4 = _vac.dot(_vbp);			if (d3 >= 0 && d4 <= d3) {				// vertex region of B; barycentric coords (0, 1, 0)				return target.copy(b);			}			const vc = d1 * d4 - d3 * d2;			if (vc <= 0 && d1 >= 0 && d3 <= 0) {				v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0)				return target.copy(a).addScaledVector(_vab, v);			}			_vcp.subVectors(p, c);			const d5 = _vab.dot(_vcp);			const d6 = _vac.dot(_vcp);			if (d6 >= 0 && d5 <= d6) {				// vertex region of C; barycentric coords (0, 0, 1)				return target.copy(c);			}			const vb = d5 * d2 - d1 * d6;			if (vb <= 0 && d2 >= 0 && d6 <= 0) {				w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w)				return target.copy(a).addScaledVector(_vac, w);			}			const va = d3 * d6 - d5 * d4;			if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) {				_vbc.subVectors(c, b);				w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w)				return target.copy(b).addScaledVector(_vbc, w); // edge region of BC			} // face region			const denom = 1 / (va + vb + vc); // u = va * denom			v = vb * denom;			w = vc * denom;			return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w);		}		equals(triangle) {			return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c);		}	}	let materialId = 0;	class Material extends EventDispatcher {		constructor() {			super();			Object.defineProperty(this, 'id', {				value: materialId++			});			this.uuid = generateUUID();			this.name = '';			this.type = 'Material';			this.fog = true;			this.blending = NormalBlending;			this.side = FrontSide;			this.vertexColors = false;			this.opacity = 1;			this.format = RGBAFormat;			this.transparent = false;			this.blendSrc = SrcAlphaFactor;			this.blendDst = OneMinusSrcAlphaFactor;			this.blendEquation = AddEquation;			this.blendSrcAlpha = null;			this.blendDstAlpha = null;			this.blendEquationAlpha = null;			this.depthFunc = LessEqualDepth;			this.depthTest = true;			this.depthWrite = true;			this.stencilWriteMask = 0xff;			this.stencilFunc = AlwaysStencilFunc;			this.stencilRef = 0;			this.stencilFuncMask = 0xff;			this.stencilFail = KeepStencilOp;			this.stencilZFail = KeepStencilOp;			this.stencilZPass = KeepStencilOp;			this.stencilWrite = false;			this.clippingPlanes = null;			this.clipIntersection = false;			this.clipShadows = false;			this.shadowSide = null;			this.colorWrite = true;			this.precision = null; // override the renderer's default precision for this material			this.polygonOffset = false;			this.polygonOffsetFactor = 0;			this.polygonOffsetUnits = 0;			this.dithering = false;			this.alphaToCoverage = false;			this.premultipliedAlpha = false;			this.visible = true;			this.toneMapped = true;			this.userData = {};			this.version = 0;			this._alphaTest = 0;		}		get alphaTest() {			return this._alphaTest;		}		set alphaTest(value) {			if (this._alphaTest > 0 !== value > 0) {				this.version++;			}			this._alphaTest = value;		}		onBuild() {}		onBeforeRender() {}		onBeforeCompile() {}		customProgramCacheKey() {			return this.onBeforeCompile.toString();		}		setValues(values) {			if (values === undefined) return;			for (const key in values) {				const newValue = values[key];				if (newValue === undefined) {					console.warn('THREE.Material: \'' + key + '\' parameter is undefined.');					continue;				} // for backward compatability if shading is set in the constructor				if (key === 'shading') {					console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');					this.flatShading = newValue === FlatShading ? true : false;					continue;				}				const currentValue = this[key];				if (currentValue === undefined) {					console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.');					continue;				}				if (currentValue && currentValue.isColor) {					currentValue.set(newValue);				} else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) {					currentValue.copy(newValue);				} else {					this[key] = newValue;				}			}		}		toJSON(meta) {			const isRoot = meta === undefined || typeof meta === 'string';			if (isRoot) {				meta = {					textures: {},					images: {}				};			}			const data = {				metadata: {					version: 4.5,					type: 'Material',					generator: 'Material.toJSON'				}			}; // standard Material serialization			data.uuid = this.uuid;			data.type = this.type;			if (this.name !== '') data.name = this.name;			if (this.color && this.color.isColor) data.color = this.color.getHex();			if (this.roughness !== undefined) data.roughness = this.roughness;			if (this.metalness !== undefined) data.metalness = this.metalness;			if (this.sheen !== undefined) data.sheen = this.sheen;			if (this.sheenColor && this.sheenColor.isColor) data.sheenColor = this.sheenColor.getHex();			if (this.sheenRoughness !== undefined) data.sheenRoughness = this.sheenRoughness;			if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex();			if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity;			if (this.specular && this.specular.isColor) data.specular = this.specular.getHex();			if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity;			if (this.specularColor && this.specularColor.isColor) data.specularColor = this.specularColor.getHex();			if (this.shininess !== undefined) data.shininess = this.shininess;			if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat;			if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness;			if (this.clearcoatMap && this.clearcoatMap.isTexture) {				data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid;			}			if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) {				data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid;			}			if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) {				data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid;				data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();			}			if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid;			if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid;			if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid;			if (this.lightMap && this.lightMap.isTexture) {				data.lightMap = this.lightMap.toJSON(meta).uuid;				data.lightMapIntensity = this.lightMapIntensity;			}			if (this.aoMap && this.aoMap.isTexture) {				data.aoMap = this.aoMap.toJSON(meta).uuid;				data.aoMapIntensity = this.aoMapIntensity;			}			if (this.bumpMap && this.bumpMap.isTexture) {				data.bumpMap = this.bumpMap.toJSON(meta).uuid;				data.bumpScale = this.bumpScale;			}			if (this.normalMap && this.normalMap.isTexture) {				data.normalMap = this.normalMap.toJSON(meta).uuid;				data.normalMapType = this.normalMapType;				data.normalScale = this.normalScale.toArray();			}			if (this.displacementMap && this.displacementMap.isTexture) {				data.displacementMap = this.displacementMap.toJSON(meta).uuid;				data.displacementScale = this.displacementScale;				data.displacementBias = this.displacementBias;			}			if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid;			if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid;			if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid;			if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid;			if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid;			if (this.specularColorMap && this.specularColorMap.isTexture) data.specularColorMap = this.specularColorMap.toJSON(meta).uuid;			if (this.envMap && this.envMap.isTexture) {				data.envMap = this.envMap.toJSON(meta).uuid;				if (this.combine !== undefined) data.combine = this.combine;			}			if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity;			if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity;			if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio;			if (this.gradientMap && this.gradientMap.isTexture) {				data.gradientMap = this.gradientMap.toJSON(meta).uuid;			}			if (this.transmission !== undefined) data.transmission = this.transmission;			if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid;			if (this.thickness !== undefined) data.thickness = this.thickness;			if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid;			if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance;			if (this.attenuationColor !== undefined) data.attenuationColor = this.attenuationColor.getHex();			if (this.size !== undefined) data.size = this.size;			if (this.shadowSide !== null) data.shadowSide = this.shadowSide;			if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation;			if (this.blending !== NormalBlending) data.blending = this.blending;			if (this.side !== FrontSide) data.side = this.side;			if (this.vertexColors) data.vertexColors = true;			if (this.opacity < 1) data.opacity = this.opacity;			if (this.format !== RGBAFormat) data.format = this.format;			if (this.transparent === true) data.transparent = this.transparent;			data.depthFunc = this.depthFunc;			data.depthTest = this.depthTest;			data.depthWrite = this.depthWrite;			data.colorWrite = this.colorWrite;			data.stencilWrite = this.stencilWrite;			data.stencilWriteMask = this.stencilWriteMask;			data.stencilFunc = this.stencilFunc;			data.stencilRef = this.stencilRef;			data.stencilFuncMask = this.stencilFuncMask;			data.stencilFail = this.stencilFail;			data.stencilZFail = this.stencilZFail;			data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial)			if (this.rotation && this.rotation !== 0) data.rotation = this.rotation;			if (this.polygonOffset === true) data.polygonOffset = true;			if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor;			if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits;			if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth;			if (this.dashSize !== undefined) data.dashSize = this.dashSize;			if (this.gapSize !== undefined) data.gapSize = this.gapSize;			if (this.scale !== undefined) data.scale = this.scale;			if (this.dithering === true) data.dithering = true;			if (this.alphaTest > 0) data.alphaTest = this.alphaTest;			if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage;			if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha;			if (this.wireframe === true) data.wireframe = this.wireframe;			if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth;			if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap;			if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin;			if (this.flatShading === true) data.flatShading = this.flatShading;			if (this.visible === false) data.visible = false;			if (this.toneMapped === false) data.toneMapped = false;			if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON			function extractFromCache(cache) {				const values = [];				for (const key in cache) {					const data = cache[key];					delete data.metadata;					values.push(data);				}				return values;			}			if (isRoot) {				const textures = extractFromCache(meta.textures);				const images = extractFromCache(meta.images);				if (textures.length > 0) data.textures = textures;				if (images.length > 0) data.images = images;			}			return data;		}		clone() {			return new this.constructor().copy(this);		}		copy(source) {			this.name = source.name;			this.fog = source.fog;			this.blending = source.blending;			this.side = source.side;			this.vertexColors = source.vertexColors;			this.opacity = source.opacity;			this.format = source.format;			this.transparent = source.transparent;			this.blendSrc = source.blendSrc;			this.blendDst = source.blendDst;			this.blendEquation = source.blendEquation;			this.blendSrcAlpha = source.blendSrcAlpha;			this.blendDstAlpha = source.blendDstAlpha;			this.blendEquationAlpha = source.blendEquationAlpha;			this.depthFunc = source.depthFunc;			this.depthTest = source.depthTest;			this.depthWrite = source.depthWrite;			this.stencilWriteMask = source.stencilWriteMask;			this.stencilFunc = source.stencilFunc;			this.stencilRef = source.stencilRef;			this.stencilFuncMask = source.stencilFuncMask;			this.stencilFail = source.stencilFail;			this.stencilZFail = source.stencilZFail;			this.stencilZPass = source.stencilZPass;			this.stencilWrite = source.stencilWrite;			const srcPlanes = source.clippingPlanes;			let dstPlanes = null;			if (srcPlanes !== null) {				const n = srcPlanes.length;				dstPlanes = new Array(n);				for (let i = 0; i !== n; ++i) {					dstPlanes[i] = srcPlanes[i].clone();				}			}			this.clippingPlanes = dstPlanes;			this.clipIntersection = source.clipIntersection;			this.clipShadows = source.clipShadows;			this.shadowSide = source.shadowSide;			this.colorWrite = source.colorWrite;			this.precision = source.precision;			this.polygonOffset = source.polygonOffset;			this.polygonOffsetFactor = source.polygonOffsetFactor;			this.polygonOffsetUnits = source.polygonOffsetUnits;			this.dithering = source.dithering;			this.alphaTest = source.alphaTest;			this.alphaToCoverage = source.alphaToCoverage;			this.premultipliedAlpha = source.premultipliedAlpha;			this.visible = source.visible;			this.toneMapped = source.toneMapped;			this.userData = JSON.parse(JSON.stringify(source.userData));			return this;		}		dispose() {			this.dispatchEvent({				type: 'dispose'			});		}		set needsUpdate(value) {			if (value === true) this.version++;		}	}	Material.prototype.isMaterial = true;	const _colorKeywords = {		'aliceblue': 0xF0F8FF,		'antiquewhite': 0xFAEBD7,		'aqua': 0x00FFFF,		'aquamarine': 0x7FFFD4,		'azure': 0xF0FFFF,		'beige': 0xF5F5DC,		'bisque': 0xFFE4C4,		'black': 0x000000,		'blanchedalmond': 0xFFEBCD,		'blue': 0x0000FF,		'blueviolet': 0x8A2BE2,		'brown': 0xA52A2A,		'burlywood': 0xDEB887,		'cadetblue': 0x5F9EA0,		'chartreuse': 0x7FFF00,		'chocolate': 0xD2691E,		'coral': 0xFF7F50,		'cornflowerblue': 0x6495ED,		'cornsilk': 0xFFF8DC,		'crimson': 0xDC143C,		'cyan': 0x00FFFF,		'darkblue': 0x00008B,		'darkcyan': 0x008B8B,		'darkgoldenrod': 0xB8860B,		'darkgray': 0xA9A9A9,		'darkgreen': 0x006400,		'darkgrey': 0xA9A9A9,		'darkkhaki': 0xBDB76B,		'darkmagenta': 0x8B008B,		'darkolivegreen': 0x556B2F,		'darkorange': 0xFF8C00,		'darkorchid': 0x9932CC,		'darkred': 0x8B0000,		'darksalmon': 0xE9967A,		'darkseagreen': 0x8FBC8F,		'darkslateblue': 0x483D8B,		'darkslategray': 0x2F4F4F,		'darkslategrey': 0x2F4F4F,		'darkturquoise': 0x00CED1,		'darkviolet': 0x9400D3,		'deeppink': 0xFF1493,		'deepskyblue': 0x00BFFF,		'dimgray': 0x696969,		'dimgrey': 0x696969,		'dodgerblue': 0x1E90FF,		'firebrick': 0xB22222,		'floralwhite': 0xFFFAF0,		'forestgreen': 0x228B22,		'fuchsia': 0xFF00FF,		'gainsboro': 0xDCDCDC,		'ghostwhite': 0xF8F8FF,		'gold': 0xFFD700,		'goldenrod': 0xDAA520,		'gray': 0x808080,		'green': 0x008000,		'greenyellow': 0xADFF2F,		'grey': 0x808080,		'honeydew': 0xF0FFF0,		'hotpink': 0xFF69B4,		'indianred': 0xCD5C5C,		'indigo': 0x4B0082,		'ivory': 0xFFFFF0,		'khaki': 0xF0E68C,		'lavender': 0xE6E6FA,		'lavenderblush': 0xFFF0F5,		'lawngreen': 0x7CFC00,		'lemonchiffon': 0xFFFACD,		'lightblue': 0xADD8E6,		'lightcoral': 0xF08080,		'lightcyan': 0xE0FFFF,		'lightgoldenrodyellow': 0xFAFAD2,		'lightgray': 0xD3D3D3,		'lightgreen': 0x90EE90,		'lightgrey': 0xD3D3D3,		'lightpink': 0xFFB6C1,		'lightsalmon': 0xFFA07A,		'lightseagreen': 0x20B2AA,		'lightskyblue': 0x87CEFA,		'lightslategray': 0x778899,		'lightslategrey': 0x778899,		'lightsteelblue': 0xB0C4DE,		'lightyellow': 0xFFFFE0,		'lime': 0x00FF00,		'limegreen': 0x32CD32,		'linen': 0xFAF0E6,		'magenta': 0xFF00FF,		'maroon': 0x800000,		'mediumaquamarine': 0x66CDAA,		'mediumblue': 0x0000CD,		'mediumorchid': 0xBA55D3,		'mediumpurple': 0x9370DB,		'mediumseagreen': 0x3CB371,		'mediumslateblue': 0x7B68EE,		'mediumspringgreen': 0x00FA9A,		'mediumturquoise': 0x48D1CC,		'mediumvioletred': 0xC71585,		'midnightblue': 0x191970,		'mintcream': 0xF5FFFA,		'mistyrose': 0xFFE4E1,		'moccasin': 0xFFE4B5,		'navajowhite': 0xFFDEAD,		'navy': 0x000080,		'oldlace': 0xFDF5E6,		'olive': 0x808000,		'olivedrab': 0x6B8E23,		'orange': 0xFFA500,		'orangered': 0xFF4500,		'orchid': 0xDA70D6,		'palegoldenrod': 0xEEE8AA,		'palegreen': 0x98FB98,		'paleturquoise': 0xAFEEEE,		'palevioletred': 0xDB7093,		'papayawhip': 0xFFEFD5,		'peachpuff': 0xFFDAB9,		'peru': 0xCD853F,		'pink': 0xFFC0CB,		'plum': 0xDDA0DD,		'powderblue': 0xB0E0E6,		'purple': 0x800080,		'rebeccapurple': 0x663399,		'red': 0xFF0000,		'rosybrown': 0xBC8F8F,		'royalblue': 0x4169E1,		'saddlebrown': 0x8B4513,		'salmon': 0xFA8072,		'sandybrown': 0xF4A460,		'seagreen': 0x2E8B57,		'seashell': 0xFFF5EE,		'sienna': 0xA0522D,		'silver': 0xC0C0C0,		'skyblue': 0x87CEEB,		'slateblue': 0x6A5ACD,		'slategray': 0x708090,		'slategrey': 0x708090,		'snow': 0xFFFAFA,		'springgreen': 0x00FF7F,		'steelblue': 0x4682B4,		'tan': 0xD2B48C,		'teal': 0x008080,		'thistle': 0xD8BFD8,		'tomato': 0xFF6347,		'turquoise': 0x40E0D0,		'violet': 0xEE82EE,		'wheat': 0xF5DEB3,		'white': 0xFFFFFF,		'whitesmoke': 0xF5F5F5,		'yellow': 0xFFFF00,		'yellowgreen': 0x9ACD32	};	const _hslA = {		h: 0,		s: 0,		l: 0	};	const _hslB = {		h: 0,		s: 0,		l: 0	};	function hue2rgb(p, q, t) {		if (t < 0) t += 1;		if (t > 1) t -= 1;		if (t < 1 / 6) return p + (q - p) * 6 * t;		if (t < 1 / 2) return q;		if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t);		return p;	}	function SRGBToLinear(c) {		return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4);	}	function LinearToSRGB(c) {		return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055;	}	class Color {		constructor(r, g, b) {			if (g === undefined && b === undefined) {				// r is THREE.Color, hex or string				return this.set(r);			}			return this.setRGB(r, g, b);		}		set(value) {			if (value && value.isColor) {				this.copy(value);			} else if (typeof value === 'number') {				this.setHex(value);			} else if (typeof value === 'string') {				this.setStyle(value);			}			return this;		}		setScalar(scalar) {			this.r = scalar;			this.g = scalar;			this.b = scalar;			return this;		}		setHex(hex) {			hex = Math.floor(hex);			this.r = (hex >> 16 & 255) / 255;			this.g = (hex >> 8 & 255) / 255;			this.b = (hex & 255) / 255;			return this;		}		setRGB(r, g, b) {			this.r = r;			this.g = g;			this.b = b;			return this;		}		setHSL(h, s, l) {			// h,s,l ranges are in 0.0 - 1.0			h = euclideanModulo(h, 1);			s = clamp(s, 0, 1);			l = clamp(l, 0, 1);			if (s === 0) {				this.r = this.g = this.b = l;			} else {				const p = l <= 0.5 ? l * (1 + s) : l + s - l * s;				const q = 2 * l - p;				this.r = hue2rgb(q, p, h + 1 / 3);				this.g = hue2rgb(q, p, h);				this.b = hue2rgb(q, p, h - 1 / 3);			}			return this;		}		setStyle(style) {			function handleAlpha(string) {				if (string === undefined) return;				if (parseFloat(string) < 1) {					console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.');				}			}			let m;			if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) {				// rgb / hsl				let color;				const name = m[1];				const components = m[2];				switch (name) {					case 'rgb':					case 'rgba':						if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {							// rgb(255,0,0) rgba(255,0,0,0.5)							this.r = Math.min(255, parseInt(color[1], 10)) / 255;							this.g = Math.min(255, parseInt(color[2], 10)) / 255;							this.b = Math.min(255, parseInt(color[3], 10)) / 255;							handleAlpha(color[4]);							return this;						}						if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {							// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)							this.r = Math.min(100, parseInt(color[1], 10)) / 100;							this.g = Math.min(100, parseInt(color[2], 10)) / 100;							this.b = Math.min(100, parseInt(color[3], 10)) / 100;							handleAlpha(color[4]);							return this;						}						break;					case 'hsl':					case 'hsla':						if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {							// hsl(120,50%,50%) hsla(120,50%,50%,0.5)							const h = parseFloat(color[1]) / 360;							const s = parseInt(color[2], 10) / 100;							const l = parseInt(color[3], 10) / 100;							handleAlpha(color[4]);							return this.setHSL(h, s, l);						}						break;				}			} else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) {				// hex color				const hex = m[1];				const size = hex.length;				if (size === 3) {					// #ff0					this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255;					this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255;					this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255;					return this;				} else if (size === 6) {					// #ff0000					this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255;					this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255;					this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255;					return this;				}			}			if (style && style.length > 0) {				return this.setColorName(style);			}			return this;		}		setColorName(style) {			// color keywords			const hex = _colorKeywords[style.toLowerCase()];			if (hex !== undefined) {				// red				this.setHex(hex);			} else {				// unknown color				console.warn('THREE.Color: Unknown color ' + style);			}			return this;		}		clone() {			return new this.constructor(this.r, this.g, this.b);		}		copy(color) {			this.r = color.r;			this.g = color.g;			this.b = color.b;			return this;		}		copyGammaToLinear(color, gammaFactor = 2.0) {			this.r = Math.pow(color.r, gammaFactor);			this.g = Math.pow(color.g, gammaFactor);			this.b = Math.pow(color.b, gammaFactor);			return this;		}		copyLinearToGamma(color, gammaFactor = 2.0) {			const safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0;			this.r = Math.pow(color.r, safeInverse);			this.g = Math.pow(color.g, safeInverse);			this.b = Math.pow(color.b, safeInverse);			return this;		}		convertGammaToLinear(gammaFactor) {			this.copyGammaToLinear(this, gammaFactor);			return this;		}		convertLinearToGamma(gammaFactor) {			this.copyLinearToGamma(this, gammaFactor);			return this;		}		copySRGBToLinear(color) {			this.r = SRGBToLinear(color.r);			this.g = SRGBToLinear(color.g);			this.b = SRGBToLinear(color.b);			return this;		}		copyLinearToSRGB(color) {			this.r = LinearToSRGB(color.r);			this.g = LinearToSRGB(color.g);			this.b = LinearToSRGB(color.b);			return this;		}		convertSRGBToLinear() {			this.copySRGBToLinear(this);			return this;		}		convertLinearToSRGB() {			this.copyLinearToSRGB(this);			return this;		}		getHex() {			return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0;		}		getHexString() {			return ('000000' + this.getHex().toString(16)).slice(-6);		}		getHSL(target) {			// h,s,l ranges are in 0.0 - 1.0			const r = this.r,						g = this.g,						b = this.b;			const max = Math.max(r, g, b);			const min = Math.min(r, g, b);			let hue, saturation;			const lightness = (min + max) / 2.0;			if (min === max) {				hue = 0;				saturation = 0;			} else {				const delta = max - min;				saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min);				switch (max) {					case r:						hue = (g - b) / delta + (g < b ? 6 : 0);						break;					case g:						hue = (b - r) / delta + 2;						break;					case b:						hue = (r - g) / delta + 4;						break;				}				hue /= 6;			}			target.h = hue;			target.s = saturation;			target.l = lightness;			return target;		}		getStyle() {			return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')';		}		offsetHSL(h, s, l) {			this.getHSL(_hslA);			_hslA.h += h;			_hslA.s += s;			_hslA.l += l;			this.setHSL(_hslA.h, _hslA.s, _hslA.l);			return this;		}		add(color) {			this.r += color.r;			this.g += color.g;			this.b += color.b;			return this;		}		addColors(color1, color2) {			this.r = color1.r + color2.r;			this.g = color1.g + color2.g;			this.b = color1.b + color2.b;			return this;		}		addScalar(s) {			this.r += s;			this.g += s;			this.b += s;			return this;		}		sub(color) {			this.r = Math.max(0, this.r - color.r);			this.g = Math.max(0, this.g - color.g);			this.b = Math.max(0, this.b - color.b);			return this;		}		multiply(color) {			this.r *= color.r;			this.g *= color.g;			this.b *= color.b;			return this;		}		multiplyScalar(s) {			this.r *= s;			this.g *= s;			this.b *= s;			return this;		}		lerp(color, alpha) {			this.r += (color.r - this.r) * alpha;			this.g += (color.g - this.g) * alpha;			this.b += (color.b - this.b) * alpha;			return this;		}		lerpColors(color1, color2, alpha) {			this.r = color1.r + (color2.r - color1.r) * alpha;			this.g = color1.g + (color2.g - color1.g) * alpha;			this.b = color1.b + (color2.b - color1.b) * alpha;			return this;		}		lerpHSL(color, alpha) {			this.getHSL(_hslA);			color.getHSL(_hslB);			const h = lerp(_hslA.h, _hslB.h, alpha);			const s = lerp(_hslA.s, _hslB.s, alpha);			const l = lerp(_hslA.l, _hslB.l, alpha);			this.setHSL(h, s, l);			return this;		}		equals(c) {			return c.r === this.r && c.g === this.g && c.b === this.b;		}		fromArray(array, offset = 0) {			this.r = array[offset];			this.g = array[offset + 1];			this.b = array[offset + 2];			return this;		}		toArray(array = [], offset = 0) {			array[offset] = this.r;			array[offset + 1] = this.g;			array[offset + 2] = this.b;			return array;		}		fromBufferAttribute(attribute, index) {			this.r = attribute.getX(index);			this.g = attribute.getY(index);			this.b = attribute.getZ(index);			if (attribute.normalized === true) {				// assuming Uint8Array				this.r /= 255;				this.g /= 255;				this.b /= 255;			}			return this;		}		toJSON() {			return this.getHex();		}	}	Color.NAMES = _colorKeywords;	Color.prototype.isColor = true;	Color.prototype.r = 1;	Color.prototype.g = 1;	Color.prototype.b = 1;	/**	 * parameters = {	 *	color: <hex>,	 *	opacity: <float>,	 *	map: new THREE.Texture( <Image> ),	 *	 *	lightMap: new THREE.Texture( <Image> ),	 *	lightMapIntensity: <float>	 *	 *	aoMap: new THREE.Texture( <Image> ),	 *	aoMapIntensity: <float>	 *	 *	specularMap: new THREE.Texture( <Image> ),	 *	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),	 *	combine: THREE.Multiply,	 *	reflectivity: <float>,	 *	refractionRatio: <float>,	 *	 *	depthTest: <bool>,	 *	depthWrite: <bool>,	 *	 *	wireframe: <boolean>,	 *	wireframeLinewidth: <float>,	 * }	 */	class MeshBasicMaterial extends Material {		constructor(parameters) {			super();			this.type = 'MeshBasicMaterial';			this.color = new Color(0xffffff); // emissive			this.map = null;			this.lightMap = null;			this.lightMapIntensity = 1.0;			this.aoMap = null;			this.aoMapIntensity = 1.0;			this.specularMap = null;			this.alphaMap = null;			this.envMap = null;			this.combine = MultiplyOperation;			this.reflectivity = 1;			this.refractionRatio = 0.98;			this.wireframe = false;			this.wireframeLinewidth = 1;			this.wireframeLinecap = 'round';			this.wireframeLinejoin = 'round';			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			this.map = source.map;			this.lightMap = source.lightMap;			this.lightMapIntensity = source.lightMapIntensity;			this.aoMap = source.aoMap;			this.aoMapIntensity = source.aoMapIntensity;			this.specularMap = source.specularMap;			this.alphaMap = source.alphaMap;			this.envMap = source.envMap;			this.combine = source.combine;			this.reflectivity = source.reflectivity;			this.refractionRatio = source.refractionRatio;			this.wireframe = source.wireframe;			this.wireframeLinewidth = source.wireframeLinewidth;			this.wireframeLinecap = source.wireframeLinecap;			this.wireframeLinejoin = source.wireframeLinejoin;			return this;		}	}	MeshBasicMaterial.prototype.isMeshBasicMaterial = true;	const _vector$9 = /*@__PURE__*/new Vector3();	const _vector2$1 = /*@__PURE__*/new Vector2();	class BufferAttribute {		constructor(array, itemSize, normalized) {			if (Array.isArray(array)) {				throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.');			}			this.name = '';			this.array = array;			this.itemSize = itemSize;			this.count = array !== undefined ? array.length / itemSize : 0;			this.normalized = normalized === true;			this.usage = StaticDrawUsage;			this.updateRange = {				offset: 0,				count: -1			};			this.version = 0;		}		onUploadCallback() {}		set needsUpdate(value) {			if (value === true) this.version++;		}		setUsage(value) {			this.usage = value;			return this;		}		copy(source) {			this.name = source.name;			this.array = new source.array.constructor(source.array);			this.itemSize = source.itemSize;			this.count = source.count;			this.normalized = source.normalized;			this.usage = source.usage;			return this;		}		copyAt(index1, attribute, index2) {			index1 *= this.itemSize;			index2 *= attribute.itemSize;			for (let i = 0, l = this.itemSize; i < l; i++) {				this.array[index1 + i] = attribute.array[index2 + i];			}			return this;		}		copyArray(array) {			this.array.set(array);			return this;		}		copyColorsArray(colors) {			const array = this.array;			let offset = 0;			for (let i = 0, l = colors.length; i < l; i++) {				let color = colors[i];				if (color === undefined) {					console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i);					color = new Color();				}				array[offset++] = color.r;				array[offset++] = color.g;				array[offset++] = color.b;			}			return this;		}		copyVector2sArray(vectors) {			const array = this.array;			let offset = 0;			for (let i = 0, l = vectors.length; i < l; i++) {				let vector = vectors[i];				if (vector === undefined) {					console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i);					vector = new Vector2();				}				array[offset++] = vector.x;				array[offset++] = vector.y;			}			return this;		}		copyVector3sArray(vectors) {			const array = this.array;			let offset = 0;			for (let i = 0, l = vectors.length; i < l; i++) {				let vector = vectors[i];				if (vector === undefined) {					console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i);					vector = new Vector3();				}				array[offset++] = vector.x;				array[offset++] = vector.y;				array[offset++] = vector.z;			}			return this;		}		copyVector4sArray(vectors) {			const array = this.array;			let offset = 0;			for (let i = 0, l = vectors.length; i < l; i++) {				let vector = vectors[i];				if (vector === undefined) {					console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i);					vector = new Vector4();				}				array[offset++] = vector.x;				array[offset++] = vector.y;				array[offset++] = vector.z;				array[offset++] = vector.w;			}			return this;		}		applyMatrix3(m) {			if (this.itemSize === 2) {				for (let i = 0, l = this.count; i < l; i++) {					_vector2$1.fromBufferAttribute(this, i);					_vector2$1.applyMatrix3(m);					this.setXY(i, _vector2$1.x, _vector2$1.y);				}			} else if (this.itemSize === 3) {				for (let i = 0, l = this.count; i < l; i++) {					_vector$9.fromBufferAttribute(this, i);					_vector$9.applyMatrix3(m);					this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);				}			}			return this;		}		applyMatrix4(m) {			for (let i = 0, l = this.count; i < l; i++) {				_vector$9.x = this.getX(i);				_vector$9.y = this.getY(i);				_vector$9.z = this.getZ(i);				_vector$9.applyMatrix4(m);				this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);			}			return this;		}		applyNormalMatrix(m) {			for (let i = 0, l = this.count; i < l; i++) {				_vector$9.x = this.getX(i);				_vector$9.y = this.getY(i);				_vector$9.z = this.getZ(i);				_vector$9.applyNormalMatrix(m);				this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);			}			return this;		}		transformDirection(m) {			for (let i = 0, l = this.count; i < l; i++) {				_vector$9.x = this.getX(i);				_vector$9.y = this.getY(i);				_vector$9.z = this.getZ(i);				_vector$9.transformDirection(m);				this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);			}			return this;		}		set(value, offset = 0) {			this.array.set(value, offset);			return this;		}		getX(index) {			return this.array[index * this.itemSize];		}		setX(index, x) {			this.array[index * this.itemSize] = x;			return this;		}		getY(index) {			return this.array[index * this.itemSize + 1];		}		setY(index, y) {			this.array[index * this.itemSize + 1] = y;			return this;		}		getZ(index) {			return this.array[index * this.itemSize + 2];		}		setZ(index, z) {			this.array[index * this.itemSize + 2] = z;			return this;		}		getW(index) {			return this.array[index * this.itemSize + 3];		}		setW(index, w) {			this.array[index * this.itemSize + 3] = w;			return this;		}		setXY(index, x, y) {			index *= this.itemSize;			this.array[index + 0] = x;			this.array[index + 1] = y;			return this;		}		setXYZ(index, x, y, z) {			index *= this.itemSize;			this.array[index + 0] = x;			this.array[index + 1] = y;			this.array[index + 2] = z;			return this;		}		setXYZW(index, x, y, z, w) {			index *= this.itemSize;			this.array[index + 0] = x;			this.array[index + 1] = y;			this.array[index + 2] = z;			this.array[index + 3] = w;			return this;		}		onUpload(callback) {			this.onUploadCallback = callback;			return this;		}		clone() {			return new this.constructor(this.array, this.itemSize).copy(this);		}		toJSON() {			const data = {				itemSize: this.itemSize,				type: this.array.constructor.name,				array: Array.prototype.slice.call(this.array),				normalized: this.normalized			};			if (this.name !== '') data.name = this.name;			if (this.usage !== StaticDrawUsage) data.usage = this.usage;			if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange;			return data;		}	}	BufferAttribute.prototype.isBufferAttribute = true; //	class Int8BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Int8Array(array), itemSize, normalized);		}	}	class Uint8BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Uint8Array(array), itemSize, normalized);		}	}	class Uint8ClampedBufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Uint8ClampedArray(array), itemSize, normalized);		}	}	class Int16BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Int16Array(array), itemSize, normalized);		}	}	class Uint16BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Uint16Array(array), itemSize, normalized);		}	}	class Int32BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Int32Array(array), itemSize, normalized);		}	}	class Uint32BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Uint32Array(array), itemSize, normalized);		}	}	class Float16BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Uint16Array(array), itemSize, normalized);		}	}	Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;	class Float32BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Float32Array(array), itemSize, normalized);		}	}	class Float64BufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized) {			super(new Float64Array(array), itemSize, normalized);		}	} //	let _id = 0;	const _m1 = /*@__PURE__*/new Matrix4();	const _obj = /*@__PURE__*/new Object3D();	const _offset = /*@__PURE__*/new Vector3();	const _box$1 = /*@__PURE__*/new Box3();	const _boxMorphTargets = /*@__PURE__*/new Box3();	const _vector$8 = /*@__PURE__*/new Vector3();	class BufferGeometry extends EventDispatcher {		constructor() {			super();			Object.defineProperty(this, 'id', {				value: _id++			});			this.uuid = generateUUID();			this.name = '';			this.type = 'BufferGeometry';			this.index = null;			this.attributes = {};			this.morphAttributes = {};			this.morphTargetsRelative = false;			this.groups = [];			this.boundingBox = null;			this.boundingSphere = null;			this.drawRange = {				start: 0,				count: Infinity			};			this.userData = {};		}		getIndex() {			return this.index;		}		setIndex(index) {			if (Array.isArray(index)) {				this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1);			} else {				this.index = index;			}			return this;		}		getAttribute(name) {			return this.attributes[name];		}		setAttribute(name, attribute) {			this.attributes[name] = attribute;			return this;		}		deleteAttribute(name) {			delete this.attributes[name];			return this;		}		hasAttribute(name) {			return this.attributes[name] !== undefined;		}		addGroup(start, count, materialIndex = 0) {			this.groups.push({				start: start,				count: count,				materialIndex: materialIndex			});		}		clearGroups() {			this.groups = [];		}		setDrawRange(start, count) {			this.drawRange.start = start;			this.drawRange.count = count;		}		applyMatrix4(matrix) {			const position = this.attributes.position;			if (position !== undefined) {				position.applyMatrix4(matrix);				position.needsUpdate = true;			}			const normal = this.attributes.normal;			if (normal !== undefined) {				const normalMatrix = new Matrix3().getNormalMatrix(matrix);				normal.applyNormalMatrix(normalMatrix);				normal.needsUpdate = true;			}			const tangent = this.attributes.tangent;			if (tangent !== undefined) {				tangent.transformDirection(matrix);				tangent.needsUpdate = true;			}			if (this.boundingBox !== null) {				this.computeBoundingBox();			}			if (this.boundingSphere !== null) {				this.computeBoundingSphere();			}			return this;		}		applyQuaternion(q) {			_m1.makeRotationFromQuaternion(q);			this.applyMatrix4(_m1);			return this;		}		rotateX(angle) {			// rotate geometry around world x-axis			_m1.makeRotationX(angle);			this.applyMatrix4(_m1);			return this;		}		rotateY(angle) {			// rotate geometry around world y-axis			_m1.makeRotationY(angle);			this.applyMatrix4(_m1);			return this;		}		rotateZ(angle) {			// rotate geometry around world z-axis			_m1.makeRotationZ(angle);			this.applyMatrix4(_m1);			return this;		}		translate(x, y, z) {			// translate geometry			_m1.makeTranslation(x, y, z);			this.applyMatrix4(_m1);			return this;		}		scale(x, y, z) {			// scale geometry			_m1.makeScale(x, y, z);			this.applyMatrix4(_m1);			return this;		}		lookAt(vector) {			_obj.lookAt(vector);			_obj.updateMatrix();			this.applyMatrix4(_obj.matrix);			return this;		}		center() {			this.computeBoundingBox();			this.boundingBox.getCenter(_offset).negate();			this.translate(_offset.x, _offset.y, _offset.z);			return this;		}		setFromPoints(points) {			const position = [];			for (let i = 0, l = points.length; i < l; i++) {				const point = points[i];				position.push(point.x, point.y, point.z || 0);			}			this.setAttribute('position', new Float32BufferAttribute(position, 3));			return this;		}		computeBoundingBox() {			if (this.boundingBox === null) {				this.boundingBox = new Box3();			}			const position = this.attributes.position;			const morphAttributesPosition = this.morphAttributes.position;			if (position && position.isGLBufferAttribute) {				console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this);				this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity));				return;			}			if (position !== undefined) {				this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present				if (morphAttributesPosition) {					for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {						const morphAttribute = morphAttributesPosition[i];						_box$1.setFromBufferAttribute(morphAttribute);						if (this.morphTargetsRelative) {							_vector$8.addVectors(this.boundingBox.min, _box$1.min);							this.boundingBox.expandByPoint(_vector$8);							_vector$8.addVectors(this.boundingBox.max, _box$1.max);							this.boundingBox.expandByPoint(_vector$8);						} else {							this.boundingBox.expandByPoint(_box$1.min);							this.boundingBox.expandByPoint(_box$1.max);						}					}				}			} else {				this.boundingBox.makeEmpty();			}			if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) {				console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this);			}		}		computeBoundingSphere() {			if (this.boundingSphere === null) {				this.boundingSphere = new Sphere();			}			const position = this.attributes.position;			const morphAttributesPosition = this.morphAttributes.position;			if (position && position.isGLBufferAttribute) {				console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this);				this.boundingSphere.set(new Vector3(), Infinity);				return;			}			if (position) {				// first, find the center of the bounding sphere				const center = this.boundingSphere.center;				_box$1.setFromBufferAttribute(position); // process morph attributes if present				if (morphAttributesPosition) {					for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {						const morphAttribute = morphAttributesPosition[i];						_boxMorphTargets.setFromBufferAttribute(morphAttribute);						if (this.morphTargetsRelative) {							_vector$8.addVectors(_box$1.min, _boxMorphTargets.min);							_box$1.expandByPoint(_vector$8);							_vector$8.addVectors(_box$1.max, _boxMorphTargets.max);							_box$1.expandByPoint(_vector$8);						} else {							_box$1.expandByPoint(_boxMorphTargets.min);							_box$1.expandByPoint(_boxMorphTargets.max);						}					}				}				_box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the				// boundingSphere of the boundingBox: sqrt(3) smaller in the best case				let maxRadiusSq = 0;				for (let i = 0, il = position.count; i < il; i++) {					_vector$8.fromBufferAttribute(position, i);					maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));				} // process morph attributes if present				if (morphAttributesPosition) {					for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {						const morphAttribute = morphAttributesPosition[i];						const morphTargetsRelative = this.morphTargetsRelative;						for (let j = 0, jl = morphAttribute.count; j < jl; j++) {							_vector$8.fromBufferAttribute(morphAttribute, j);							if (morphTargetsRelative) {								_offset.fromBufferAttribute(position, j);								_vector$8.add(_offset);							}							maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));						}					}				}				this.boundingSphere.radius = Math.sqrt(maxRadiusSq);				if (isNaN(this.boundingSphere.radius)) {					console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this);				}			}		}		computeTangents() {			const index = this.index;			const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html			// (per vertex tangents)			if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {				console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)');				return;			}			const indices = index.array;			const positions = attributes.position.array;			const normals = attributes.normal.array;			const uvs = attributes.uv.array;			const nVertices = positions.length / 3;			if (attributes.tangent === undefined) {				this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4));			}			const tangents = attributes.tangent.array;			const tan1 = [],						tan2 = [];			for (let i = 0; i < nVertices; i++) {				tan1[i] = new Vector3();				tan2[i] = new Vector3();			}			const vA = new Vector3(),						vB = new Vector3(),						vC = new Vector3(),						uvA = new Vector2(),						uvB = new Vector2(),						uvC = new Vector2(),						sdir = new Vector3(),						tdir = new Vector3();			function handleTriangle(a, b, c) {				vA.fromArray(positions, a * 3);				vB.fromArray(positions, b * 3);				vC.fromArray(positions, c * 3);				uvA.fromArray(uvs, a * 2);				uvB.fromArray(uvs, b * 2);				uvC.fromArray(uvs, c * 2);				vB.sub(vA);				vC.sub(vA);				uvB.sub(uvA);				uvC.sub(uvA);				const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices				if (!isFinite(r)) return;				sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r);				tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r);				tan1[a].add(sdir);				tan1[b].add(sdir);				tan1[c].add(sdir);				tan2[a].add(tdir);				tan2[b].add(tdir);				tan2[c].add(tdir);			}			let groups = this.groups;			if (groups.length === 0) {				groups = [{					start: 0,					count: indices.length				}];			}			for (let i = 0, il = groups.length; i < il; ++i) {				const group = groups[i];				const start = group.start;				const count = group.count;				for (let j = start, jl = start + count; j < jl; j += 3) {					handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);				}			}			const tmp = new Vector3(),						tmp2 = new Vector3();			const n = new Vector3(),						n2 = new Vector3();			function handleVertex(v) {				n.fromArray(normals, v * 3);				n2.copy(n);				const t = tan1[v]; // Gram-Schmidt orthogonalize				tmp.copy(t);				tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness				tmp2.crossVectors(n2, t);				const test = tmp2.dot(tan2[v]);				const w = test < 0.0 ? -1.0 : 1.0;				tangents[v * 4] = tmp.x;				tangents[v * 4 + 1] = tmp.y;				tangents[v * 4 + 2] = tmp.z;				tangents[v * 4 + 3] = w;			}			for (let i = 0, il = groups.length; i < il; ++i) {				const group = groups[i];				const start = group.start;				const count = group.count;				for (let j = start, jl = start + count; j < jl; j += 3) {					handleVertex(indices[j + 0]);					handleVertex(indices[j + 1]);					handleVertex(indices[j + 2]);				}			}		}		computeVertexNormals() {			const index = this.index;			const positionAttribute = this.getAttribute('position');			if (positionAttribute !== undefined) {				let normalAttribute = this.getAttribute('normal');				if (normalAttribute === undefined) {					normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3);					this.setAttribute('normal', normalAttribute);				} else {					// reset existing normals to zero					for (let i = 0, il = normalAttribute.count; i < il; i++) {						normalAttribute.setXYZ(i, 0, 0, 0);					}				}				const pA = new Vector3(),							pB = new Vector3(),							pC = new Vector3();				const nA = new Vector3(),							nB = new Vector3(),							nC = new Vector3();				const cb = new Vector3(),							ab = new Vector3(); // indexed elements				if (index) {					for (let i = 0, il = index.count; i < il; i += 3) {						const vA = index.getX(i + 0);						const vB = index.getX(i + 1);						const vC = index.getX(i + 2);						pA.fromBufferAttribute(positionAttribute, vA);						pB.fromBufferAttribute(positionAttribute, vB);						pC.fromBufferAttribute(positionAttribute, vC);						cb.subVectors(pC, pB);						ab.subVectors(pA, pB);						cb.cross(ab);						nA.fromBufferAttribute(normalAttribute, vA);						nB.fromBufferAttribute(normalAttribute, vB);						nC.fromBufferAttribute(normalAttribute, vC);						nA.add(cb);						nB.add(cb);						nC.add(cb);						normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z);						normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z);						normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z);					}				} else {					// non-indexed elements (unconnected triangle soup)					for (let i = 0, il = positionAttribute.count; i < il; i += 3) {						pA.fromBufferAttribute(positionAttribute, i + 0);						pB.fromBufferAttribute(positionAttribute, i + 1);						pC.fromBufferAttribute(positionAttribute, i + 2);						cb.subVectors(pC, pB);						ab.subVectors(pA, pB);						cb.cross(ab);						normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z);						normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z);						normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z);					}				}				this.normalizeNormals();				normalAttribute.needsUpdate = true;			}		}		merge(geometry, offset) {			if (!(geometry && geometry.isBufferGeometry)) {				console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry);				return;			}			if (offset === undefined) {				offset = 0;				console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.');			}			const attributes = this.attributes;			for (const key in attributes) {				if (geometry.attributes[key] === undefined) continue;				const attribute1 = attributes[key];				const attributeArray1 = attribute1.array;				const attribute2 = geometry.attributes[key];				const attributeArray2 = attribute2.array;				const attributeOffset = attribute2.itemSize * offset;				const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset);				for (let i = 0, j = attributeOffset; i < length; i++, j++) {					attributeArray1[j] = attributeArray2[i];				}			}			return this;		}		normalizeNormals() {			const normals = this.attributes.normal;			for (let i = 0, il = normals.count; i < il; i++) {				_vector$8.fromBufferAttribute(normals, i);				_vector$8.normalize();				normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z);			}		}		toNonIndexed() {			function convertBufferAttribute(attribute, indices) {				const array = attribute.array;				const itemSize = attribute.itemSize;				const normalized = attribute.normalized;				const array2 = new array.constructor(indices.length * itemSize);				let index = 0,						index2 = 0;				for (let i = 0, l = indices.length; i < l; i++) {					if (attribute.isInterleavedBufferAttribute) {						index = indices[i] * attribute.data.stride + attribute.offset;					} else {						index = indices[i] * itemSize;					}					for (let j = 0; j < itemSize; j++) {						array2[index2++] = array[index++];					}				}				return new BufferAttribute(array2, itemSize, normalized);			} //			if (this.index === null) {				console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.');				return this;			}			const geometry2 = new BufferGeometry();			const indices = this.index.array;			const attributes = this.attributes; // attributes			for (const name in attributes) {				const attribute = attributes[name];				const newAttribute = convertBufferAttribute(attribute, indices);				geometry2.setAttribute(name, newAttribute);			} // morph attributes			const morphAttributes = this.morphAttributes;			for (const name in morphAttributes) {				const morphArray = [];				const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes				for (let i = 0, il = morphAttribute.length; i < il; i++) {					const attribute = morphAttribute[i];					const newAttribute = convertBufferAttribute(attribute, indices);					morphArray.push(newAttribute);				}				geometry2.morphAttributes[name] = morphArray;			}			geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups			const groups = this.groups;			for (let i = 0, l = groups.length; i < l; i++) {				const group = groups[i];				geometry2.addGroup(group.start, group.count, group.materialIndex);			}			return geometry2;		}		toJSON() {			const data = {				metadata: {					version: 4.5,					type: 'BufferGeometry',					generator: 'BufferGeometry.toJSON'				}			}; // standard BufferGeometry serialization			data.uuid = this.uuid;			data.type = this.type;			if (this.name !== '') data.name = this.name;			if (Object.keys(this.userData).length > 0) data.userData = this.userData;			if (this.parameters !== undefined) {				const parameters = this.parameters;				for (const key in parameters) {					if (parameters[key] !== undefined) data[key] = parameters[key];				}				return data;			} // for simplicity the code assumes attributes are not shared across geometries, see #15811			data.data = {				attributes: {}			};			const index = this.index;			if (index !== null) {				data.data.index = {					type: index.array.constructor.name,					array: Array.prototype.slice.call(index.array)				};			}			const attributes = this.attributes;			for (const key in attributes) {				const attribute = attributes[key];				data.data.attributes[key] = attribute.toJSON(data.data);			}			const morphAttributes = {};			let hasMorphAttributes = false;			for (const key in this.morphAttributes) {				const attributeArray = this.morphAttributes[key];				const array = [];				for (let i = 0, il = attributeArray.length; i < il; i++) {					const attribute = attributeArray[i];					array.push(attribute.toJSON(data.data));				}				if (array.length > 0) {					morphAttributes[key] = array;					hasMorphAttributes = true;				}			}			if (hasMorphAttributes) {				data.data.morphAttributes = morphAttributes;				data.data.morphTargetsRelative = this.morphTargetsRelative;			}			const groups = this.groups;			if (groups.length > 0) {				data.data.groups = JSON.parse(JSON.stringify(groups));			}			const boundingSphere = this.boundingSphere;			if (boundingSphere !== null) {				data.data.boundingSphere = {					center: boundingSphere.center.toArray(),					radius: boundingSphere.radius				};			}			return data;		}		clone() {			return new this.constructor().copy(this);		}		copy(source) {			// reset			this.index = null;			this.attributes = {};			this.morphAttributes = {};			this.groups = [];			this.boundingBox = null;			this.boundingSphere = null; // used for storing cloned, shared data			const data = {}; // name			this.name = source.name; // index			const index = source.index;			if (index !== null) {				this.setIndex(index.clone(data));			} // attributes			const attributes = source.attributes;			for (const name in attributes) {				const attribute = attributes[name];				this.setAttribute(name, attribute.clone(data));			} // morph attributes			const morphAttributes = source.morphAttributes;			for (const name in morphAttributes) {				const array = [];				const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes				for (let i = 0, l = morphAttribute.length; i < l; i++) {					array.push(morphAttribute[i].clone(data));				}				this.morphAttributes[name] = array;			}			this.morphTargetsRelative = source.morphTargetsRelative; // groups			const groups = source.groups;			for (let i = 0, l = groups.length; i < l; i++) {				const group = groups[i];				this.addGroup(group.start, group.count, group.materialIndex);			} // bounding box			const boundingBox = source.boundingBox;			if (boundingBox !== null) {				this.boundingBox = boundingBox.clone();			} // bounding sphere			const boundingSphere = source.boundingSphere;			if (boundingSphere !== null) {				this.boundingSphere = boundingSphere.clone();			} // draw range			this.drawRange.start = source.drawRange.start;			this.drawRange.count = source.drawRange.count; // user data			this.userData = source.userData; // geometry generator parameters			if (source.parameters !== undefined) this.parameters = Object.assign({}, source.parameters);			return this;		}		dispose() {			this.dispatchEvent({				type: 'dispose'			});		}	}	BufferGeometry.prototype.isBufferGeometry = true;	const _inverseMatrix$2 = /*@__PURE__*/new Matrix4();	const _ray$2 = /*@__PURE__*/new Ray();	const _sphere$3 = /*@__PURE__*/new Sphere();	const _vA$1 = /*@__PURE__*/new Vector3();	const _vB$1 = /*@__PURE__*/new Vector3();	const _vC$1 = /*@__PURE__*/new Vector3();	const _tempA = /*@__PURE__*/new Vector3();	const _tempB = /*@__PURE__*/new Vector3();	const _tempC = /*@__PURE__*/new Vector3();	const _morphA = /*@__PURE__*/new Vector3();	const _morphB = /*@__PURE__*/new Vector3();	const _morphC = /*@__PURE__*/new Vector3();	const _uvA$1 = /*@__PURE__*/new Vector2();	const _uvB$1 = /*@__PURE__*/new Vector2();	const _uvC$1 = /*@__PURE__*/new Vector2();	const _intersectionPoint = /*@__PURE__*/new Vector3();	const _intersectionPointWorld = /*@__PURE__*/new Vector3();	class Mesh extends Object3D {		constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) {			super();			this.type = 'Mesh';			this.geometry = geometry;			this.material = material;			this.updateMorphTargets();		}		copy(source) {			super.copy(source);			if (source.morphTargetInfluences !== undefined) {				this.morphTargetInfluences = source.morphTargetInfluences.slice();			}			if (source.morphTargetDictionary !== undefined) {				this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary);			}			this.material = source.material;			this.geometry = source.geometry;			return this;		}		updateMorphTargets() {			const geometry = this.geometry;			if (geometry.isBufferGeometry) {				const morphAttributes = geometry.morphAttributes;				const keys = Object.keys(morphAttributes);				if (keys.length > 0) {					const morphAttribute = morphAttributes[keys[0]];					if (morphAttribute !== undefined) {						this.morphTargetInfluences = [];						this.morphTargetDictionary = {};						for (let m = 0, ml = morphAttribute.length; m < ml; m++) {							const name = morphAttribute[m].name || String(m);							this.morphTargetInfluences.push(0);							this.morphTargetDictionary[name] = m;						}					}				}			} else {				const morphTargets = geometry.morphTargets;				if (morphTargets !== undefined && morphTargets.length > 0) {					console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');				}			}		}		raycast(raycaster, intersects) {			const geometry = this.geometry;			const material = this.material;			const matrixWorld = this.matrixWorld;			if (material === undefined) return; // Checking boundingSphere distance to ray			if (geometry.boundingSphere === null) geometry.computeBoundingSphere();			_sphere$3.copy(geometry.boundingSphere);			_sphere$3.applyMatrix4(matrixWorld);			if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; //			_inverseMatrix$2.copy(matrixWorld).invert();			_ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing			if (geometry.boundingBox !== null) {				if (_ray$2.intersectsBox(geometry.boundingBox) === false) return;			}			let intersection;			if (geometry.isBufferGeometry) {				const index = geometry.index;				const position = geometry.attributes.position;				const morphPosition = geometry.morphAttributes.position;				const morphTargetsRelative = geometry.morphTargetsRelative;				const uv = geometry.attributes.uv;				const uv2 = geometry.attributes.uv2;				const groups = geometry.groups;				const drawRange = geometry.drawRange;				if (index !== null) {					// indexed buffer geometry					if (Array.isArray(material)) {						for (let i = 0, il = groups.length; i < il; i++) {							const group = groups[i];							const groupMaterial = material[group.materialIndex];							const start = Math.max(group.start, drawRange.start);							const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count));							for (let j = start, jl = end; j < jl; j += 3) {								const a = index.getX(j);								const b = index.getX(j + 1);								const c = index.getX(j + 2);								intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);								if (intersection) {									intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics									intersection.face.materialIndex = group.materialIndex;									intersects.push(intersection);								}							}						}					} else {						const start = Math.max(0, drawRange.start);						const end = Math.min(index.count, drawRange.start + drawRange.count);						for (let i = start, il = end; i < il; i += 3) {							const a = index.getX(i);							const b = index.getX(i + 1);							const c = index.getX(i + 2);							intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);							if (intersection) {								intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics								intersects.push(intersection);							}						}					}				} else if (position !== undefined) {					// non-indexed buffer geometry					if (Array.isArray(material)) {						for (let i = 0, il = groups.length; i < il; i++) {							const group = groups[i];							const groupMaterial = material[group.materialIndex];							const start = Math.max(group.start, drawRange.start);							const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count));							for (let j = start, jl = end; j < jl; j += 3) {								const a = j;								const b = j + 1;								const c = j + 2;								intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);								if (intersection) {									intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics									intersection.face.materialIndex = group.materialIndex;									intersects.push(intersection);								}							}						}					} else {						const start = Math.max(0, drawRange.start);						const end = Math.min(position.count, drawRange.start + drawRange.count);						for (let i = start, il = end; i < il; i += 3) {							const a = i;							const b = i + 1;							const c = i + 2;							intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);							if (intersection) {								intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics								intersects.push(intersection);							}						}					}				}			} else if (geometry.isGeometry) {				console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');			}		}	}	Mesh.prototype.isMesh = true;	function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) {		let intersect;		if (material.side === BackSide) {			intersect = ray.intersectTriangle(pC, pB, pA, true, point);		} else {			intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point);		}		if (intersect === null) return null;		_intersectionPointWorld.copy(point);		_intersectionPointWorld.applyMatrix4(object.matrixWorld);		const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld);		if (distance < raycaster.near || distance > raycaster.far) return null;		return {			distance: distance,			point: _intersectionPointWorld.clone(),			object: object		};	}	function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) {		_vA$1.fromBufferAttribute(position, a);		_vB$1.fromBufferAttribute(position, b);		_vC$1.fromBufferAttribute(position, c);		const morphInfluences = object.morphTargetInfluences;		if (morphPosition && morphInfluences) {			_morphA.set(0, 0, 0);			_morphB.set(0, 0, 0);			_morphC.set(0, 0, 0);			for (let i = 0, il = morphPosition.length; i < il; i++) {				const influence = morphInfluences[i];				const morphAttribute = morphPosition[i];				if (influence === 0) continue;				_tempA.fromBufferAttribute(morphAttribute, a);				_tempB.fromBufferAttribute(morphAttribute, b);				_tempC.fromBufferAttribute(morphAttribute, c);				if (morphTargetsRelative) {					_morphA.addScaledVector(_tempA, influence);					_morphB.addScaledVector(_tempB, influence);					_morphC.addScaledVector(_tempC, influence);				} else {					_morphA.addScaledVector(_tempA.sub(_vA$1), influence);					_morphB.addScaledVector(_tempB.sub(_vB$1), influence);					_morphC.addScaledVector(_tempC.sub(_vC$1), influence);				}			}			_vA$1.add(_morphA);			_vB$1.add(_morphB);			_vC$1.add(_morphC);		}		if (object.isSkinnedMesh) {			object.boneTransform(a, _vA$1);			object.boneTransform(b, _vB$1);			object.boneTransform(c, _vC$1);		}		const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint);		if (intersection) {			if (uv) {				_uvA$1.fromBufferAttribute(uv, a);				_uvB$1.fromBufferAttribute(uv, b);				_uvC$1.fromBufferAttribute(uv, c);				intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());			}			if (uv2) {				_uvA$1.fromBufferAttribute(uv2, a);				_uvB$1.fromBufferAttribute(uv2, b);				_uvC$1.fromBufferAttribute(uv2, c);				intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());			}			const face = {				a: a,				b: b,				c: c,				normal: new Vector3(),				materialIndex: 0			};			Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal);			intersection.face = face;		}		return intersection;	}	class BoxGeometry extends BufferGeometry {		constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) {			super();			this.type = 'BoxGeometry';			this.parameters = {				width: width,				height: height,				depth: depth,				widthSegments: widthSegments,				heightSegments: heightSegments,				depthSegments: depthSegments			};			const scope = this; // segments			widthSegments = Math.floor(widthSegments);			heightSegments = Math.floor(heightSegments);			depthSegments = Math.floor(depthSegments); // buffers			const indices = [];			const vertices = [];			const normals = [];			const uvs = []; // helper variables			let numberOfVertices = 0;			let groupStart = 0; // build each side of the box geometry			buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px			buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx			buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py			buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny			buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz			buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz			// build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));			function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) {				const segmentWidth = width / gridX;				const segmentHeight = height / gridY;				const widthHalf = width / 2;				const heightHalf = height / 2;				const depthHalf = depth / 2;				const gridX1 = gridX + 1;				const gridY1 = gridY + 1;				let vertexCounter = 0;				let groupCount = 0;				const vector = new Vector3(); // generate vertices, normals and uvs				for (let iy = 0; iy < gridY1; iy++) {					const y = iy * segmentHeight - heightHalf;					for (let ix = 0; ix < gridX1; ix++) {						const x = ix * segmentWidth - widthHalf; // set values to correct vector component						vector[u] = x * udir;						vector[v] = y * vdir;						vector[w] = depthHalf; // now apply vector to vertex buffer						vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component						vector[u] = 0;						vector[v] = 0;						vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer						normals.push(vector.x, vector.y, vector.z); // uvs						uvs.push(ix / gridX);						uvs.push(1 - iy / gridY); // counters						vertexCounter += 1;					}				} // indices				// 1. you need three indices to draw a single face				// 2. a single segment consists of two faces				// 3. so we need to generate six (2*3) indices per segment				for (let iy = 0; iy < gridY; iy++) {					for (let ix = 0; ix < gridX; ix++) {						const a = numberOfVertices + ix + gridX1 * iy;						const b = numberOfVertices + ix + gridX1 * (iy + 1);						const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1);						const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces						indices.push(a, b, d);						indices.push(b, c, d); // increase counter						groupCount += 6;					}				} // add a group to the geometry. this will ensure multi material support				scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups				groupStart += groupCount; // update total number of vertices				numberOfVertices += vertexCounter;			}		}		static fromJSON(data) {			return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments);		}	}	/**	 * Uniform Utilities	 */	function cloneUniforms(src) {		const dst = {};		for (const u in src) {			dst[u] = {};			for (const p in src[u]) {				const property = src[u][p];				if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) {					dst[u][p] = property.clone();				} else if (Array.isArray(property)) {					dst[u][p] = property.slice();				} else {					dst[u][p] = property;				}			}		}		return dst;	}	function mergeUniforms(uniforms) {		const merged = {};		for (let u = 0; u < uniforms.length; u++) {			const tmp = cloneUniforms(uniforms[u]);			for (const p in tmp) {				merged[p] = tmp[p];			}		}		return merged;	} // Legacy	const UniformsUtils = {		clone: cloneUniforms,		merge: mergeUniforms	};	var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";	var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";	/**	 * parameters = {	 *	defines: { "label" : "value" },	 *	uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },	 *	 *	fragmentShader: <string>,	 *	vertexShader: <string>,	 *	 *	wireframe: <boolean>,	 *	wireframeLinewidth: <float>,	 *	 *	lights: <bool>	 * }	 */	class ShaderMaterial extends Material {		constructor(parameters) {			super();			this.type = 'ShaderMaterial';			this.defines = {};			this.uniforms = {};			this.vertexShader = default_vertex;			this.fragmentShader = default_fragment;			this.linewidth = 1;			this.wireframe = false;			this.wireframeLinewidth = 1;			this.fog = false; // set to use scene fog			this.lights = false; // set to use scene lights			this.clipping = false; // set to use user-defined clipping planes			this.extensions = {				derivatives: false,				// set to use derivatives				fragDepth: false,				// set to use fragment depth values				drawBuffers: false,				// set to use draw buffers				shaderTextureLOD: false // set to use shader texture LOD			}; // When rendered geometry doesn't include these attributes but the material does,			// use these default values in WebGL. This avoids errors when buffer data is missing.			this.defaultAttributeValues = {				'color': [1, 1, 1],				'uv': [0, 0],				'uv2': [0, 0]			};			this.index0AttributeName = undefined;			this.uniformsNeedUpdate = false;			this.glslVersion = null;			if (parameters !== undefined) {				if (parameters.attributes !== undefined) {					console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.');				}				this.setValues(parameters);			}		}		copy(source) {			super.copy(source);			this.fragmentShader = source.fragmentShader;			this.vertexShader = source.vertexShader;			this.uniforms = cloneUniforms(source.uniforms);			this.defines = Object.assign({}, source.defines);			this.wireframe = source.wireframe;			this.wireframeLinewidth = source.wireframeLinewidth;			this.lights = source.lights;			this.clipping = source.clipping;			this.extensions = Object.assign({}, source.extensions);			this.glslVersion = source.glslVersion;			return this;		}		toJSON(meta) {			const data = super.toJSON(meta);			data.glslVersion = this.glslVersion;			data.uniforms = {};			for (const name in this.uniforms) {				const uniform = this.uniforms[name];				const value = uniform.value;				if (value && value.isTexture) {					data.uniforms[name] = {						type: 't',						value: value.toJSON(meta).uuid					};				} else if (value && value.isColor) {					data.uniforms[name] = {						type: 'c',						value: value.getHex()					};				} else if (value && value.isVector2) {					data.uniforms[name] = {						type: 'v2',						value: value.toArray()					};				} else if (value && value.isVector3) {					data.uniforms[name] = {						type: 'v3',						value: value.toArray()					};				} else if (value && value.isVector4) {					data.uniforms[name] = {						type: 'v4',						value: value.toArray()					};				} else if (value && value.isMatrix3) {					data.uniforms[name] = {						type: 'm3',						value: value.toArray()					};				} else if (value && value.isMatrix4) {					data.uniforms[name] = {						type: 'm4',						value: value.toArray()					};				} else {					data.uniforms[name] = {						value: value					}; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far				}			}			if (Object.keys(this.defines).length > 0) data.defines = this.defines;			data.vertexShader = this.vertexShader;			data.fragmentShader = this.fragmentShader;			const extensions = {};			for (const key in this.extensions) {				if (this.extensions[key] === true) extensions[key] = true;			}			if (Object.keys(extensions).length > 0) data.extensions = extensions;			return data;		}	}	ShaderMaterial.prototype.isShaderMaterial = true;	class Camera extends Object3D {		constructor() {			super();			this.type = 'Camera';			this.matrixWorldInverse = new Matrix4();			this.projectionMatrix = new Matrix4();			this.projectionMatrixInverse = new Matrix4();		}		copy(source, recursive) {			super.copy(source, recursive);			this.matrixWorldInverse.copy(source.matrixWorldInverse);			this.projectionMatrix.copy(source.projectionMatrix);			this.projectionMatrixInverse.copy(source.projectionMatrixInverse);			return this;		}		getWorldDirection(target) {			this.updateWorldMatrix(true, false);			const e = this.matrixWorld.elements;			return target.set(-e[8], -e[9], -e[10]).normalize();		}		updateMatrixWorld(force) {			super.updateMatrixWorld(force);			this.matrixWorldInverse.copy(this.matrixWorld).invert();		}		updateWorldMatrix(updateParents, updateChildren) {			super.updateWorldMatrix(updateParents, updateChildren);			this.matrixWorldInverse.copy(this.matrixWorld).invert();		}		clone() {			return new this.constructor().copy(this);		}	}	Camera.prototype.isCamera = true;	class PerspectiveCamera extends Camera {		constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) {			super();			this.type = 'PerspectiveCamera';			this.fov = fov;			this.zoom = 1;			this.near = near;			this.far = far;			this.focus = 10;			this.aspect = aspect;			this.view = null;			this.filmGauge = 35; // width of the film (default in millimeters)			this.filmOffset = 0; // horizontal film offset (same unit as gauge)			this.updateProjectionMatrix();		}		copy(source, recursive) {			super.copy(source, recursive);			this.fov = source.fov;			this.zoom = source.zoom;			this.near = source.near;			this.far = source.far;			this.focus = source.focus;			this.aspect = source.aspect;			this.view = source.view === null ? null : Object.assign({}, source.view);			this.filmGauge = source.filmGauge;			this.filmOffset = source.filmOffset;			return this;		}		/**		 * Sets the FOV by focal length in respect to the current .filmGauge.		 *		 * The default film gauge is 35, so that the focal length can be specified for		 * a 35mm (full frame) camera.		 *		 * Values for focal length and film gauge must have the same unit.		 */		setFocalLength(focalLength) {			/** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */			const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;			this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope);			this.updateProjectionMatrix();		}		/**		 * Calculates the focal length from the current .fov and .filmGauge.		 */		getFocalLength() {			const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov);			return 0.5 * this.getFilmHeight() / vExtentSlope;		}		getEffectiveFOV() {			return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom);		}		getFilmWidth() {			// film not completely covered in portrait format (aspect < 1)			return this.filmGauge * Math.min(this.aspect, 1);		}		getFilmHeight() {			// film not completely covered in landscape format (aspect > 1)			return this.filmGauge / Math.max(this.aspect, 1);		}		/**		 * Sets an offset in a larger frustum. This is useful for multi-window or		 * multi-monitor/multi-machine setups.		 *		 * For example, if you have 3x2 monitors and each monitor is 1920x1080 and		 * the monitors are in grid like this		 *		 *	 +---+---+---+		 *	 | A | B | C |		 *	 +---+---+---+		 *	 | D | E | F |		 *	 +---+---+---+		 *		 * then for each monitor you would call it like this		 *		 *	 const w = 1920;		 *	 const h = 1080;		 *	 const fullWidth = w * 3;		 *	 const fullHeight = h * 2;		 *		 *	 --A--		 *	 camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );		 *	 --B--		 *	 camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );		 *	 --C--		 *	 camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );		 *	 --D--		 *	 camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );		 *	 --E--		 *	 camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );		 *	 --F--		 *	 camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );		 *		 *	 Note there is no reason monitors have to be the same size or in a grid.		 */		setViewOffset(fullWidth, fullHeight, x, y, width, height) {			this.aspect = fullWidth / fullHeight;			if (this.view === null) {				this.view = {					enabled: true,					fullWidth: 1,					fullHeight: 1,					offsetX: 0,					offsetY: 0,					width: 1,					height: 1				};			}			this.view.enabled = true;			this.view.fullWidth = fullWidth;			this.view.fullHeight = fullHeight;			this.view.offsetX = x;			this.view.offsetY = y;			this.view.width = width;			this.view.height = height;			this.updateProjectionMatrix();		}		clearViewOffset() {			if (this.view !== null) {				this.view.enabled = false;			}			this.updateProjectionMatrix();		}		updateProjectionMatrix() {			const near = this.near;			let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom;			let height = 2 * top;			let width = this.aspect * height;			let left = -0.5 * width;			const view = this.view;			if (this.view !== null && this.view.enabled) {				const fullWidth = view.fullWidth,							fullHeight = view.fullHeight;				left += view.offsetX * width / fullWidth;				top -= view.offsetY * height / fullHeight;				width *= view.width / fullWidth;				height *= view.height / fullHeight;			}			const skew = this.filmOffset;			if (skew !== 0) left += near * skew / this.getFilmWidth();			this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far);			this.projectionMatrixInverse.copy(this.projectionMatrix).invert();		}		toJSON(meta) {			const data = super.toJSON(meta);			data.object.fov = this.fov;			data.object.zoom = this.zoom;			data.object.near = this.near;			data.object.far = this.far;			data.object.focus = this.focus;			data.object.aspect = this.aspect;			if (this.view !== null) data.object.view = Object.assign({}, this.view);			data.object.filmGauge = this.filmGauge;			data.object.filmOffset = this.filmOffset;			return data;		}	}	PerspectiveCamera.prototype.isPerspectiveCamera = true;	const fov = 90,				aspect = 1;	class CubeCamera extends Object3D {		constructor(near, far, renderTarget) {			super();			this.type = 'CubeCamera';			if (renderTarget.isWebGLCubeRenderTarget !== true) {				console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.');				return;			}			this.renderTarget = renderTarget;			const cameraPX = new PerspectiveCamera(fov, aspect, near, far);			cameraPX.layers = this.layers;			cameraPX.up.set(0, -1, 0);			cameraPX.lookAt(new Vector3(1, 0, 0));			this.add(cameraPX);			const cameraNX = new PerspectiveCamera(fov, aspect, near, far);			cameraNX.layers = this.layers;			cameraNX.up.set(0, -1, 0);			cameraNX.lookAt(new Vector3(-1, 0, 0));			this.add(cameraNX);			const cameraPY = new PerspectiveCamera(fov, aspect, near, far);			cameraPY.layers = this.layers;			cameraPY.up.set(0, 0, 1);			cameraPY.lookAt(new Vector3(0, 1, 0));			this.add(cameraPY);			const cameraNY = new PerspectiveCamera(fov, aspect, near, far);			cameraNY.layers = this.layers;			cameraNY.up.set(0, 0, -1);			cameraNY.lookAt(new Vector3(0, -1, 0));			this.add(cameraNY);			const cameraPZ = new PerspectiveCamera(fov, aspect, near, far);			cameraPZ.layers = this.layers;			cameraPZ.up.set(0, -1, 0);			cameraPZ.lookAt(new Vector3(0, 0, 1));			this.add(cameraPZ);			const cameraNZ = new PerspectiveCamera(fov, aspect, near, far);			cameraNZ.layers = this.layers;			cameraNZ.up.set(0, -1, 0);			cameraNZ.lookAt(new Vector3(0, 0, -1));			this.add(cameraNZ);		}		update(renderer, scene) {			if (this.parent === null) this.updateMatrixWorld();			const renderTarget = this.renderTarget;			const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children;			const currentXrEnabled = renderer.xr.enabled;			const currentRenderTarget = renderer.getRenderTarget();			renderer.xr.enabled = false;			const generateMipmaps = renderTarget.texture.generateMipmaps;			renderTarget.texture.generateMipmaps = false;			renderer.setRenderTarget(renderTarget, 0);			renderer.render(scene, cameraPX);			renderer.setRenderTarget(renderTarget, 1);			renderer.render(scene, cameraNX);			renderer.setRenderTarget(renderTarget, 2);			renderer.render(scene, cameraPY);			renderer.setRenderTarget(renderTarget, 3);			renderer.render(scene, cameraNY);			renderer.setRenderTarget(renderTarget, 4);			renderer.render(scene, cameraPZ);			renderTarget.texture.generateMipmaps = generateMipmaps;			renderer.setRenderTarget(renderTarget, 5);			renderer.render(scene, cameraNZ);			renderer.setRenderTarget(currentRenderTarget);			renderer.xr.enabled = currentXrEnabled;		}	}	class CubeTexture extends Texture {		constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {			images = images !== undefined ? images : [];			mapping = mapping !== undefined ? mapping : CubeReflectionMapping;			super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);			this.flipY = false;		}		get images() {			return this.image;		}		set images(value) {			this.image = value;		}	}	CubeTexture.prototype.isCubeTexture = true;	class WebGLCubeRenderTarget extends WebGLRenderTarget {		constructor(size, options, dummy) {			if (Number.isInteger(options)) {				console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )');				options = dummy;			}			super(size, size, options);			options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)			// in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,			// in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.			// three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped			// and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture			// as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).			this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);			this.texture.isRenderTargetTexture = true;			this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;			this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;			this.texture._needsFlipEnvMap = false;		}		fromEquirectangularTexture(renderer, texture) {			this.texture.type = texture.type;			this.texture.format = RGBAFormat; // see #18859			this.texture.encoding = texture.encoding;			this.texture.generateMipmaps = texture.generateMipmaps;			this.texture.minFilter = texture.minFilter;			this.texture.magFilter = texture.magFilter;			const shader = {				uniforms: {					tEquirect: {						value: null					}				},				vertexShader:				/* glsl */				`				varying vec3 vWorldDirection;				vec3 transformDirection( in vec3 dir, in mat4 matrix ) {					return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );				}				void main() {					vWorldDirection = transformDirection( position, modelMatrix );					#include <begin_vertex>					#include <project_vertex>				}			`,				fragmentShader:				/* glsl */				`				uniform sampler2D tEquirect;				varying vec3 vWorldDirection;				#include <common>				void main() {					vec3 direction = normalize( vWorldDirection );					vec2 sampleUV = equirectUv( direction );					gl_FragColor = texture2D( tEquirect, sampleUV );				}			`			};			const geometry = new BoxGeometry(5, 5, 5);			const material = new ShaderMaterial({				name: 'CubemapFromEquirect',				uniforms: cloneUniforms(shader.uniforms),				vertexShader: shader.vertexShader,				fragmentShader: shader.fragmentShader,				side: BackSide,				blending: NoBlending			});			material.uniforms.tEquirect.value = texture;			const mesh = new Mesh(geometry, material);			const currentMinFilter = texture.minFilter; // Avoid blurred poles			if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter;			const camera = new CubeCamera(1, 10, this);			camera.update(renderer, mesh);			texture.minFilter = currentMinFilter;			mesh.geometry.dispose();			mesh.material.dispose();			return this;		}		clear(renderer, color, depth, stencil) {			const currentRenderTarget = renderer.getRenderTarget();			for (let i = 0; i < 6; i++) {				renderer.setRenderTarget(this, i);				renderer.clear(color, depth, stencil);			}			renderer.setRenderTarget(currentRenderTarget);		}	}	WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;	const _vector1 = /*@__PURE__*/new Vector3();	const _vector2 = /*@__PURE__*/new Vector3();	const _normalMatrix = /*@__PURE__*/new Matrix3();	class Plane {		constructor(normal = new Vector3(1, 0, 0), constant = 0) {			// normal is assumed to be normalized			this.normal = normal;			this.constant = constant;		}		set(normal, constant) {			this.normal.copy(normal);			this.constant = constant;			return this;		}		setComponents(x, y, z, w) {			this.normal.set(x, y, z);			this.constant = w;			return this;		}		setFromNormalAndCoplanarPoint(normal, point) {			this.normal.copy(normal);			this.constant = -point.dot(this.normal);			return this;		}		setFromCoplanarPoints(a, b, c) {			const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?			this.setFromNormalAndCoplanarPoint(normal, a);			return this;		}		copy(plane) {			this.normal.copy(plane.normal);			this.constant = plane.constant;			return this;		}		normalize() {			// Note: will lead to a divide by zero if the plane is invalid.			const inverseNormalLength = 1.0 / this.normal.length();			this.normal.multiplyScalar(inverseNormalLength);			this.constant *= inverseNormalLength;			return this;		}		negate() {			this.constant *= -1;			this.normal.negate();			return this;		}		distanceToPoint(point) {			return this.normal.dot(point) + this.constant;		}		distanceToSphere(sphere) {			return this.distanceToPoint(sphere.center) - sphere.radius;		}		projectPoint(point, target) {			return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point);		}		intersectLine(line, target) {			const direction = line.delta(_vector1);			const denominator = this.normal.dot(direction);			if (denominator === 0) {				// line is coplanar, return origin				if (this.distanceToPoint(line.start) === 0) {					return target.copy(line.start);				} // Unsure if this is the correct method to handle this case.				return null;			}			const t = -(line.start.dot(this.normal) + this.constant) / denominator;			if (t < 0 || t > 1) {				return null;			}			return target.copy(direction).multiplyScalar(t).add(line.start);		}		intersectsLine(line) {			// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.			const startSign = this.distanceToPoint(line.start);			const endSign = this.distanceToPoint(line.end);			return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0;		}		intersectsBox(box) {			return box.intersectsPlane(this);		}		intersectsSphere(sphere) {			return sphere.intersectsPlane(this);		}		coplanarPoint(target) {			return target.copy(this.normal).multiplyScalar(-this.constant);		}		applyMatrix4(matrix, optionalNormalMatrix) {			const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix);			const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix);			const normal = this.normal.applyMatrix3(normalMatrix).normalize();			this.constant = -referencePoint.dot(normal);			return this;		}		translate(offset) {			this.constant -= offset.dot(this.normal);			return this;		}		equals(plane) {			return plane.normal.equals(this.normal) && plane.constant === this.constant;		}		clone() {			return new this.constructor().copy(this);		}	}	Plane.prototype.isPlane = true;	const _sphere$2 = /*@__PURE__*/new Sphere();	const _vector$7 = /*@__PURE__*/new Vector3();	class Frustum {		constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) {			this.planes = [p0, p1, p2, p3, p4, p5];		}		set(p0, p1, p2, p3, p4, p5) {			const planes = this.planes;			planes[0].copy(p0);			planes[1].copy(p1);			planes[2].copy(p2);			planes[3].copy(p3);			planes[4].copy(p4);			planes[5].copy(p5);			return this;		}		copy(frustum) {			const planes = this.planes;			for (let i = 0; i < 6; i++) {				planes[i].copy(frustum.planes[i]);			}			return this;		}		setFromProjectionMatrix(m) {			const planes = this.planes;			const me = m.elements;			const me0 = me[0],						me1 = me[1],						me2 = me[2],						me3 = me[3];			const me4 = me[4],						me5 = me[5],						me6 = me[6],						me7 = me[7];			const me8 = me[8],						me9 = me[9],						me10 = me[10],						me11 = me[11];			const me12 = me[12],						me13 = me[13],						me14 = me[14],						me15 = me[15];			planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize();			planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize();			planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize();			planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize();			planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize();			planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize();			return this;		}		intersectsObject(object) {			const geometry = object.geometry;			if (geometry.boundingSphere === null) geometry.computeBoundingSphere();			_sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld);			return this.intersectsSphere(_sphere$2);		}		intersectsSprite(sprite) {			_sphere$2.center.set(0, 0, 0);			_sphere$2.radius = 0.7071067811865476;			_sphere$2.applyMatrix4(sprite.matrixWorld);			return this.intersectsSphere(_sphere$2);		}		intersectsSphere(sphere) {			const planes = this.planes;			const center = sphere.center;			const negRadius = -sphere.radius;			for (let i = 0; i < 6; i++) {				const distance = planes[i].distanceToPoint(center);				if (distance < negRadius) {					return false;				}			}			return true;		}		intersectsBox(box) {			const planes = this.planes;			for (let i = 0; i < 6; i++) {				const plane = planes[i]; // corner at max distance				_vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x;				_vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y;				_vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z;				if (plane.distanceToPoint(_vector$7) < 0) {					return false;				}			}			return true;		}		containsPoint(point) {			const planes = this.planes;			for (let i = 0; i < 6; i++) {				if (planes[i].distanceToPoint(point) < 0) {					return false;				}			}			return true;		}		clone() {			return new this.constructor().copy(this);		}	}	function WebGLAnimation() {		let context = null;		let isAnimating = false;		let animationLoop = null;		let requestId = null;		function onAnimationFrame(time, frame) {			animationLoop(time, frame);			requestId = context.requestAnimationFrame(onAnimationFrame);		}		return {			start: function () {				if (isAnimating === true) return;				if (animationLoop === null) return;				requestId = context.requestAnimationFrame(onAnimationFrame);				isAnimating = true;			},			stop: function () {				context.cancelAnimationFrame(requestId);				isAnimating = false;			},			setAnimationLoop: function (callback) {				animationLoop = callback;			},			setContext: function (value) {				context = value;			}		};	}	function WebGLAttributes(gl, capabilities) {		const isWebGL2 = capabilities.isWebGL2;		const buffers = new WeakMap();		function createBuffer(attribute, bufferType) {			const array = attribute.array;			const usage = attribute.usage;			const buffer = gl.createBuffer();			gl.bindBuffer(bufferType, buffer);			gl.bufferData(bufferType, array, usage);			attribute.onUploadCallback();			let type = gl.FLOAT;			if (array instanceof Float32Array) {				type = gl.FLOAT;			} else if (array instanceof Float64Array) {				console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.');			} else if (array instanceof Uint16Array) {				if (attribute.isFloat16BufferAttribute) {					if (isWebGL2) {						type = gl.HALF_FLOAT;					} else {						console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.');					}				} else {					type = gl.UNSIGNED_SHORT;				}			} else if (array instanceof Int16Array) {				type = gl.SHORT;			} else if (array instanceof Uint32Array) {				type = gl.UNSIGNED_INT;			} else if (array instanceof Int32Array) {				type = gl.INT;			} else if (array instanceof Int8Array) {				type = gl.BYTE;			} else if (array instanceof Uint8Array) {				type = gl.UNSIGNED_BYTE;			} else if (array instanceof Uint8ClampedArray) {				type = gl.UNSIGNED_BYTE;			}			return {				buffer: buffer,				type: type,				bytesPerElement: array.BYTES_PER_ELEMENT,				version: attribute.version			};		}		function updateBuffer(buffer, attribute, bufferType) {			const array = attribute.array;			const updateRange = attribute.updateRange;			gl.bindBuffer(bufferType, buffer);			if (updateRange.count === -1) {				// Not using update ranges				gl.bufferSubData(bufferType, 0, array);			} else {				if (isWebGL2) {					gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count);				} else {					gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count));				}				updateRange.count = -1; // reset range			}		} //		function get(attribute) {			if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;			return buffers.get(attribute);		}		function remove(attribute) {			if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;			const data = buffers.get(attribute);			if (data) {				gl.deleteBuffer(data.buffer);				buffers.delete(attribute);			}		}		function update(attribute, bufferType) {			if (attribute.isGLBufferAttribute) {				const cached = buffers.get(attribute);				if (!cached || cached.version < attribute.version) {					buffers.set(attribute, {						buffer: attribute.buffer,						type: attribute.type,						bytesPerElement: attribute.elementSize,						version: attribute.version					});				}				return;			}			if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;			const data = buffers.get(attribute);			if (data === undefined) {				buffers.set(attribute, createBuffer(attribute, bufferType));			} else if (data.version < attribute.version) {				updateBuffer(data.buffer, attribute, bufferType);				data.version = attribute.version;			}		}		return {			get: get,			remove: remove,			update: update		};	}	class PlaneGeometry extends BufferGeometry {		constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) {			super();			this.type = 'PlaneGeometry';			this.parameters = {				width: width,				height: height,				widthSegments: widthSegments,				heightSegments: heightSegments			};			const width_half = width / 2;			const height_half = height / 2;			const gridX = Math.floor(widthSegments);			const gridY = Math.floor(heightSegments);			const gridX1 = gridX + 1;			const gridY1 = gridY + 1;			const segment_width = width / gridX;			const segment_height = height / gridY; //			const indices = [];			const vertices = [];			const normals = [];			const uvs = [];			for (let iy = 0; iy < gridY1; iy++) {				const y = iy * segment_height - height_half;				for (let ix = 0; ix < gridX1; ix++) {					const x = ix * segment_width - width_half;					vertices.push(x, -y, 0);					normals.push(0, 0, 1);					uvs.push(ix / gridX);					uvs.push(1 - iy / gridY);				}			}			for (let iy = 0; iy < gridY; iy++) {				for (let ix = 0; ix < gridX; ix++) {					const a = ix + gridX1 * iy;					const b = ix + gridX1 * (iy + 1);					const c = ix + 1 + gridX1 * (iy + 1);					const d = ix + 1 + gridX1 * iy;					indices.push(a, b, d);					indices.push(b, c, d);				}			}			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));		}		static fromJSON(data) {			return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments);		}	}	var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";	var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";	var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif";	var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif";	var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif";	var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";	var begin_vertex = "vec3 transformed = vec3( position );";	var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";	var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif";	var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";	var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";	var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";	var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";	var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";	var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif";	var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif";	var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";	var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";	var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";	var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";	var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";	var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";	var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";	var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";	var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";	var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";	var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}";	var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";	var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";	var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";	var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";	var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";	var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif";	var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif";	var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";	var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";	var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";	var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif";	var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";	var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";	var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif";	var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif";	var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";	var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";	var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";	var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";	var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARCOLORMAP\n\t\t\tspecularColorFactor *= specularColorMapTexelToLinear( texture2D( specularColorMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tmaterial.sheenColor *= sheenColorMapTexelToLinear( texture2D( sheenColorMap, vUv ) ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a;\n\t#endif\n#endif";	var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3(		0, 1,		0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";	var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";	var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif";	var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";	var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";	var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";	var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";	var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";	var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";	var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";	var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";	var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";	var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";	var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";	var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif";	var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform vec2 morphTargetsTextureSize;\n\t\tvec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) {\n\t\t\tfloat texelIndex = float( vertexIndex * stride + offset );\n\t\t\tfloat y = floor( texelIndex / morphTargetsTextureSize.x );\n\t\t\tfloat x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tvec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex );\n\t\t\treturn texture( morphTargetsTexture, morphUV ).xyz;\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif";	var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\t#ifndef USE_MORPHNORMALS\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ];\n\t\t\t#else\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ];\n\t\t\t#endif\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif";	var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";	var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif";	var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";	var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";	var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif";	var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif";	var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";	var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif";	var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";	var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );";	var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";	var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";	var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";	var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";	var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";	var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";	var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";	var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t	texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t	f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t	texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t	f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";	var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";	var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";	var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";	var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";	var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";	var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";	var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";	var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";	var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";	var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";	var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3(	1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108,	1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605,	1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";	var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationColor, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif";	var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif";	var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";	var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";	var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";	var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";	var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";	var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";	var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";	const vertex$g = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";	const fragment$g = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";	const vertex$f = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";	const fragment$f = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";	const vertex$e = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";	const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";	const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";	const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";	const vertex$c = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";	const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";	const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";	const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";	const vertex$a = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinbase_vertex>\n\t\t#include <skinnormal_vertex>\n\t\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";	const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";	const vertex$9 = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";	const fragment$9 = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";	const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";	const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";	const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";	const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";	const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";	const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";	const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}";	const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";	const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";	const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";	const vertex$3 = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";	const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";	const vertex$2 = "#include <common>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";	const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";	const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";	const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";	const ShaderChunk = {		alphamap_fragment: alphamap_fragment,		alphamap_pars_fragment: alphamap_pars_fragment,		alphatest_fragment: alphatest_fragment,		alphatest_pars_fragment: alphatest_pars_fragment,		aomap_fragment: aomap_fragment,		aomap_pars_fragment: aomap_pars_fragment,		begin_vertex: begin_vertex,		beginnormal_vertex: beginnormal_vertex,		bsdfs: bsdfs,		bumpmap_pars_fragment: bumpmap_pars_fragment,		clipping_planes_fragment: clipping_planes_fragment,		clipping_planes_pars_fragment: clipping_planes_pars_fragment,		clipping_planes_pars_vertex: clipping_planes_pars_vertex,		clipping_planes_vertex: clipping_planes_vertex,		color_fragment: color_fragment,		color_pars_fragment: color_pars_fragment,		color_pars_vertex: color_pars_vertex,		color_vertex: color_vertex,		common: common,		cube_uv_reflection_fragment: cube_uv_reflection_fragment,		defaultnormal_vertex: defaultnormal_vertex,		displacementmap_pars_vertex: displacementmap_pars_vertex,		displacementmap_vertex: displacementmap_vertex,		emissivemap_fragment: emissivemap_fragment,		emissivemap_pars_fragment: emissivemap_pars_fragment,		encodings_fragment: encodings_fragment,		encodings_pars_fragment: encodings_pars_fragment,		envmap_fragment: envmap_fragment,		envmap_common_pars_fragment: envmap_common_pars_fragment,		envmap_pars_fragment: envmap_pars_fragment,		envmap_pars_vertex: envmap_pars_vertex,		envmap_physical_pars_fragment: envmap_physical_pars_fragment,		envmap_vertex: envmap_vertex,		fog_vertex: fog_vertex,		fog_pars_vertex: fog_pars_vertex,		fog_fragment: fog_fragment,		fog_pars_fragment: fog_pars_fragment,		gradientmap_pars_fragment: gradientmap_pars_fragment,		lightmap_fragment: lightmap_fragment,		lightmap_pars_fragment: lightmap_pars_fragment,		lights_lambert_vertex: lights_lambert_vertex,		lights_pars_begin: lights_pars_begin,		lights_toon_fragment: lights_toon_fragment,		lights_toon_pars_fragment: lights_toon_pars_fragment,		lights_phong_fragment: lights_phong_fragment,		lights_phong_pars_fragment: lights_phong_pars_fragment,		lights_physical_fragment: lights_physical_fragment,		lights_physical_pars_fragment: lights_physical_pars_fragment,		lights_fragment_begin: lights_fragment_begin,		lights_fragment_maps: lights_fragment_maps,		lights_fragment_end: lights_fragment_end,		logdepthbuf_fragment: logdepthbuf_fragment,		logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,		logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,		logdepthbuf_vertex: logdepthbuf_vertex,		map_fragment: map_fragment,		map_pars_fragment: map_pars_fragment,		map_particle_fragment: map_particle_fragment,		map_particle_pars_fragment: map_particle_pars_fragment,		metalnessmap_fragment: metalnessmap_fragment,		metalnessmap_pars_fragment: metalnessmap_pars_fragment,		morphnormal_vertex: morphnormal_vertex,		morphtarget_pars_vertex: morphtarget_pars_vertex,		morphtarget_vertex: morphtarget_vertex,		normal_fragment_begin: normal_fragment_begin,		normal_fragment_maps: normal_fragment_maps,		normal_pars_fragment: normal_pars_fragment,		normal_pars_vertex: normal_pars_vertex,		normal_vertex: normal_vertex,		normalmap_pars_fragment: normalmap_pars_fragment,		clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,		clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,		clearcoat_pars_fragment: clearcoat_pars_fragment,		output_fragment: output_fragment,		packing: packing,		premultiplied_alpha_fragment: premultiplied_alpha_fragment,		project_vertex: project_vertex,		dithering_fragment: dithering_fragment,		dithering_pars_fragment: dithering_pars_fragment,		roughnessmap_fragment: roughnessmap_fragment,		roughnessmap_pars_fragment: roughnessmap_pars_fragment,		shadowmap_pars_fragment: shadowmap_pars_fragment,		shadowmap_pars_vertex: shadowmap_pars_vertex,		shadowmap_vertex: shadowmap_vertex,		shadowmask_pars_fragment: shadowmask_pars_fragment,		skinbase_vertex: skinbase_vertex,		skinning_pars_vertex: skinning_pars_vertex,		skinning_vertex: skinning_vertex,		skinnormal_vertex: skinnormal_vertex,		specularmap_fragment: specularmap_fragment,		specularmap_pars_fragment: specularmap_pars_fragment,		tonemapping_fragment: tonemapping_fragment,		tonemapping_pars_fragment: tonemapping_pars_fragment,		transmission_fragment: transmission_fragment,		transmission_pars_fragment: transmission_pars_fragment,		uv_pars_fragment: uv_pars_fragment,		uv_pars_vertex: uv_pars_vertex,		uv_vertex: uv_vertex,		uv2_pars_fragment: uv2_pars_fragment,		uv2_pars_vertex: uv2_pars_vertex,		uv2_vertex: uv2_vertex,		worldpos_vertex: worldpos_vertex,		background_vert: vertex$g,		background_frag: fragment$g,		cube_vert: vertex$f,		cube_frag: fragment$f,		depth_vert: vertex$e,		depth_frag: fragment$e,		distanceRGBA_vert: vertex$d,		distanceRGBA_frag: fragment$d,		equirect_vert: vertex$c,		equirect_frag: fragment$c,		linedashed_vert: vertex$b,		linedashed_frag: fragment$b,		meshbasic_vert: vertex$a,		meshbasic_frag: fragment$a,		meshlambert_vert: vertex$9,		meshlambert_frag: fragment$9,		meshmatcap_vert: vertex$8,		meshmatcap_frag: fragment$8,		meshnormal_vert: vertex$7,		meshnormal_frag: fragment$7,		meshphong_vert: vertex$6,		meshphong_frag: fragment$6,		meshphysical_vert: vertex$5,		meshphysical_frag: fragment$5,		meshtoon_vert: vertex$4,		meshtoon_frag: fragment$4,		points_vert: vertex$3,		points_frag: fragment$3,		shadow_vert: vertex$2,		shadow_frag: fragment$2,		sprite_vert: vertex$1,		sprite_frag: fragment$1	};	/**	 * Uniforms library for shared webgl shaders	 */	const UniformsLib = {		common: {			diffuse: {				value: new Color(0xffffff)			},			opacity: {				value: 1.0			},			map: {				value: null			},			uvTransform: {				value: new Matrix3()			},			uv2Transform: {				value: new Matrix3()			},			alphaMap: {				value: null			},			alphaTest: {				value: 0			}		},		specularmap: {			specularMap: {				value: null			}		},		envmap: {			envMap: {				value: null			},			flipEnvMap: {				value: -1			},			reflectivity: {				value: 1.0			},			// basic, lambert, phong			ior: {				value: 1.5			},			// standard, physical			refractionRatio: {				value: 0.98			}		},		aomap: {			aoMap: {				value: null			},			aoMapIntensity: {				value: 1			}		},		lightmap: {			lightMap: {				value: null			},			lightMapIntensity: {				value: 1			}		},		emissivemap: {			emissiveMap: {				value: null			}		},		bumpmap: {			bumpMap: {				value: null			},			bumpScale: {				value: 1			}		},		normalmap: {			normalMap: {				value: null			},			normalScale: {				value: new Vector2(1, 1)			}		},		displacementmap: {			displacementMap: {				value: null			},			displacementScale: {				value: 1			},			displacementBias: {				value: 0			}		},		roughnessmap: {			roughnessMap: {				value: null			}		},		metalnessmap: {			metalnessMap: {				value: null			}		},		gradientmap: {			gradientMap: {				value: null			}		},		fog: {			fogDensity: {				value: 0.00025			},			fogNear: {				value: 1			},			fogFar: {				value: 2000			},			fogColor: {				value: new Color(0xffffff)			}		},		lights: {			ambientLightColor: {				value: []			},			lightProbe: {				value: []			},			directionalLights: {				value: [],				properties: {					direction: {},					color: {}				}			},			directionalLightShadows: {				value: [],				properties: {					shadowBias: {},					shadowNormalBias: {},					shadowRadius: {},					shadowMapSize: {}				}			},			directionalShadowMap: {				value: []			},			directionalShadowMatrix: {				value: []			},			spotLights: {				value: [],				properties: {					color: {},					position: {},					direction: {},					distance: {},					coneCos: {},					penumbraCos: {},					decay: {}				}			},			spotLightShadows: {				value: [],				properties: {					shadowBias: {},					shadowNormalBias: {},					shadowRadius: {},					shadowMapSize: {}				}			},			spotShadowMap: {				value: []			},			spotShadowMatrix: {				value: []			},			pointLights: {				value: [],				properties: {					color: {},					position: {},					decay: {},					distance: {}				}			},			pointLightShadows: {				value: [],				properties: {					shadowBias: {},					shadowNormalBias: {},					shadowRadius: {},					shadowMapSize: {},					shadowCameraNear: {},					shadowCameraFar: {}				}			},			pointShadowMap: {				value: []			},			pointShadowMatrix: {				value: []			},			hemisphereLights: {				value: [],				properties: {					direction: {},					skyColor: {},					groundColor: {}				}			},			// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src			rectAreaLights: {				value: [],				properties: {					color: {},					position: {},					width: {},					height: {}				}			},			ltc_1: {				value: null			},			ltc_2: {				value: null			}		},		points: {			diffuse: {				value: new Color(0xffffff)			},			opacity: {				value: 1.0			},			size: {				value: 1.0			},			scale: {				value: 1.0			},			map: {				value: null			},			alphaMap: {				value: null			},			alphaTest: {				value: 0			},			uvTransform: {				value: new Matrix3()			}		},		sprite: {			diffuse: {				value: new Color(0xffffff)			},			opacity: {				value: 1.0			},			center: {				value: new Vector2(0.5, 0.5)			},			rotation: {				value: 0.0			},			map: {				value: null			},			alphaMap: {				value: null			},			alphaTest: {				value: 0			},			uvTransform: {				value: new Matrix3()			}		}	};	const ShaderLib = {		basic: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]),			vertexShader: ShaderChunk.meshbasic_vert,			fragmentShader: ShaderChunk.meshbasic_frag		},		lambert: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, {				emissive: {					value: new Color(0x000000)				}			}]),			vertexShader: ShaderChunk.meshlambert_vert,			fragmentShader: ShaderChunk.meshlambert_frag		},		phong: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, {				emissive: {					value: new Color(0x000000)				},				specular: {					value: new Color(0x111111)				},				shininess: {					value: 30				}			}]),			vertexShader: ShaderChunk.meshphong_vert,			fragmentShader: ShaderChunk.meshphong_frag		},		standard: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, {				emissive: {					value: new Color(0x000000)				},				roughness: {					value: 1.0				},				metalness: {					value: 0.0				},				envMapIntensity: {					value: 1				} // temporary			}]),			vertexShader: ShaderChunk.meshphysical_vert,			fragmentShader: ShaderChunk.meshphysical_frag		},		toon: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, {				emissive: {					value: new Color(0x000000)				}			}]),			vertexShader: ShaderChunk.meshtoon_vert,			fragmentShader: ShaderChunk.meshtoon_frag		},		matcap: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, {				matcap: {					value: null				}			}]),			vertexShader: ShaderChunk.meshmatcap_vert,			fragmentShader: ShaderChunk.meshmatcap_frag		},		points: {			uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]),			vertexShader: ShaderChunk.points_vert,			fragmentShader: ShaderChunk.points_frag		},		dashed: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, {				scale: {					value: 1				},				dashSize: {					value: 1				},				totalSize: {					value: 2				}			}]),			vertexShader: ShaderChunk.linedashed_vert,			fragmentShader: ShaderChunk.linedashed_frag		},		depth: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]),			vertexShader: ShaderChunk.depth_vert,			fragmentShader: ShaderChunk.depth_frag		},		normal: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, {				opacity: {					value: 1.0				}			}]),			vertexShader: ShaderChunk.meshnormal_vert,			fragmentShader: ShaderChunk.meshnormal_frag		},		sprite: {			uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]),			vertexShader: ShaderChunk.sprite_vert,			fragmentShader: ShaderChunk.sprite_frag		},		background: {			uniforms: {				uvTransform: {					value: new Matrix3()				},				t2D: {					value: null				}			},			vertexShader: ShaderChunk.background_vert,			fragmentShader: ShaderChunk.background_frag		},		/* -------------------------------------------------------------------------		//	Cube map shader		 ------------------------------------------------------------------------- */		cube: {			uniforms: mergeUniforms([UniformsLib.envmap, {				opacity: {					value: 1.0				}			}]),			vertexShader: ShaderChunk.cube_vert,			fragmentShader: ShaderChunk.cube_frag		},		equirect: {			uniforms: {				tEquirect: {					value: null				}			},			vertexShader: ShaderChunk.equirect_vert,			fragmentShader: ShaderChunk.equirect_frag		},		distanceRGBA: {			uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, {				referencePosition: {					value: new Vector3()				},				nearDistance: {					value: 1				},				farDistance: {					value: 1000				}			}]),			vertexShader: ShaderChunk.distanceRGBA_vert,			fragmentShader: ShaderChunk.distanceRGBA_frag		},		shadow: {			uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, {				color: {					value: new Color(0x00000)				},				opacity: {					value: 1.0				}			}]),			vertexShader: ShaderChunk.shadow_vert,			fragmentShader: ShaderChunk.shadow_frag		}	};	ShaderLib.physical = {		uniforms: mergeUniforms([ShaderLib.standard.uniforms, {			clearcoat: {				value: 0			},			clearcoatMap: {				value: null			},			clearcoatRoughness: {				value: 0			},			clearcoatRoughnessMap: {				value: null			},			clearcoatNormalScale: {				value: new Vector2(1, 1)			},			clearcoatNormalMap: {				value: null			},			sheen: {				value: 0			},			sheenColor: {				value: new Color(0x000000)			},			sheenColorMap: {				value: null			},			sheenRoughness: {				value: 0			},			sheenRoughnessMap: {				value: null			},			transmission: {				value: 0			},			transmissionMap: {				value: null			},			transmissionSamplerSize: {				value: new Vector2()			},			transmissionSamplerMap: {				value: null			},			thickness: {				value: 0			},			thicknessMap: {				value: null			},			attenuationDistance: {				value: 0			},			attenuationColor: {				value: new Color(0x000000)			},			specularIntensity: {				value: 0			},			specularIntensityMap: {				value: null			},			specularColor: {				value: new Color(1, 1, 1)			},			specularColorMap: {				value: null			}		}]),		vertexShader: ShaderChunk.meshphysical_vert,		fragmentShader: ShaderChunk.meshphysical_frag	};	function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) {		const clearColor = new Color(0x000000);		let clearAlpha = 0;		let planeMesh;		let boxMesh;		let currentBackground = null;		let currentBackgroundVersion = 0;		let currentTonemapping = null;		function render(renderList, scene) {			let forceClear = false;			let background = scene.isScene === true ? scene.background : null;			if (background && background.isTexture) {				background = cubemaps.get(background);			} // Ignore background in AR			// TODO: Reconsider this.			const xr = renderer.xr;			const session = xr.getSession && xr.getSession();			if (session && session.environmentBlendMode === 'additive') {				background = null;			}			if (background === null) {				setClear(clearColor, clearAlpha);			} else if (background && background.isColor) {				setClear(background, 1);				forceClear = true;			}			if (renderer.autoClear || forceClear) {				renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil);			}			if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) {				if (boxMesh === undefined) {					boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({						name: 'BackgroundCubeMaterial',						uniforms: cloneUniforms(ShaderLib.cube.uniforms),						vertexShader: ShaderLib.cube.vertexShader,						fragmentShader: ShaderLib.cube.fragmentShader,						side: BackSide,						depthTest: false,						depthWrite: false,						fog: false					}));					boxMesh.geometry.deleteAttribute('normal');					boxMesh.geometry.deleteAttribute('uv');					boxMesh.onBeforeRender = function (renderer, scene, camera) {						this.matrixWorld.copyPosition(camera.matrixWorld);					}; // enable code injection for non-built-in material					Object.defineProperty(boxMesh.material, 'envMap', {						get: function () {							return this.uniforms.envMap.value;						}					});					objects.update(boxMesh);				}				boxMesh.material.uniforms.envMap.value = background;				boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1;				if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {					boxMesh.material.needsUpdate = true;					currentBackground = background;					currentBackgroundVersion = background.version;					currentTonemapping = renderer.toneMapping;				} // push to the pre-sorted opaque render list				renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null);			} else if (background && background.isTexture) {				if (planeMesh === undefined) {					planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({						name: 'BackgroundMaterial',						uniforms: cloneUniforms(ShaderLib.background.uniforms),						vertexShader: ShaderLib.background.vertexShader,						fragmentShader: ShaderLib.background.fragmentShader,						side: FrontSide,						depthTest: false,						depthWrite: false,						fog: false					}));					planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material					Object.defineProperty(planeMesh.material, 'map', {						get: function () {							return this.uniforms.t2D.value;						}					});					objects.update(planeMesh);				}				planeMesh.material.uniforms.t2D.value = background;				if (background.matrixAutoUpdate === true) {					background.updateMatrix();				}				planeMesh.material.uniforms.uvTransform.value.copy(background.matrix);				if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {					planeMesh.material.needsUpdate = true;					currentBackground = background;					currentBackgroundVersion = background.version;					currentTonemapping = renderer.toneMapping;				} // push to the pre-sorted opaque render list				renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null);			}		}		function setClear(color, alpha) {			state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha);		}		return {			getClearColor: function () {				return clearColor;			},			setClearColor: function (color, alpha = 1) {				clearColor.set(color);				clearAlpha = alpha;				setClear(clearColor, clearAlpha);			},			getClearAlpha: function () {				return clearAlpha;			},			setClearAlpha: function (alpha) {				clearAlpha = alpha;				setClear(clearColor, clearAlpha);			},			render: render		};	}	function WebGLBindingStates(gl, extensions, attributes, capabilities) {		const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);		const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object');		const vaoAvailable = capabilities.isWebGL2 || extension !== null;		const bindingStates = {};		const defaultState = createBindingState(null);		let currentState = defaultState;		function setup(object, material, program, geometry, index) {			let updateBuffers = false;			if (vaoAvailable) {				const state = getBindingState(geometry, program, material);				if (currentState !== state) {					currentState = state;					bindVertexArrayObject(currentState.object);				}				updateBuffers = needsUpdate(geometry, index);				if (updateBuffers) saveCache(geometry, index);			} else {				const wireframe = material.wireframe === true;				if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) {					currentState.geometry = geometry.id;					currentState.program = program.id;					currentState.wireframe = wireframe;					updateBuffers = true;				}			}			if (object.isInstancedMesh === true) {				updateBuffers = true;			}			if (index !== null) {				attributes.update(index, gl.ELEMENT_ARRAY_BUFFER);			}			if (updateBuffers) {				setupVertexAttributes(object, material, program, geometry);				if (index !== null) {					gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer);				}			}		}		function createVertexArrayObject() {			if (capabilities.isWebGL2) return gl.createVertexArray();			return extension.createVertexArrayOES();		}		function bindVertexArrayObject(vao) {			if (capabilities.isWebGL2) return gl.bindVertexArray(vao);			return extension.bindVertexArrayOES(vao);		}		function deleteVertexArrayObject(vao) {			if (capabilities.isWebGL2) return gl.deleteVertexArray(vao);			return extension.deleteVertexArrayOES(vao);		}		function getBindingState(geometry, program, material) {			const wireframe = material.wireframe === true;			let programMap = bindingStates[geometry.id];			if (programMap === undefined) {				programMap = {};				bindingStates[geometry.id] = programMap;			}			let stateMap = programMap[program.id];			if (stateMap === undefined) {				stateMap = {};				programMap[program.id] = stateMap;			}			let state = stateMap[wireframe];			if (state === undefined) {				state = createBindingState(createVertexArrayObject());				stateMap[wireframe] = state;			}			return state;		}		function createBindingState(vao) {			const newAttributes = [];			const enabledAttributes = [];			const attributeDivisors = [];			for (let i = 0; i < maxVertexAttributes; i++) {				newAttributes[i] = 0;				enabledAttributes[i] = 0;				attributeDivisors[i] = 0;			}			return {				// for backward compatibility on non-VAO support browser				geometry: null,				program: null,				wireframe: false,				newAttributes: newAttributes,				enabledAttributes: enabledAttributes,				attributeDivisors: attributeDivisors,				object: vao,				attributes: {},				index: null			};		}		function needsUpdate(geometry, index) {			const cachedAttributes = currentState.attributes;			const geometryAttributes = geometry.attributes;			let attributesNum = 0;			for (const key in geometryAttributes) {				const cachedAttribute = cachedAttributes[key];				const geometryAttribute = geometryAttributes[key];				if (cachedAttribute === undefined) return true;				if (cachedAttribute.attribute !== geometryAttribute) return true;				if (cachedAttribute.data !== geometryAttribute.data) return true;				attributesNum++;			}			if (currentState.attributesNum !== attributesNum) return true;			if (currentState.index !== index) return true;			return false;		}		function saveCache(geometry, index) {			const cache = {};			const attributes = geometry.attributes;			let attributesNum = 0;			for (const key in attributes) {				const attribute = attributes[key];				const data = {};				data.attribute = attribute;				if (attribute.data) {					data.data = attribute.data;				}				cache[key] = data;				attributesNum++;			}			currentState.attributes = cache;			currentState.attributesNum = attributesNum;			currentState.index = index;		}		function initAttributes() {			const newAttributes = currentState.newAttributes;			for (let i = 0, il = newAttributes.length; i < il; i++) {				newAttributes[i] = 0;			}		}		function enableAttribute(attribute) {			enableAttributeAndDivisor(attribute, 0);		}		function enableAttributeAndDivisor(attribute, meshPerAttribute) {			const newAttributes = currentState.newAttributes;			const enabledAttributes = currentState.enabledAttributes;			const attributeDivisors = currentState.attributeDivisors;			newAttributes[attribute] = 1;			if (enabledAttributes[attribute] === 0) {				gl.enableVertexAttribArray(attribute);				enabledAttributes[attribute] = 1;			}			if (attributeDivisors[attribute] !== meshPerAttribute) {				const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays');				extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute);				attributeDivisors[attribute] = meshPerAttribute;			}		}		function disableUnusedAttributes() {			const newAttributes = currentState.newAttributes;			const enabledAttributes = currentState.enabledAttributes;			for (let i = 0, il = enabledAttributes.length; i < il; i++) {				if (enabledAttributes[i] !== newAttributes[i]) {					gl.disableVertexAttribArray(i);					enabledAttributes[i] = 0;				}			}		}		function vertexAttribPointer(index, size, type, normalized, stride, offset) {			if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) {				gl.vertexAttribIPointer(index, size, type, stride, offset);			} else {				gl.vertexAttribPointer(index, size, type, normalized, stride, offset);			}		}		function setupVertexAttributes(object, material, program, geometry) {			if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) {				if (extensions.get('ANGLE_instanced_arrays') === null) return;			}			initAttributes();			const geometryAttributes = geometry.attributes;			const programAttributes = program.getAttributes();			const materialDefaultAttributeValues = material.defaultAttributeValues;			for (const name in programAttributes) {				const programAttribute = programAttributes[name];				if (programAttribute.location >= 0) {					let geometryAttribute = geometryAttributes[name];					if (geometryAttribute === undefined) {						if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix;						if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor;					}					if (geometryAttribute !== undefined) {						const normalized = geometryAttribute.normalized;						const size = geometryAttribute.itemSize;						const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore						if (attribute === undefined) continue;						const buffer = attribute.buffer;						const type = attribute.type;						const bytesPerElement = attribute.bytesPerElement;						if (geometryAttribute.isInterleavedBufferAttribute) {							const data = geometryAttribute.data;							const stride = data.stride;							const offset = geometryAttribute.offset;							if (data && data.isInstancedInterleavedBuffer) {								for (let i = 0; i < programAttribute.locationSize; i++) {									enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute);								}								if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {									geometry._maxInstanceCount = data.meshPerAttribute * data.count;								}							} else {								for (let i = 0; i < programAttribute.locationSize; i++) {									enableAttribute(programAttribute.location + i);								}							}							gl.bindBuffer(gl.ARRAY_BUFFER, buffer);							for (let i = 0; i < programAttribute.locationSize; i++) {								vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + size / programAttribute.locationSize * i) * bytesPerElement);							}						} else {							if (geometryAttribute.isInstancedBufferAttribute) {								for (let i = 0; i < programAttribute.locationSize; i++) {									enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute);								}								if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {									geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;								}							} else {								for (let i = 0; i < programAttribute.locationSize; i++) {									enableAttribute(programAttribute.location + i);								}							}							gl.bindBuffer(gl.ARRAY_BUFFER, buffer);							for (let i = 0; i < programAttribute.locationSize; i++) {								vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, size / programAttribute.locationSize * i * bytesPerElement);							}						}					} else if (materialDefaultAttributeValues !== undefined) {						const value = materialDefaultAttributeValues[name];						if (value !== undefined) {							switch (value.length) {								case 2:									gl.vertexAttrib2fv(programAttribute.location, value);									break;								case 3:									gl.vertexAttrib3fv(programAttribute.location, value);									break;								case 4:									gl.vertexAttrib4fv(programAttribute.location, value);									break;								default:									gl.vertexAttrib1fv(programAttribute.location, value);							}						}					}				}			}			disableUnusedAttributes();		}		function dispose() {			reset();			for (const geometryId in bindingStates) {				const programMap = bindingStates[geometryId];				for (const programId in programMap) {					const stateMap = programMap[programId];					for (const wireframe in stateMap) {						deleteVertexArrayObject(stateMap[wireframe].object);						delete stateMap[wireframe];					}					delete programMap[programId];				}				delete bindingStates[geometryId];			}		}		function releaseStatesOfGeometry(geometry) {			if (bindingStates[geometry.id] === undefined) return;			const programMap = bindingStates[geometry.id];			for (const programId in programMap) {				const stateMap = programMap[programId];				for (const wireframe in stateMap) {					deleteVertexArrayObject(stateMap[wireframe].object);					delete stateMap[wireframe];				}				delete programMap[programId];			}			delete bindingStates[geometry.id];		}		function releaseStatesOfProgram(program) {			for (const geometryId in bindingStates) {				const programMap = bindingStates[geometryId];				if (programMap[program.id] === undefined) continue;				const stateMap = programMap[program.id];				for (const wireframe in stateMap) {					deleteVertexArrayObject(stateMap[wireframe].object);					delete stateMap[wireframe];				}				delete programMap[program.id];			}		}		function reset() {			resetDefaultState();			if (currentState === defaultState) return;			currentState = defaultState;			bindVertexArrayObject(currentState.object);		} // for backward-compatilibity		function resetDefaultState() {			defaultState.geometry = null;			defaultState.program = null;			defaultState.wireframe = false;		}		return {			setup: setup,			reset: reset,			resetDefaultState: resetDefaultState,			dispose: dispose,			releaseStatesOfGeometry: releaseStatesOfGeometry,			releaseStatesOfProgram: releaseStatesOfProgram,			initAttributes: initAttributes,			enableAttribute: enableAttribute,			disableUnusedAttributes: disableUnusedAttributes		};	}	function WebGLBufferRenderer(gl, extensions, info, capabilities) {		const isWebGL2 = capabilities.isWebGL2;		let mode;		function setMode(value) {			mode = value;		}		function render(start, count) {			gl.drawArrays(mode, start, count);			info.update(count, mode, 1);		}		function renderInstances(start, count, primcount) {			if (primcount === 0) return;			let extension, methodName;			if (isWebGL2) {				extension = gl;				methodName = 'drawArraysInstanced';			} else {				extension = extensions.get('ANGLE_instanced_arrays');				methodName = 'drawArraysInstancedANGLE';				if (extension === null) {					console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');					return;				}			}			extension[methodName](mode, start, count, primcount);			info.update(count, mode, primcount);		} //		this.setMode = setMode;		this.render = render;		this.renderInstances = renderInstances;	}	function WebGLCapabilities(gl, extensions, parameters) {		let maxAnisotropy;		function getMaxAnisotropy() {			if (maxAnisotropy !== undefined) return maxAnisotropy;			if (extensions.has('EXT_texture_filter_anisotropic') === true) {				const extension = extensions.get('EXT_texture_filter_anisotropic');				maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT);			} else {				maxAnisotropy = 0;			}			return maxAnisotropy;		}		function getMaxPrecision(precision) {			if (precision === 'highp') {				if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) {					return 'highp';				}				precision = 'mediump';			}			if (precision === 'mediump') {				if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) {					return 'mediump';				}			}			return 'lowp';		}		/* eslint-disable no-undef */		const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext;		/* eslint-enable no-undef */		let precision = parameters.precision !== undefined ? parameters.precision : 'highp';		const maxPrecision = getMaxPrecision(precision);		if (maxPrecision !== precision) {			console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.');			precision = maxPrecision;		}		const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers');		const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;		const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS);		const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS);		const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE);		const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE);		const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);		const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);		const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS);		const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS);		const vertexTextures = maxVertexTextures > 0;		const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float');		const floatVertexTextures = vertexTextures && floatFragmentTextures;		const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0;		return {			isWebGL2: isWebGL2,			drawBuffers: drawBuffers,			getMaxAnisotropy: getMaxAnisotropy,			getMaxPrecision: getMaxPrecision,			precision: precision,			logarithmicDepthBuffer: logarithmicDepthBuffer,			maxTextures: maxTextures,			maxVertexTextures: maxVertexTextures,			maxTextureSize: maxTextureSize,			maxCubemapSize: maxCubemapSize,			maxAttributes: maxAttributes,			maxVertexUniforms: maxVertexUniforms,			maxVaryings: maxVaryings,			maxFragmentUniforms: maxFragmentUniforms,			vertexTextures: vertexTextures,			floatFragmentTextures: floatFragmentTextures,			floatVertexTextures: floatVertexTextures,			maxSamples: maxSamples		};	}	function WebGLClipping(properties) {		const scope = this;		let globalState = null,				numGlobalPlanes = 0,				localClippingEnabled = false,				renderingShadows = false;		const plane = new Plane(),					viewNormalMatrix = new Matrix3(),					uniform = {			value: null,			needsUpdate: false		};		this.uniform = uniform;		this.numPlanes = 0;		this.numIntersection = 0;		this.init = function (planes, enableLocalClipping, camera) {			const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to			// run another frame in order to reset the state:			numGlobalPlanes !== 0 || localClippingEnabled;			localClippingEnabled = enableLocalClipping;			globalState = projectPlanes(planes, camera, 0);			numGlobalPlanes = planes.length;			return enabled;		};		this.beginShadows = function () {			renderingShadows = true;			projectPlanes(null);		};		this.endShadows = function () {			renderingShadows = false;			resetGlobalState();		};		this.setState = function (material, camera, useCache) {			const planes = material.clippingPlanes,						clipIntersection = material.clipIntersection,						clipShadows = material.clipShadows;			const materialProperties = properties.get(material);			if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) {				// there's no local clipping				if (renderingShadows) {					// there's no global clipping					projectPlanes(null);				} else {					resetGlobalState();				}			} else {				const nGlobal = renderingShadows ? 0 : numGlobalPlanes,							lGlobal = nGlobal * 4;				let dstArray = materialProperties.clippingState || null;				uniform.value = dstArray; // ensure unique state				dstArray = projectPlanes(planes, camera, lGlobal, useCache);				for (let i = 0; i !== lGlobal; ++i) {					dstArray[i] = globalState[i];				}				materialProperties.clippingState = dstArray;				this.numIntersection = clipIntersection ? this.numPlanes : 0;				this.numPlanes += nGlobal;			}		};		function resetGlobalState() {			if (uniform.value !== globalState) {				uniform.value = globalState;				uniform.needsUpdate = numGlobalPlanes > 0;			}			scope.numPlanes = numGlobalPlanes;			scope.numIntersection = 0;		}		function projectPlanes(planes, camera, dstOffset, skipTransform) {			const nPlanes = planes !== null ? planes.length : 0;			let dstArray = null;			if (nPlanes !== 0) {				dstArray = uniform.value;				if (skipTransform !== true || dstArray === null) {					const flatSize = dstOffset + nPlanes * 4,								viewMatrix = camera.matrixWorldInverse;					viewNormalMatrix.getNormalMatrix(viewMatrix);					if (dstArray === null || dstArray.length < flatSize) {						dstArray = new Float32Array(flatSize);					}					for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) {						plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix);						plane.normal.toArray(dstArray, i4);						dstArray[i4 + 3] = plane.constant;					}				}				uniform.value = dstArray;				uniform.needsUpdate = true;			}			scope.numPlanes = nPlanes;			scope.numIntersection = 0;			return dstArray;		}	}	function WebGLCubeMaps(renderer) {		let cubemaps = new WeakMap();		function mapTextureMapping(texture, mapping) {			if (mapping === EquirectangularReflectionMapping) {				texture.mapping = CubeReflectionMapping;			} else if (mapping === EquirectangularRefractionMapping) {				texture.mapping = CubeRefractionMapping;			}			return texture;		}		function get(texture) {			if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {				const mapping = texture.mapping;				if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) {					if (cubemaps.has(texture)) {						const cubemap = cubemaps.get(texture).texture;						return mapTextureMapping(cubemap, texture.mapping);					} else {						const image = texture.image;						if (image && image.height > 0) {							const currentRenderTarget = renderer.getRenderTarget();							const renderTarget = new WebGLCubeRenderTarget(image.height / 2);							renderTarget.fromEquirectangularTexture(renderer, texture);							cubemaps.set(texture, renderTarget);							renderer.setRenderTarget(currentRenderTarget);							texture.addEventListener('dispose', onTextureDispose);							return mapTextureMapping(renderTarget.texture, texture.mapping);						} else {							// image not yet ready. try the conversion next frame							return null;						}					}				}			}			return texture;		}		function onTextureDispose(event) {			const texture = event.target;			texture.removeEventListener('dispose', onTextureDispose);			const cubemap = cubemaps.get(texture);			if (cubemap !== undefined) {				cubemaps.delete(texture);				cubemap.dispose();			}		}		function dispose() {			cubemaps = new WeakMap();		}		return {			get: get,			dispose: dispose		};	}	class OrthographicCamera extends Camera {		constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) {			super();			this.type = 'OrthographicCamera';			this.zoom = 1;			this.view = null;			this.left = left;			this.right = right;			this.top = top;			this.bottom = bottom;			this.near = near;			this.far = far;			this.updateProjectionMatrix();		}		copy(source, recursive) {			super.copy(source, recursive);			this.left = source.left;			this.right = source.right;			this.top = source.top;			this.bottom = source.bottom;			this.near = source.near;			this.far = source.far;			this.zoom = source.zoom;			this.view = source.view === null ? null : Object.assign({}, source.view);			return this;		}		setViewOffset(fullWidth, fullHeight, x, y, width, height) {			if (this.view === null) {				this.view = {					enabled: true,					fullWidth: 1,					fullHeight: 1,					offsetX: 0,					offsetY: 0,					width: 1,					height: 1				};			}			this.view.enabled = true;			this.view.fullWidth = fullWidth;			this.view.fullHeight = fullHeight;			this.view.offsetX = x;			this.view.offsetY = y;			this.view.width = width;			this.view.height = height;			this.updateProjectionMatrix();		}		clearViewOffset() {			if (this.view !== null) {				this.view.enabled = false;			}			this.updateProjectionMatrix();		}		updateProjectionMatrix() {			const dx = (this.right - this.left) / (2 * this.zoom);			const dy = (this.top - this.bottom) / (2 * this.zoom);			const cx = (this.right + this.left) / 2;			const cy = (this.top + this.bottom) / 2;			let left = cx - dx;			let right = cx + dx;			let top = cy + dy;			let bottom = cy - dy;			if (this.view !== null && this.view.enabled) {				const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom;				const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom;				left += scaleW * this.view.offsetX;				right = left + scaleW * this.view.width;				top -= scaleH * this.view.offsetY;				bottom = top - scaleH * this.view.height;			}			this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far);			this.projectionMatrixInverse.copy(this.projectionMatrix).invert();		}		toJSON(meta) {			const data = super.toJSON(meta);			data.object.zoom = this.zoom;			data.object.left = this.left;			data.object.right = this.right;			data.object.top = this.top;			data.object.bottom = this.bottom;			data.object.near = this.near;			data.object.far = this.far;			if (this.view !== null) data.object.view = Object.assign({}, this.view);			return data;		}	}	OrthographicCamera.prototype.isOrthographicCamera = true;	class RawShaderMaterial extends ShaderMaterial {		constructor(parameters) {			super(parameters);			this.type = 'RawShaderMaterial';		}	}	RawShaderMaterial.prototype.isRawShaderMaterial = true;	const LOD_MIN = 4;	const LOD_MAX = 8;	const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are	// chosen to approximate a Trowbridge-Reitz distribution function times the	// geometric shadowing function. These sigma values squared must match the	// variance #defines in cube_uv_reflection_fragment.glsl.js.	const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];	const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer	// samples and exit early, but not recompile the shader.	const MAX_SAMPLES = 20;	const ENCODINGS = {		[LinearEncoding]: 0,		[sRGBEncoding]: 1,		[RGBEEncoding]: 2,		[RGBM7Encoding]: 3,		[RGBM16Encoding]: 4,		[RGBDEncoding]: 5,		[GammaEncoding]: 6	};	const _flatCamera = /*@__PURE__*/new OrthographicCamera();	const {		_lodPlanes,		_sizeLods,		_sigmas	} = /*@__PURE__*/_createPlanes();	const _clearColor = /*@__PURE__*/new Color();	let _oldTarget = null; // Golden Ratio	const PHI = (1 + Math.sqrt(5)) / 2;	const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the	// same axis), used as axis directions evenly spread on a sphere.	const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)];	/**	 * This class generates a Prefiltered, Mipmapped Radiance Environment Map	 * (PMREM) from a cubeMap environment texture. This allows different levels of	 * blur to be quickly accessed based on material roughness. It is packed into a	 * special CubeUV format that allows us to perform custom interpolation so that	 * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap	 * chain, it only goes down to the LOD_MIN level (above), and then creates extra	 * even more filtered 'mips' at the same LOD_MIN resolution, associated with	 * higher roughness levels. In this way we maintain resolution to smoothly	 * interpolate diffuse lighting while limiting sampling computation.	 *	 * Paper: Fast, Accurate Image-Based Lighting	 * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view	*/	class PMREMGenerator {		constructor(renderer) {			this._renderer = renderer;			this._pingPongRenderTarget = null;			this._blurMaterial = _getBlurShader(MAX_SAMPLES);			this._equirectShader = null;			this._cubemapShader = null;			this._compileMaterial(this._blurMaterial);		}		/**		 * Generates a PMREM from a supplied Scene, which can be faster than using an		 * image if networking bandwidth is low. Optional sigma specifies a blur radius		 * in radians to be applied to the scene before PMREM generation. Optional near		 * and far planes ensure the scene is rendered in its entirety (the cubeCamera		 * is placed at the origin).		 */		fromScene(scene, sigma = 0, near = 0.1, far = 100) {			_oldTarget = this._renderer.getRenderTarget();			const cubeUVRenderTarget = this._allocateTargets();			this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);			if (sigma > 0) {				this._blur(cubeUVRenderTarget, 0, 0, sigma);			}			this._applyPMREM(cubeUVRenderTarget);			this._cleanup(cubeUVRenderTarget);			return cubeUVRenderTarget;		}		/**		 * Generates a PMREM from an equirectangular texture, which can be either LDR		 * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),		 * as this matches best with the 256 x 256 cubemap output.		 */		fromEquirectangular(equirectangular) {			return this._fromTexture(equirectangular);		}		/**		 * Generates a PMREM from an cubemap texture, which can be either LDR		 * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,		 * as this matches best with the 256 x 256 cubemap output.		 */		fromCubemap(cubemap) {			return this._fromTexture(cubemap);		}		/**		 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during		 * your texture's network fetch for increased concurrency.		 */		compileCubemapShader() {			if (this._cubemapShader === null) {				this._cubemapShader = _getCubemapShader();				this._compileMaterial(this._cubemapShader);			}		}		/**		 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during		 * your texture's network fetch for increased concurrency.		 */		compileEquirectangularShader() {			if (this._equirectShader === null) {				this._equirectShader = _getEquirectShader();				this._compileMaterial(this._equirectShader);			}		}		/**		 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,		 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on		 * one of them will cause any others to also become unusable.		 */		dispose() {			this._blurMaterial.dispose();			if (this._cubemapShader !== null) this._cubemapShader.dispose();			if (this._equirectShader !== null) this._equirectShader.dispose();			for (let i = 0; i < _lodPlanes.length; i++) {				_lodPlanes[i].dispose();			}		} // private interface		_cleanup(outputTarget) {			this._pingPongRenderTarget.dispose();			this._renderer.setRenderTarget(_oldTarget);			outputTarget.scissorTest = false;			_setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);		}		_fromTexture(texture) {			_oldTarget = this._renderer.getRenderTarget();			const cubeUVRenderTarget = this._allocateTargets(texture);			this._textureToCubeUV(texture, cubeUVRenderTarget);			this._applyPMREM(cubeUVRenderTarget);			this._cleanup(cubeUVRenderTarget);			return cubeUVRenderTarget;		}		_allocateTargets(texture) {			// warning: null texture is valid			const params = {				magFilter: NearestFilter,				minFilter: NearestFilter,				generateMipmaps: false,				type: UnsignedByteType,				format: RGBEFormat,				encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,				depthBuffer: false			};			const cubeUVRenderTarget = _createRenderTarget(params);			cubeUVRenderTarget.depthBuffer = texture ? false : true;			this._pingPongRenderTarget = _createRenderTarget(params);			return cubeUVRenderTarget;		}		_compileMaterial(material) {			const tmpMesh = new Mesh(_lodPlanes[0], material);			this._renderer.compile(tmpMesh, _flatCamera);		}		_sceneToCubeUV(scene, near, far, cubeUVRenderTarget) {			const fov = 90;			const aspect = 1;			const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);			const upSign = [1, -1, 1, 1, 1, 1];			const forwardSign = [1, 1, 1, -1, -1, -1];			const renderer = this._renderer;			const originalAutoClear = renderer.autoClear;			const outputEncoding = renderer.outputEncoding;			const toneMapping = renderer.toneMapping;			renderer.getClearColor(_clearColor);			renderer.toneMapping = NoToneMapping;			renderer.outputEncoding = LinearEncoding;			renderer.autoClear = false;			const backgroundMaterial = new MeshBasicMaterial({				name: 'PMREM.Background',				side: BackSide,				depthWrite: false,				depthTest: false			});			const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial);			let useSolidColor = false;			const background = scene.background;			if (background) {				if (background.isColor) {					backgroundMaterial.color.copy(background);					scene.background = null;					useSolidColor = true;				}			} else {				backgroundMaterial.color.copy(_clearColor);				useSolidColor = true;			}			for (let i = 0; i < 6; i++) {				const col = i % 3;				if (col == 0) {					cubeCamera.up.set(0, upSign[i], 0);					cubeCamera.lookAt(forwardSign[i], 0, 0);				} else if (col == 1) {					cubeCamera.up.set(0, 0, upSign[i]);					cubeCamera.lookAt(0, forwardSign[i], 0);				} else {					cubeCamera.up.set(0, upSign[i], 0);					cubeCamera.lookAt(0, 0, forwardSign[i]);				}				_setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);				renderer.setRenderTarget(cubeUVRenderTarget);				if (useSolidColor) {					renderer.render(backgroundBox, cubeCamera);				}				renderer.render(scene, cubeCamera);			}			backgroundBox.geometry.dispose();			backgroundBox.material.dispose();			renderer.toneMapping = toneMapping;			renderer.outputEncoding = outputEncoding;			renderer.autoClear = originalAutoClear;			scene.background = background;		}		_setEncoding(uniform, texture) {			/* if ( this._renderer.capabilities.isWebGL2 === true && texture.format === RGBAFormat && texture.type === UnsignedByteType && texture.encoding === sRGBEncoding ) {					uniform.value = ENCODINGS[ LinearEncoding ];				} else {					uniform.value = ENCODINGS[ texture.encoding ];				} */			uniform.value = ENCODINGS[texture.encoding];		}		_textureToCubeUV(texture, cubeUVRenderTarget) {			const renderer = this._renderer;			const isCubeTexture = texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping;			if (isCubeTexture) {				if (this._cubemapShader == null) {					this._cubemapShader = _getCubemapShader();				}			} else {				if (this._equirectShader == null) {					this._equirectShader = _getEquirectShader();				}			}			const material = isCubeTexture ? this._cubemapShader : this._equirectShader;			const mesh = new Mesh(_lodPlanes[0], material);			const uniforms = material.uniforms;			uniforms['envMap'].value = texture;			if (!isCubeTexture) {				uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);			}			this._setEncoding(uniforms['inputEncoding'], texture);			this._setEncoding(uniforms['outputEncoding'], cubeUVRenderTarget.texture);			_setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);			renderer.setRenderTarget(cubeUVRenderTarget);			renderer.render(mesh, _flatCamera);		}		_applyPMREM(cubeUVRenderTarget) {			const renderer = this._renderer;			const autoClear = renderer.autoClear;			renderer.autoClear = false;			for (let i = 1; i < TOTAL_LODS; i++) {				const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);				const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];				this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);			}			renderer.autoClear = autoClear;		}		/**		 * This is a two-pass Gaussian blur for a cubemap. Normally this is done		 * vertically and horizontally, but this breaks down on a cube. Here we apply		 * the blur latitudinally (around the poles), and then longitudinally (towards		 * the poles) to approximate the orthogonally-separable blur. It is least		 * accurate at the poles, but still does a decent job.		 */		_blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) {			const pingPongRenderTarget = this._pingPongRenderTarget;			this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis);			this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis);		}		_halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) {			const renderer = this._renderer;			const blurMaterial = this._blurMaterial;			if (direction !== 'latitudinal' && direction !== 'longitudinal') {				console.error('blur direction must be either latitudinal or longitudinal!');			} // Number of standard deviations at which to cut off the discrete approximation.			const STANDARD_DEVIATIONS = 3;			const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);			const blurUniforms = blurMaterial.uniforms;			const pixels = _sizeLods[lodIn] - 1;			const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);			const sigmaPixels = sigmaRadians / radiansPerPixel;			const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;			if (samples > MAX_SAMPLES) {				console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);			}			const weights = [];			let sum = 0;			for (let i = 0; i < MAX_SAMPLES; ++i) {				const x = i / sigmaPixels;				const weight = Math.exp(-x * x / 2);				weights.push(weight);				if (i == 0) {					sum += weight;				} else if (i < samples) {					sum += 2 * weight;				}			}			for (let i = 0; i < weights.length; i++) {				weights[i] = weights[i] / sum;			}			blurUniforms['envMap'].value = targetIn.texture;			blurUniforms['samples'].value = samples;			blurUniforms['weights'].value = weights;			blurUniforms['latitudinal'].value = direction === 'latitudinal';			if (poleAxis) {				blurUniforms['poleAxis'].value = poleAxis;			}			blurUniforms['dTheta'].value = radiansPerPixel;			blurUniforms['mipInt'].value = LOD_MAX - lodIn;			this._setEncoding(blurUniforms['inputEncoding'], targetIn.texture);			this._setEncoding(blurUniforms['outputEncoding'], targetIn.texture);			const outputSize = _sizeLods[lodOut];			const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);			const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);			_setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);			renderer.setRenderTarget(targetOut);			renderer.render(blurMesh, _flatCamera);		}	}	function _isLDR(texture) {		if (texture === undefined || texture.type !== UnsignedByteType) return false;		return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;	}	function _createPlanes() {		const _lodPlanes = [];		const _sizeLods = [];		const _sigmas = [];		let lod = LOD_MAX;		for (let i = 0; i < TOTAL_LODS; i++) {			const sizeLod = Math.pow(2, lod);			_sizeLods.push(sizeLod);			let sigma = 1.0 / sizeLod;			if (i > LOD_MAX - LOD_MIN) {				sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];			} else if (i == 0) {				sigma = 0;			}			_sigmas.push(sigma);			const texelSize = 1.0 / (sizeLod - 1);			const min = -texelSize / 2;			const max = 1 + texelSize / 2;			const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];			const cubeFaces = 6;			const vertices = 6;			const positionSize = 3;			const uvSize = 2;			const faceIndexSize = 1;			const position = new Float32Array(positionSize * vertices * cubeFaces);			const uv = new Float32Array(uvSize * vertices * cubeFaces);			const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);			for (let face = 0; face < cubeFaces; face++) {				const x = face % 3 * 2 / 3 - 1;				const y = face > 2 ? 0 : -1;				const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0];				position.set(coordinates, positionSize * vertices * face);				uv.set(uv1, uvSize * vertices * face);				const fill = [face, face, face, face, face, face];				faceIndex.set(fill, faceIndexSize * vertices * face);			}			const planes = new BufferGeometry();			planes.setAttribute('position', new BufferAttribute(position, positionSize));			planes.setAttribute('uv', new BufferAttribute(uv, uvSize));			planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));			_lodPlanes.push(planes);			if (lod > LOD_MIN) {				lod--;			}		}		return {			_lodPlanes,			_sizeLods,			_sigmas		};	}	function _createRenderTarget(params) {		const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);		cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;		cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';		cubeUVRenderTarget.scissorTest = true;		return cubeUVRenderTarget;	}	function _setViewport(target, x, y, width, height) {		target.viewport.set(x, y, width, height);		target.scissor.set(x, y, width, height);	}	function _getBlurShader(maxSamples) {		const weights = new Float32Array(maxSamples);		const poleAxis = new Vector3(0, 1, 0);		const shaderMaterial = new RawShaderMaterial({			name: 'SphericalGaussianBlur',			defines: {				'n': maxSamples			},			uniforms: {				'envMap': {					value: null				},				'samples': {					value: 1				},				'weights': {					value: weights				},				'latitudinal': {					value: false				},				'dTheta': {					value: 0				},				'mipInt': {					value: 0				},				'poleAxis': {					value: poleAxis				},				'inputEncoding': {					value: ENCODINGS[LinearEncoding]				},				'outputEncoding': {					value: ENCODINGS[LinearEncoding]				}			},			vertexShader: _getCommonVertexShader(),			fragmentShader:			/* glsl */			`			precision mediump float;			precision mediump int;			varying vec3 vOutputDirection;			uniform sampler2D envMap;			uniform int samples;			uniform float weights[ n ];			uniform bool latitudinal;			uniform float dTheta;			uniform float mipInt;			uniform vec3 poleAxis;			${_getEncodings()}			#define ENVMAP_TYPE_CUBE_UV			#include <cube_uv_reflection_fragment>			vec3 getSample( float theta, vec3 axis ) {				float cosTheta = cos( theta );				// Rodrigues' axis-angle rotation				vec3 sampleDirection = vOutputDirection * cosTheta					+ cross( axis, vOutputDirection ) * sin( theta )					+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );				return bilinearCubeUV( envMap, sampleDirection, mipInt );			}			void main() {				vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );				if ( all( equal( axis, vec3( 0.0 ) ) ) ) {					axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );				}				axis = normalize( axis );				gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );				gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );				for ( int i = 1; i < n; i++ ) {					if ( i >= samples ) {						break;					}					float theta = dTheta * float( i );					gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );					gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );				}				gl_FragColor = linearToOutputTexel( gl_FragColor );			}		`,			blending: NoBlending,			depthTest: false,			depthWrite: false		});		return shaderMaterial;	}	function _getEquirectShader() {		const texelSize = new Vector2(1, 1);		const shaderMaterial = new RawShaderMaterial({			name: 'EquirectangularToCubeUV',			uniforms: {				'envMap': {					value: null				},				'texelSize': {					value: texelSize				},				'inputEncoding': {					value: ENCODINGS[LinearEncoding]				},				'outputEncoding': {					value: ENCODINGS[LinearEncoding]				}			},			vertexShader: _getCommonVertexShader(),			fragmentShader:			/* glsl */			`			precision mediump float;			precision mediump int;			varying vec3 vOutputDirection;			uniform sampler2D envMap;			uniform vec2 texelSize;			${_getEncodings()}			#include <common>			void main() {				gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );				vec3 outputDirection = normalize( vOutputDirection );				vec2 uv = equirectUv( outputDirection );				vec2 f = fract( uv / texelSize - 0.5 );				uv -= f * texelSize;				vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;				uv.x += texelSize.x;				vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;				uv.y += texelSize.y;				vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;				uv.x -= texelSize.x;				vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;				vec3 tm = mix( tl, tr, f.x );				vec3 bm = mix( bl, br, f.x );				gl_FragColor.rgb = mix( tm, bm, f.y );				gl_FragColor = linearToOutputTexel( gl_FragColor );			}		`,			blending: NoBlending,			depthTest: false,			depthWrite: false		});		return shaderMaterial;	}	function _getCubemapShader() {		const shaderMaterial = new RawShaderMaterial({			name: 'CubemapToCubeUV',			uniforms: {				'envMap': {					value: null				},				'inputEncoding': {					value: ENCODINGS[LinearEncoding]				},				'outputEncoding': {					value: ENCODINGS[LinearEncoding]				}			},			vertexShader: _getCommonVertexShader(),			fragmentShader:			/* glsl */			`			precision mediump float;			precision mediump int;			varying vec3 vOutputDirection;			uniform samplerCube envMap;			${_getEncodings()}			void main() {				gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );				gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;				gl_FragColor = linearToOutputTexel( gl_FragColor );			}		`,			blending: NoBlending,			depthTest: false,			depthWrite: false		});		return shaderMaterial;	}	function _getCommonVertexShader() {		return (			/* glsl */			`		precision mediump float;		precision mediump int;		attribute vec3 position;		attribute vec2 uv;		attribute float faceIndex;		varying vec3 vOutputDirection;		// RH coordinate system; PMREM face-indexing convention		vec3 getDirection( vec2 uv, float face ) {			uv = 2.0 * uv - 1.0;			vec3 direction = vec3( uv, 1.0 );			if ( face == 0.0 ) {				direction = direction.zyx; // ( 1, v, u ) pos x			} else if ( face == 1.0 ) {				direction = direction.xzy;				direction.xz *= -1.0; // ( -u, 1, -v ) pos y			} else if ( face == 2.0 ) {				direction.x *= -1.0; // ( -u, v, 1 ) pos z			} else if ( face == 3.0 ) {				direction = direction.zyx;				direction.xz *= -1.0; // ( -1, v, -u ) neg x			} else if ( face == 4.0 ) {				direction = direction.xzy;				direction.xy *= -1.0; // ( -u, -1, v ) neg y			} else if ( face == 5.0 ) {				direction.z *= -1.0; // ( u, v, -1 ) neg z			}			return direction;		}		void main() {			vOutputDirection = getDirection( uv, faceIndex );			gl_Position = vec4( position, 1.0 );		}	`		);	}	function _getEncodings() {		return (			/* glsl */			`		uniform int inputEncoding;		uniform int outputEncoding;		#include <encodings_pars_fragment>		vec4 inputTexelToLinear( vec4 value ) {			if ( inputEncoding == 0 ) {				return value;			} else if ( inputEncoding == 1 ) {				return sRGBToLinear( value );			} else if ( inputEncoding == 2 ) {				return RGBEToLinear( value );			} else if ( inputEncoding == 3 ) {				return RGBMToLinear( value, 7.0 );			} else if ( inputEncoding == 4 ) {				return RGBMToLinear( value, 16.0 );			} else if ( inputEncoding == 5 ) {				return RGBDToLinear( value, 256.0 );			} else {				return GammaToLinear( value, 2.2 );			}		}		vec4 linearToOutputTexel( vec4 value ) {			if ( outputEncoding == 0 ) {				return value;			} else if ( outputEncoding == 1 ) {				return LinearTosRGB( value );			} else if ( outputEncoding == 2 ) {				return LinearToRGBE( value );			} else if ( outputEncoding == 3 ) {				return LinearToRGBM( value, 7.0 );			} else if ( outputEncoding == 4 ) {				return LinearToRGBM( value, 16.0 );			} else if ( outputEncoding == 5 ) {				return LinearToRGBD( value, 256.0 );			} else {				return LinearToGamma( value, 2.2 );			}		}		vec4 envMapTexelToLinear( vec4 color ) {			return inputTexelToLinear( color );		}	`		);	}	function WebGLCubeUVMaps(renderer) {		let cubeUVmaps = new WeakMap();		let pmremGenerator = null;		function get(texture) {			if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {				const mapping = texture.mapping;				const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping;				const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping;				if (isEquirectMap || isCubeMap) {					// equirect/cube map to cubeUV conversion					if (cubeUVmaps.has(texture)) {						return cubeUVmaps.get(texture).texture;					} else {						const image = texture.image;						if (isEquirectMap && image && image.height > 0 || isCubeMap && image && isCubeTextureComplete(image)) {							const currentRenderTarget = renderer.getRenderTarget();							if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer);							const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture);							cubeUVmaps.set(texture, renderTarget);							renderer.setRenderTarget(currentRenderTarget);							texture.addEventListener('dispose', onTextureDispose);							return renderTarget.texture;						} else {							// image not yet ready. try the conversion next frame							return null;						}					}				}			}			return texture;		}		function isCubeTextureComplete(image) {			let count = 0;			const length = 6;			for (let i = 0; i < length; i++) {				if (image[i] !== undefined) count++;			}			return count === length;		}		function onTextureDispose(event) {			const texture = event.target;			texture.removeEventListener('dispose', onTextureDispose);			const cubemapUV = cubeUVmaps.get(texture);			if (cubemapUV !== undefined) {				cubeUVmaps.delete(texture);				cubemapUV.dispose();			}		}		function dispose() {			cubeUVmaps = new WeakMap();			if (pmremGenerator !== null) {				pmremGenerator.dispose();				pmremGenerator = null;			}		}		return {			get: get,			dispose: dispose		};	}	function WebGLExtensions(gl) {		const extensions = {};		function getExtension(name) {			if (extensions[name] !== undefined) {				return extensions[name];			}			let extension;			switch (name) {				case 'WEBGL_depth_texture':					extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture');					break;				case 'EXT_texture_filter_anisotropic':					extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic');					break;				case 'WEBGL_compressed_texture_s3tc':					extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc');					break;				case 'WEBGL_compressed_texture_pvrtc':					extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc');					break;				default:					extension = gl.getExtension(name);			}			extensions[name] = extension;			return extension;		}		return {			has: function (name) {				return getExtension(name) !== null;			},			init: function (capabilities) {				if (capabilities.isWebGL2) {					getExtension('EXT_color_buffer_float');				} else {					getExtension('WEBGL_depth_texture');					getExtension('OES_texture_float');					getExtension('OES_texture_half_float');					getExtension('OES_texture_half_float_linear');					getExtension('OES_standard_derivatives');					getExtension('OES_element_index_uint');					getExtension('OES_vertex_array_object');					getExtension('ANGLE_instanced_arrays');				}				getExtension('OES_texture_float_linear');				getExtension('EXT_color_buffer_half_float');				getExtension('WEBGL_multisampled_render_to_texture');			},			get: function (name) {				const extension = getExtension(name);				if (extension === null) {					console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.');				}				return extension;			}		};	}	function WebGLGeometries(gl, attributes, info, bindingStates) {		const geometries = {};		const wireframeAttributes = new WeakMap();		function onGeometryDispose(event) {			const geometry = event.target;			if (geometry.index !== null) {				attributes.remove(geometry.index);			}			for (const name in geometry.attributes) {				attributes.remove(geometry.attributes[name]);			}			geometry.removeEventListener('dispose', onGeometryDispose);			delete geometries[geometry.id];			const attribute = wireframeAttributes.get(geometry);			if (attribute) {				attributes.remove(attribute);				wireframeAttributes.delete(geometry);			}			bindingStates.releaseStatesOfGeometry(geometry);			if (geometry.isInstancedBufferGeometry === true) {				delete geometry._maxInstanceCount;			} //			info.memory.geometries--;		}		function get(object, geometry) {			if (geometries[geometry.id] === true) return geometry;			geometry.addEventListener('dispose', onGeometryDispose);			geometries[geometry.id] = true;			info.memory.geometries++;			return geometry;		}		function update(geometry) {			const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates.			for (const name in geometryAttributes) {				attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER);			} // morph targets			const morphAttributes = geometry.morphAttributes;			for (const name in morphAttributes) {				const array = morphAttributes[name];				for (let i = 0, l = array.length; i < l; i++) {					attributes.update(array[i], gl.ARRAY_BUFFER);				}			}		}		function updateWireframeAttribute(geometry) {			const indices = [];			const geometryIndex = geometry.index;			const geometryPosition = geometry.attributes.position;			let version = 0;			if (geometryIndex !== null) {				const array = geometryIndex.array;				version = geometryIndex.version;				for (let i = 0, l = array.length; i < l; i += 3) {					const a = array[i + 0];					const b = array[i + 1];					const c = array[i + 2];					indices.push(a, b, b, c, c, a);				}			} else {				const array = geometryPosition.array;				version = geometryPosition.version;				for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) {					const a = i + 0;					const b = i + 1;					const c = i + 2;					indices.push(a, b, b, c, c, a);				}			}			const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1);			attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates			//			const previousAttribute = wireframeAttributes.get(geometry);			if (previousAttribute) attributes.remove(previousAttribute); //			wireframeAttributes.set(geometry, attribute);		}		function getWireframeAttribute(geometry) {			const currentAttribute = wireframeAttributes.get(geometry);			if (currentAttribute) {				const geometryIndex = geometry.index;				if (geometryIndex !== null) {					// if the attribute is obsolete, create a new one					if (currentAttribute.version < geometryIndex.version) {						updateWireframeAttribute(geometry);					}				}			} else {				updateWireframeAttribute(geometry);			}			return wireframeAttributes.get(geometry);		}		return {			get: get,			update: update,			getWireframeAttribute: getWireframeAttribute		};	}	function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) {		const isWebGL2 = capabilities.isWebGL2;		let mode;		function setMode(value) {			mode = value;		}		let type, bytesPerElement;		function setIndex(value) {			type = value.type;			bytesPerElement = value.bytesPerElement;		}		function render(start, count) {			gl.drawElements(mode, count, type, start * bytesPerElement);			info.update(count, mode, 1);		}		function renderInstances(start, count, primcount) {			if (primcount === 0) return;			let extension, methodName;			if (isWebGL2) {				extension = gl;				methodName = 'drawElementsInstanced';			} else {				extension = extensions.get('ANGLE_instanced_arrays');				methodName = 'drawElementsInstancedANGLE';				if (extension === null) {					console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');					return;				}			}			extension[methodName](mode, count, type, start * bytesPerElement, primcount);			info.update(count, mode, primcount);		} //		this.setMode = setMode;		this.setIndex = setIndex;		this.render = render;		this.renderInstances = renderInstances;	}	function WebGLInfo(gl) {		const memory = {			geometries: 0,			textures: 0		};		const render = {			frame: 0,			calls: 0,			triangles: 0,			points: 0,			lines: 0		};		function update(count, mode, instanceCount) {			render.calls++;			switch (mode) {				case gl.TRIANGLES:					render.triangles += instanceCount * (count / 3);					break;				case gl.LINES:					render.lines += instanceCount * (count / 2);					break;				case gl.LINE_STRIP:					render.lines += instanceCount * (count - 1);					break;				case gl.LINE_LOOP:					render.lines += instanceCount * count;					break;				case gl.POINTS:					render.points += instanceCount * count;					break;				default:					console.error('THREE.WebGLInfo: Unknown draw mode:', mode);					break;			}		}		function reset() {			render.frame++;			render.calls = 0;			render.triangles = 0;			render.points = 0;			render.lines = 0;		}		return {			memory: memory,			render: render,			programs: null,			autoReset: true,			reset: reset,			update: update		};	}	class DataTexture2DArray extends Texture {		constructor(data = null, width = 1, height = 1, depth = 1) {			super(null);			this.image = {				data,				width,				height,				depth			};			this.magFilter = NearestFilter;			this.minFilter = NearestFilter;			this.wrapR = ClampToEdgeWrapping;			this.generateMipmaps = false;			this.flipY = false;			this.unpackAlignment = 1;			this.needsUpdate = true;		}	}	DataTexture2DArray.prototype.isDataTexture2DArray = true;	function numericalSort(a, b) {		return a[0] - b[0];	}	function absNumericalSort(a, b) {		return Math.abs(b[1]) - Math.abs(a[1]);	}	function denormalize(morph, attribute) {		let denominator = 1;		const array = attribute.isInterleavedBufferAttribute ? attribute.data.array : attribute.array;		if (array instanceof Int8Array) denominator = 127;else if (array instanceof Int16Array) denominator = 32767;else if (array instanceof Int32Array) denominator = 2147483647;else console.error('THREE.WebGLMorphtargets: Unsupported morph attribute data type: ', array);		morph.divideScalar(denominator);	}	function WebGLMorphtargets(gl, capabilities, textures) {		const influencesList = {};		const morphInfluences = new Float32Array(8);		const morphTextures = new WeakMap();		const morph = new Vector3();		const workInfluences = [];		for (let i = 0; i < 8; i++) {			workInfluences[i] = [i, 0];		}		function update(object, geometry, material, program) {			const objectInfluences = object.morphTargetInfluences;			if (capabilities.isWebGL2 === true) {				// instead of using attributes, the WebGL 2 code path encodes morph targets				// into an array of data textures. Each layer represents a single morph target.				const numberOfMorphTargets = geometry.morphAttributes.position.length;				let entry = morphTextures.get(geometry);				if (entry === undefined || entry.count !== numberOfMorphTargets) {					if (entry !== undefined) entry.texture.dispose();					const hasMorphNormals = geometry.morphAttributes.normal !== undefined;					const morphTargets = geometry.morphAttributes.position;					const morphNormals = geometry.morphAttributes.normal || [];					const numberOfVertices = geometry.attributes.position.count;					const numberOfVertexData = hasMorphNormals === true ? 2 : 1; // (v,n) vs. (v)					let width = numberOfVertices * numberOfVertexData;					let height = 1;					if (width > capabilities.maxTextureSize) {						height = Math.ceil(width / capabilities.maxTextureSize);						width = capabilities.maxTextureSize;					}					const buffer = new Float32Array(width * height * 4 * numberOfMorphTargets);					const texture = new DataTexture2DArray(buffer, width, height, numberOfMorphTargets);					texture.format = RGBAFormat; // using RGBA since RGB might be emulated (and is thus slower)					texture.type = FloatType; // fill buffer					const vertexDataStride = numberOfVertexData * 4;					for (let i = 0; i < numberOfMorphTargets; i++) {						const morphTarget = morphTargets[i];						const morphNormal = morphNormals[i];						const offset = width * height * 4 * i;						for (let j = 0; j < morphTarget.count; j++) {							morph.fromBufferAttribute(morphTarget, j);							if (morphTarget.normalized === true) denormalize(morph, morphTarget);							const stride = j * vertexDataStride;							buffer[offset + stride + 0] = morph.x;							buffer[offset + stride + 1] = morph.y;							buffer[offset + stride + 2] = morph.z;							buffer[offset + stride + 3] = 0;							if (hasMorphNormals === true) {								morph.fromBufferAttribute(morphNormal, j);								if (morphNormal.normalized === true) denormalize(morph, morphNormal);								buffer[offset + stride + 4] = morph.x;								buffer[offset + stride + 5] = morph.y;								buffer[offset + stride + 6] = morph.z;								buffer[offset + stride + 7] = 0;							}						}					}					entry = {						count: numberOfMorphTargets,						texture: texture,						size: new Vector2(width, height)					};					morphTextures.set(geometry, entry);				} //				let morphInfluencesSum = 0;				for (let i = 0; i < objectInfluences.length; i++) {					morphInfluencesSum += objectInfluences[i];				}				const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;				program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);				program.getUniforms().setValue(gl, 'morphTargetInfluences', objectInfluences);				program.getUniforms().setValue(gl, 'morphTargetsTexture', entry.texture, textures);				program.getUniforms().setValue(gl, 'morphTargetsTextureSize', entry.size);			} else {				// When object doesn't have morph target influences defined, we treat it as a 0-length array				// This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences				const length = objectInfluences === undefined ? 0 : objectInfluences.length;				let influences = influencesList[geometry.id];				if (influences === undefined || influences.length !== length) {					// initialise list					influences = [];					for (let i = 0; i < length; i++) {						influences[i] = [i, 0];					}					influencesList[geometry.id] = influences;				} // Collect influences				for (let i = 0; i < length; i++) {					const influence = influences[i];					influence[0] = i;					influence[1] = objectInfluences[i];				}				influences.sort(absNumericalSort);				for (let i = 0; i < 8; i++) {					if (i < length && influences[i][1]) {						workInfluences[i][0] = influences[i][0];						workInfluences[i][1] = influences[i][1];					} else {						workInfluences[i][0] = Number.MAX_SAFE_INTEGER;						workInfluences[i][1] = 0;					}				}				workInfluences.sort(numericalSort);				const morphTargets = geometry.morphAttributes.position;				const morphNormals = geometry.morphAttributes.normal;				let morphInfluencesSum = 0;				for (let i = 0; i < 8; i++) {					const influence = workInfluences[i];					const index = influence[0];					const value = influence[1];					if (index !== Number.MAX_SAFE_INTEGER && value) {						if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) {							geometry.setAttribute('morphTarget' + i, morphTargets[index]);						}						if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) {							geometry.setAttribute('morphNormal' + i, morphNormals[index]);						}						morphInfluences[i] = value;						morphInfluencesSum += value;					} else {						if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) {							geometry.deleteAttribute('morphTarget' + i);						}						if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) {							geometry.deleteAttribute('morphNormal' + i);						}						morphInfluences[i] = 0;					}				} // GLSL shader uses formula baseinfluence * base + sum(target * influence)				// This allows us to switch between absolute morphs and relative morphs without changing shader code				// When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)				const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;				program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);				program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences);			}		}		return {			update: update		};	}	function WebGLObjects(gl, geometries, attributes, info) {		let updateMap = new WeakMap();		function update(object) {			const frame = info.render.frame;			const geometry = object.geometry;			const buffergeometry = geometries.get(object, geometry); // Update once per frame			if (updateMap.get(buffergeometry) !== frame) {				geometries.update(buffergeometry);				updateMap.set(buffergeometry, frame);			}			if (object.isInstancedMesh) {				if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) {					object.addEventListener('dispose', onInstancedMeshDispose);				}				attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER);				if (object.instanceColor !== null) {					attributes.update(object.instanceColor, gl.ARRAY_BUFFER);				}			}			return buffergeometry;		}		function dispose() {			updateMap = new WeakMap();		}		function onInstancedMeshDispose(event) {			const instancedMesh = event.target;			instancedMesh.removeEventListener('dispose', onInstancedMeshDispose);			attributes.remove(instancedMesh.instanceMatrix);			if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor);		}		return {			update: update,			dispose: dispose		};	}	class DataTexture3D extends Texture {		constructor(data = null, width = 1, height = 1, depth = 1) {			// We're going to add .setXXX() methods for setting properties later.			// Users can still set in DataTexture3D directly.			//			//	const texture = new THREE.DataTexture3D( data, width, height, depth );			// 	texture.anisotropy = 16;			//			// See #14839			super(null);			this.image = {				data,				width,				height,				depth			};			this.magFilter = NearestFilter;			this.minFilter = NearestFilter;			this.wrapR = ClampToEdgeWrapping;			this.generateMipmaps = false;			this.flipY = false;			this.unpackAlignment = 1;			this.needsUpdate = true;		}	}	DataTexture3D.prototype.isDataTexture3D = true;	/**	 * Uniforms of a program.	 * Those form a tree structure with a special top-level container for the root,	 * which you get by calling 'new WebGLUniforms( gl, program )'.	 *	 *	 * Properties of inner nodes including the top-level container:	 *	 * .seq - array of nested uniforms	 * .map - nested uniforms by name	 *	 *	 * Methods of all nodes except the top-level container:	 *	 * .setValue( gl, value, [textures] )	 *	 * 		uploads a uniform value(s)	 *		the 'textures' parameter is needed for sampler uniforms	 *	 *	 * Static methods of the top-level container (textures factorizations):	 *	 * .upload( gl, seq, values, textures )	 *	 * 		sets uniforms in 'seq' to 'values[id].value'	 *	 * .seqWithValue( seq, values ) : filteredSeq	 *	 * 		filters 'seq' entries with corresponding entry in values	 *	 *	 * Methods of the top-level container (textures factorizations):	 *	 * .setValue( gl, name, value, textures )	 *	 * 		sets uniform with	name 'name' to 'value'	 *	 * .setOptional( gl, obj, prop )	 *	 * 		like .set for an optional property of the object	 *	 */	const emptyTexture = new Texture();	const emptyTexture2dArray = new DataTexture2DArray();	const emptyTexture3d = new DataTexture3D();	const emptyCubeTexture = new CubeTexture(); // --- Utilities ---	// Array Caches (provide typed arrays for temporary by size)	const arrayCacheF32 = [];	const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms	const mat4array = new Float32Array(16);	const mat3array = new Float32Array(9);	const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices	function flatten(array, nBlocks, blockSize) {		const firstElem = array[0];		if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem )		// see http://jacksondunstan.com/articles/983		const n = nBlocks * blockSize;		let r = arrayCacheF32[n];		if (r === undefined) {			r = new Float32Array(n);			arrayCacheF32[n] = r;		}		if (nBlocks !== 0) {			firstElem.toArray(r, 0);			for (let i = 1, offset = 0; i !== nBlocks; ++i) {				offset += blockSize;				array[i].toArray(r, offset);			}		}		return r;	}	function arraysEqual(a, b) {		if (a.length !== b.length) return false;		for (let i = 0, l = a.length; i < l; i++) {			if (a[i] !== b[i]) return false;		}		return true;	}	function copyArray(a, b) {		for (let i = 0, l = b.length; i < l; i++) {			a[i] = b[i];		}	} // Texture unit allocation	function allocTexUnits(textures, n) {		let r = arrayCacheI32[n];		if (r === undefined) {			r = new Int32Array(n);			arrayCacheI32[n] = r;		}		for (let i = 0; i !== n; ++i) {			r[i] = textures.allocateTextureUnit();		}		return r;	} // --- Setters ---	// Note: Defining these methods externally, because they come in a bunch	// and this way their names minify.	// Single scalar	function setValueV1f(gl, v) {		const cache = this.cache;		if (cache[0] === v) return;		gl.uniform1f(this.addr, v);		cache[0] = v;	} // Single float vector (from flat array or THREE.VectorN)	function setValueV2f(gl, v) {		const cache = this.cache;		if (v.x !== undefined) {			if (cache[0] !== v.x || cache[1] !== v.y) {				gl.uniform2f(this.addr, v.x, v.y);				cache[0] = v.x;				cache[1] = v.y;			}		} else {			if (arraysEqual(cache, v)) return;			gl.uniform2fv(this.addr, v);			copyArray(cache, v);		}	}	function setValueV3f(gl, v) {		const cache = this.cache;		if (v.x !== undefined) {			if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) {				gl.uniform3f(this.addr, v.x, v.y, v.z);				cache[0] = v.x;				cache[1] = v.y;				cache[2] = v.z;			}		} else if (v.r !== undefined) {			if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) {				gl.uniform3f(this.addr, v.r, v.g, v.b);				cache[0] = v.r;				cache[1] = v.g;				cache[2] = v.b;			}		} else {			if (arraysEqual(cache, v)) return;			gl.uniform3fv(this.addr, v);			copyArray(cache, v);		}	}	function setValueV4f(gl, v) {		const cache = this.cache;		if (v.x !== undefined) {			if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) {				gl.uniform4f(this.addr, v.x, v.y, v.z, v.w);				cache[0] = v.x;				cache[1] = v.y;				cache[2] = v.z;				cache[3] = v.w;			}		} else {			if (arraysEqual(cache, v)) return;			gl.uniform4fv(this.addr, v);			copyArray(cache, v);		}	} // Single matrix (from flat array or THREE.MatrixN)	function setValueM2(gl, v) {		const cache = this.cache;		const elements = v.elements;		if (elements === undefined) {			if (arraysEqual(cache, v)) return;			gl.uniformMatrix2fv(this.addr, false, v);			copyArray(cache, v);		} else {			if (arraysEqual(cache, elements)) return;			mat2array.set(elements);			gl.uniformMatrix2fv(this.addr, false, mat2array);			copyArray(cache, elements);		}	}	function setValueM3(gl, v) {		const cache = this.cache;		const elements = v.elements;		if (elements === undefined) {			if (arraysEqual(cache, v)) return;			gl.uniformMatrix3fv(this.addr, false, v);			copyArray(cache, v);		} else {			if (arraysEqual(cache, elements)) return;			mat3array.set(elements);			gl.uniformMatrix3fv(this.addr, false, mat3array);			copyArray(cache, elements);		}	}	function setValueM4(gl, v) {		const cache = this.cache;		const elements = v.elements;		if (elements === undefined) {			if (arraysEqual(cache, v)) return;			gl.uniformMatrix4fv(this.addr, false, v);			copyArray(cache, v);		} else {			if (arraysEqual(cache, elements)) return;			mat4array.set(elements);			gl.uniformMatrix4fv(this.addr, false, mat4array);			copyArray(cache, elements);		}	} // Single integer / boolean	function setValueV1i(gl, v) {		const cache = this.cache;		if (cache[0] === v) return;		gl.uniform1i(this.addr, v);		cache[0] = v;	} // Single integer / boolean vector (from flat array)	function setValueV2i(gl, v) {		const cache = this.cache;		if (arraysEqual(cache, v)) return;		gl.uniform2iv(this.addr, v);		copyArray(cache, v);	}	function setValueV3i(gl, v) {		const cache = this.cache;		if (arraysEqual(cache, v)) return;		gl.uniform3iv(this.addr, v);		copyArray(cache, v);	}	function setValueV4i(gl, v) {		const cache = this.cache;		if (arraysEqual(cache, v)) return;		gl.uniform4iv(this.addr, v);		copyArray(cache, v);	} // Single unsigned integer	function setValueV1ui(gl, v) {		const cache = this.cache;		if (cache[0] === v) return;		gl.uniform1ui(this.addr, v);		cache[0] = v;	} // Single unsigned integer vector (from flat array)	function setValueV2ui(gl, v) {		const cache = this.cache;		if (arraysEqual(cache, v)) return;		gl.uniform2uiv(this.addr, v);		copyArray(cache, v);	}	function setValueV3ui(gl, v) {		const cache = this.cache;		if (arraysEqual(cache, v)) return;		gl.uniform3uiv(this.addr, v);		copyArray(cache, v);	}	function setValueV4ui(gl, v) {		const cache = this.cache;		if (arraysEqual(cache, v)) return;		gl.uniform4uiv(this.addr, v);		copyArray(cache, v);	} // Single texture (2D / Cube)	function setValueT1(gl, v, textures) {		const cache = this.cache;		const unit = textures.allocateTextureUnit();		if (cache[0] !== unit) {			gl.uniform1i(this.addr, unit);			cache[0] = unit;		}		textures.safeSetTexture2D(v || emptyTexture, unit);	}	function setValueT3D1(gl, v, textures) {		const cache = this.cache;		const unit = textures.allocateTextureUnit();		if (cache[0] !== unit) {			gl.uniform1i(this.addr, unit);			cache[0] = unit;		}		textures.setTexture3D(v || emptyTexture3d, unit);	}	function setValueT6(gl, v, textures) {		const cache = this.cache;		const unit = textures.allocateTextureUnit();		if (cache[0] !== unit) {			gl.uniform1i(this.addr, unit);			cache[0] = unit;		}		textures.safeSetTextureCube(v || emptyCubeTexture, unit);	}	function setValueT2DArray1(gl, v, textures) {		const cache = this.cache;		const unit = textures.allocateTextureUnit();		if (cache[0] !== unit) {			gl.uniform1i(this.addr, unit);			cache[0] = unit;		}		textures.setTexture2DArray(v || emptyTexture2dArray, unit);	} // Helper to pick the right setter for the singular case	function getSingularSetter(type) {		switch (type) {			case 0x1406:				return setValueV1f;			// FLOAT			case 0x8b50:				return setValueV2f;			// _VEC2			case 0x8b51:				return setValueV3f;			// _VEC3			case 0x8b52:				return setValueV4f;			// _VEC4			case 0x8b5a:				return setValueM2;			// _MAT2			case 0x8b5b:				return setValueM3;			// _MAT3			case 0x8b5c:				return setValueM4;			// _MAT4			case 0x1404:			case 0x8b56:				return setValueV1i;			// INT, BOOL			case 0x8b53:			case 0x8b57:				return setValueV2i;			// _VEC2			case 0x8b54:			case 0x8b58:				return setValueV3i;			// _VEC3			case 0x8b55:			case 0x8b59:				return setValueV4i;			// _VEC4			case 0x1405:				return setValueV1ui;			// UINT			case 0x8dc6:				return setValueV2ui;			// _VEC2			case 0x8dc7:				return setValueV3ui;			// _VEC3			case 0x8dc8:				return setValueV4ui;			// _VEC4			case 0x8b5e: // SAMPLER_2D			case 0x8d66: // SAMPLER_EXTERNAL_OES			case 0x8dca: // INT_SAMPLER_2D			case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D			case 0x8b62:				// SAMPLER_2D_SHADOW				return setValueT1;			case 0x8b5f: // SAMPLER_3D			case 0x8dcb: // INT_SAMPLER_3D			case 0x8dd3:				// UNSIGNED_INT_SAMPLER_3D				return setValueT3D1;			case 0x8b60: // SAMPLER_CUBE			case 0x8dcc: // INT_SAMPLER_CUBE			case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE			case 0x8dc5:				// SAMPLER_CUBE_SHADOW				return setValueT6;			case 0x8dc1: // SAMPLER_2D_ARRAY			case 0x8dcf: // INT_SAMPLER_2D_ARRAY			case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY			case 0x8dc4:				// SAMPLER_2D_ARRAY_SHADOW				return setValueT2DArray1;		}	} // Array of scalars	function setValueV1fArray(gl, v) {		gl.uniform1fv(this.addr, v);	} // Array of vectors (from flat array or array of THREE.VectorN)	function setValueV2fArray(gl, v) {		const data = flatten(v, this.size, 2);		gl.uniform2fv(this.addr, data);	}	function setValueV3fArray(gl, v) {		const data = flatten(v, this.size, 3);		gl.uniform3fv(this.addr, data);	}	function setValueV4fArray(gl, v) {		const data = flatten(v, this.size, 4);		gl.uniform4fv(this.addr, data);	} // Array of matrices (from flat array or array of THREE.MatrixN)	function setValueM2Array(gl, v) {		const data = flatten(v, this.size, 4);		gl.uniformMatrix2fv(this.addr, false, data);	}	function setValueM3Array(gl, v) {		const data = flatten(v, this.size, 9);		gl.uniformMatrix3fv(this.addr, false, data);	}	function setValueM4Array(gl, v) {		const data = flatten(v, this.size, 16);		gl.uniformMatrix4fv(this.addr, false, data);	} // Array of integer / boolean	function setValueV1iArray(gl, v) {		gl.uniform1iv(this.addr, v);	} // Array of integer / boolean vectors (from flat array)	function setValueV2iArray(gl, v) {		gl.uniform2iv(this.addr, v);	}	function setValueV3iArray(gl, v) {		gl.uniform3iv(this.addr, v);	}	function setValueV4iArray(gl, v) {		gl.uniform4iv(this.addr, v);	} // Array of unsigned integer	function setValueV1uiArray(gl, v) {		gl.uniform1uiv(this.addr, v);	} // Array of unsigned integer vectors (from flat array)	function setValueV2uiArray(gl, v) {		gl.uniform2uiv(this.addr, v);	}	function setValueV3uiArray(gl, v) {		gl.uniform3uiv(this.addr, v);	}	function setValueV4uiArray(gl, v) {		gl.uniform4uiv(this.addr, v);	} // Array of textures (2D / 3D / Cube / 2DArray)	function setValueT1Array(gl, v, textures) {		const n = v.length;		const units = allocTexUnits(textures, n);		gl.uniform1iv(this.addr, units);		for (let i = 0; i !== n; ++i) {			textures.safeSetTexture2D(v[i] || emptyTexture, units[i]);		}	}	function setValueT3DArray(gl, v, textures) {		const n = v.length;		const units = allocTexUnits(textures, n);		gl.uniform1iv(this.addr, units);		for (let i = 0; i !== n; ++i) {			textures.setTexture3D(v[i] || emptyTexture3d, units[i]);		}	}	function setValueT6Array(gl, v, textures) {		const n = v.length;		const units = allocTexUnits(textures, n);		gl.uniform1iv(this.addr, units);		for (let i = 0; i !== n; ++i) {			textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]);		}	}	function setValueT2DArrayArray(gl, v, textures) {		const n = v.length;		const units = allocTexUnits(textures, n);		gl.uniform1iv(this.addr, units);		for (let i = 0; i !== n; ++i) {			textures.setTexture2DArray(v[i] || emptyTexture2dArray, units[i]);		}	} // Helper to pick the right setter for a pure (bottom-level) array	function getPureArraySetter(type) {		switch (type) {			case 0x1406:				return setValueV1fArray;			// FLOAT			case 0x8b50:				return setValueV2fArray;			// _VEC2			case 0x8b51:				return setValueV3fArray;			// _VEC3			case 0x8b52:				return setValueV4fArray;			// _VEC4			case 0x8b5a:				return setValueM2Array;			// _MAT2			case 0x8b5b:				return setValueM3Array;			// _MAT3			case 0x8b5c:				return setValueM4Array;			// _MAT4			case 0x1404:			case 0x8b56:				return setValueV1iArray;			// INT, BOOL			case 0x8b53:			case 0x8b57:				return setValueV2iArray;			// _VEC2			case 0x8b54:			case 0x8b58:				return setValueV3iArray;			// _VEC3			case 0x8b55:			case 0x8b59:				return setValueV4iArray;			// _VEC4			case 0x1405:				return setValueV1uiArray;			// UINT			case 0x8dc6:				return setValueV2uiArray;			// _VEC2			case 0x8dc7:				return setValueV3uiArray;			// _VEC3			case 0x8dc8:				return setValueV4uiArray;			// _VEC4			case 0x8b5e: // SAMPLER_2D			case 0x8d66: // SAMPLER_EXTERNAL_OES			case 0x8dca: // INT_SAMPLER_2D			case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D			case 0x8b62:				// SAMPLER_2D_SHADOW				return setValueT1Array;			case 0x8b5f: // SAMPLER_3D			case 0x8dcb: // INT_SAMPLER_3D			case 0x8dd3:				// UNSIGNED_INT_SAMPLER_3D				return setValueT3DArray;			case 0x8b60: // SAMPLER_CUBE			case 0x8dcc: // INT_SAMPLER_CUBE			case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE			case 0x8dc5:				// SAMPLER_CUBE_SHADOW				return setValueT6Array;			case 0x8dc1: // SAMPLER_2D_ARRAY			case 0x8dcf: // INT_SAMPLER_2D_ARRAY			case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY			case 0x8dc4:				// SAMPLER_2D_ARRAY_SHADOW				return setValueT2DArrayArray;		}	} // --- Uniform Classes ---	function SingleUniform(id, activeInfo, addr) {		this.id = id;		this.addr = addr;		this.cache = [];		this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG	}	function PureArrayUniform(id, activeInfo, addr) {		this.id = id;		this.addr = addr;		this.cache = [];		this.size = activeInfo.size;		this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG	}	PureArrayUniform.prototype.updateCache = function (data) {		const cache = this.cache;		if (data instanceof Float32Array && cache.length !== data.length) {			this.cache = new Float32Array(data.length);		}		copyArray(cache, data);	};	function StructuredUniform(id) {		this.id = id;		this.seq = [];		this.map = {};	}	StructuredUniform.prototype.setValue = function (gl, value, textures) {		const seq = this.seq;		for (let i = 0, n = seq.length; i !== n; ++i) {			const u = seq[i];			u.setValue(gl, value[u.id], textures);		}	}; // --- Top-level ---	// Parser - builds up the property tree from the path strings	const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts	// 	- the identifier (member name or array index)	//	- followed by an optional right bracket (found when array index)	//	- followed by an optional left bracket or dot (type of subscript)	//	// Note: These portions can be read in a non-overlapping fashion and	// allow straightforward parsing of the hierarchy that WebGL encodes	// in the uniform names.	function addUniform(container, uniformObject) {		container.seq.push(uniformObject);		container.map[uniformObject.id] = uniformObject;	}	function parseUniform(activeInfo, addr, container) {		const path = activeInfo.name,					pathLength = path.length; // reset RegExp object, because of the early exit of a previous run		RePathPart.lastIndex = 0;		while (true) {			const match = RePathPart.exec(path),						matchEnd = RePathPart.lastIndex;			let id = match[1];			const idIsIndex = match[2] === ']',						subscript = match[3];			if (idIsIndex) id = id | 0; // convert to integer			if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) {				// bare name or "pure" bottom-level array "[0]" suffix				addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr));				break;			} else {				// step into inner node / create it in case it doesn't exist				const map = container.map;				let next = map[id];				if (next === undefined) {					next = new StructuredUniform(id);					addUniform(container, next);				}				container = next;			}		}	} // Root Container	function WebGLUniforms(gl, program) {		this.seq = [];		this.map = {};		const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);		for (let i = 0; i < n; ++i) {			const info = gl.getActiveUniform(program, i),						addr = gl.getUniformLocation(program, info.name);			parseUniform(info, addr, this);		}	}	WebGLUniforms.prototype.setValue = function (gl, name, value, textures) {		const u = this.map[name];		if (u !== undefined) u.setValue(gl, value, textures);	};	WebGLUniforms.prototype.setOptional = function (gl, object, name) {		const v = object[name];		if (v !== undefined) this.setValue(gl, name, v);	}; // Static interface	WebGLUniforms.upload = function (gl, seq, values, textures) {		for (let i = 0, n = seq.length; i !== n; ++i) {			const u = seq[i],						v = values[u.id];			if (v.needsUpdate !== false) {				// note: always updating when .needsUpdate is undefined				u.setValue(gl, v.value, textures);			}		}	};	WebGLUniforms.seqWithValue = function (seq, values) {		const r = [];		for (let i = 0, n = seq.length; i !== n; ++i) {			const u = seq[i];			if (u.id in values) r.push(u);		}		return r;	};	function WebGLShader(gl, type, string) {		const shader = gl.createShader(type);		gl.shaderSource(shader, string);		gl.compileShader(shader);		return shader;	}	let programIdCount = 0;	function addLineNumbers(string) {		const lines = string.split('\n');		for (let i = 0; i < lines.length; i++) {			lines[i] = i + 1 + ': ' + lines[i];		}		return lines.join('\n');	}	function getEncodingComponents(encoding) {		switch (encoding) {			case LinearEncoding:				return ['Linear', '( value )'];			case sRGBEncoding:				return ['sRGB', '( value )'];			case RGBEEncoding:				return ['RGBE', '( value )'];			case RGBM7Encoding:				return ['RGBM', '( value, 7.0 )'];			case RGBM16Encoding:				return ['RGBM', '( value, 16.0 )'];			case RGBDEncoding:				return ['RGBD', '( value, 256.0 )'];			case GammaEncoding:				return ['Gamma', '( value, float( GAMMA_FACTOR ) )'];			default:				console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding);				return ['Linear', '( value )'];		}	}	function getShaderErrors(gl, shader, type) {		const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS);		const errors = gl.getShaderInfoLog(shader).trim();		if (status && errors === '') return ''; // --enable-privileged-webgl-extension		// console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );		return type.toUpperCase() + '\n\n' + errors + '\n\n' + addLineNumbers(gl.getShaderSource(shader));	}	function getTexelDecodingFunction(functionName, encoding) {		const components = getEncodingComponents(encoding);		return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }';	}	function getTexelEncodingFunction(functionName, encoding) {		const components = getEncodingComponents(encoding);		return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }';	}	function getToneMappingFunction(functionName, toneMapping) {		let toneMappingName;		switch (toneMapping) {			case LinearToneMapping:				toneMappingName = 'Linear';				break;			case ReinhardToneMapping:				toneMappingName = 'Reinhard';				break;			case CineonToneMapping:				toneMappingName = 'OptimizedCineon';				break;			case ACESFilmicToneMapping:				toneMappingName = 'ACESFilmic';				break;			case CustomToneMapping:				toneMappingName = 'Custom';				break;			default:				console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping);				toneMappingName = 'Linear';		}		return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';	}	function generateExtensions(parameters) {		const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''];		return chunks.filter(filterEmptyLine).join('\n');	}	function generateDefines(defines) {		const chunks = [];		for (const name in defines) {			const value = defines[name];			if (value === false) continue;			chunks.push('#define ' + name + ' ' + value);		}		return chunks.join('\n');	}	function fetchAttributeLocations(gl, program) {		const attributes = {};		const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES);		for (let i = 0; i < n; i++) {			const info = gl.getActiveAttrib(program, i);			const name = info.name;			let locationSize = 1;			if (info.type === gl.FLOAT_MAT2) locationSize = 2;			if (info.type === gl.FLOAT_MAT3) locationSize = 3;			if (info.type === gl.FLOAT_MAT4) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );			attributes[name] = {				type: info.type,				location: gl.getAttribLocation(program, name),				locationSize: locationSize			};		}		return attributes;	}	function filterEmptyLine(string) {		return string !== '';	}	function replaceLightNums(string, parameters) {		return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows);	}	function replaceClippingPlaneNums(string, parameters) {		return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection);	} // Resolve Includes	const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;	function resolveIncludes(string) {		return string.replace(includePattern, includeReplacer);	}	function includeReplacer(match, include) {		const string = ShaderChunk[include];		if (string === undefined) {			throw new Error('Can not resolve #include <' + include + '>');		}		return resolveIncludes(string);	} // Unroll Loops	const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;	const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;	function unrollLoops(string) {		return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer);	}	function deprecatedLoopReplacer(match, start, end, snippet) {		console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.');		return loopReplacer(match, start, end, snippet);	}	function loopReplacer(match, start, end, snippet) {		let string = '';		for (let i = parseInt(start); i < parseInt(end); i++) {			string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i);		}		return string;	} //	function generatePrecision(parameters) {		let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;';		if (parameters.precision === 'highp') {			precisionstring += '\n#define HIGH_PRECISION';		} else if (parameters.precision === 'mediump') {			precisionstring += '\n#define MEDIUM_PRECISION';		} else if (parameters.precision === 'lowp') {			precisionstring += '\n#define LOW_PRECISION';		}		return precisionstring;	}	function generateShadowMapTypeDefine(parameters) {		let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';		if (parameters.shadowMapType === PCFShadowMap) {			shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';		} else if (parameters.shadowMapType === PCFSoftShadowMap) {			shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';		} else if (parameters.shadowMapType === VSMShadowMap) {			shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';		}		return shadowMapTypeDefine;	}	function generateEnvMapTypeDefine(parameters) {		let envMapTypeDefine = 'ENVMAP_TYPE_CUBE';		if (parameters.envMap) {			switch (parameters.envMapMode) {				case CubeReflectionMapping:				case CubeRefractionMapping:					envMapTypeDefine = 'ENVMAP_TYPE_CUBE';					break;				case CubeUVReflectionMapping:				case CubeUVRefractionMapping:					envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';					break;			}		}		return envMapTypeDefine;	}	function generateEnvMapModeDefine(parameters) {		let envMapModeDefine = 'ENVMAP_MODE_REFLECTION';		if (parameters.envMap) {			switch (parameters.envMapMode) {				case CubeRefractionMapping:				case CubeUVRefractionMapping:					envMapModeDefine = 'ENVMAP_MODE_REFRACTION';					break;			}		}		return envMapModeDefine;	}	function generateEnvMapBlendingDefine(parameters) {		let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';		if (parameters.envMap) {			switch (parameters.combine) {				case MultiplyOperation:					envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';					break;				case MixOperation:					envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';					break;				case AddOperation:					envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';					break;			}		}		return envMapBlendingDefine;	}	function WebGLProgram(renderer, cacheKey, parameters, bindingStates) {		// TODO Send this event to Three.js DevTools		// console.log( 'WebGLProgram', cacheKey );		const gl = renderer.getContext();		const defines = parameters.defines;		let vertexShader = parameters.vertexShader;		let fragmentShader = parameters.fragmentShader;		const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters);		const envMapTypeDefine = generateEnvMapTypeDefine(parameters);		const envMapModeDefine = generateEnvMapModeDefine(parameters);		const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters);		const gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0;		const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters);		const customDefines = generateDefines(defines);		const program = gl.createProgram();		let prefixVertex, prefixFragment;		let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : '';		if (parameters.isRawShaderMaterial) {			prefixVertex = [customDefines].filter(filterEmptyLine).join('\n');			if (prefixVertex.length > 0) {				prefixVertex += '\n';			}			prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n');			if (prefixFragment.length > 0) {				prefixFragment += '\n';			}		} else {			prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularColorMap ? '#define USE_SPECULARCOLORMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.sheenColorMap ? '#define USE_SHEENCOLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEENROUGHNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_TEXTURE' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', '	attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', '	attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', '	attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', '	attribute vec4 color;', '#elif defined( USE_COLOR )', '	attribute vec3 color;', '#endif', '#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )', '	attribute vec3 morphTarget0;', '	attribute vec3 morphTarget1;', '	attribute vec3 morphTarget2;', '	attribute vec3 morphTarget3;', '	#ifdef USE_MORPHNORMALS', '		attribute vec3 morphNormal0;', '		attribute vec3 morphNormal1;', '		attribute vec3 morphNormal2;', '		attribute vec3 morphNormal3;', '	#else', '		attribute vec3 morphTarget4;', '		attribute vec3 morphTarget5;', '		attribute vec3 morphTarget6;', '		attribute vec3 morphTarget7;', '	#endif', '#endif', '#ifdef USE_SKINNING', '	attribute vec4 skinIndex;', '	attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n');			prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularColorMap ? '#define USE_SPECULARCOLORMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.sheenColorMap ? '#define USE_SHEENCOLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEENROUGHNESSMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below			parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.format === RGBFormat ? '#define OPAQUE' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below			parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.specularColorMap ? getTexelDecodingFunction('specularColorMapTexelToLinear', parameters.specularColorMapEncoding) : '', parameters.sheenColorMap ? getTexelDecodingFunction('sheenColorMapTexelToLinear', parameters.sheenColorMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n');		}		vertexShader = resolveIncludes(vertexShader);		vertexShader = replaceLightNums(vertexShader, parameters);		vertexShader = replaceClippingPlaneNums(vertexShader, parameters);		fragmentShader = resolveIncludes(fragmentShader);		fragmentShader = replaceLightNums(fragmentShader, parameters);		fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters);		vertexShader = unrollLoops(vertexShader);		fragmentShader = unrollLoops(fragmentShader);		if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) {			// GLSL 3.0 conversion for built-in materials and ShaderMaterial			versionString = '#version 300 es\n';			prefixVertex = ['precision mediump sampler2DArray;', '#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex;			prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment;		}		const vertexGlsl = versionString + prefixVertex + vertexShader;		const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl );		// console.log( '*FRAGMENT*', fragmentGlsl );		const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl);		const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl);		gl.attachShader(program, glVertexShader);		gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0.		if (parameters.index0AttributeName !== undefined) {			gl.bindAttribLocation(program, 0, parameters.index0AttributeName);		} else if (parameters.morphTargets === true) {			// programs with morphTargets displace position out of attribute 0			gl.bindAttribLocation(program, 0, 'position');		}		gl.linkProgram(program); // check for link errors		if (renderer.debug.checkShaderErrors) {			const programLog = gl.getProgramInfoLog(program).trim();			const vertexLog = gl.getShaderInfoLog(glVertexShader).trim();			const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim();			let runnable = true;			let haveDiagnostics = true;			if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) {				runnable = false;				const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex');				const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment');				console.error('THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter(program, gl.VALIDATE_STATUS) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors);			} else if (programLog !== '') {				console.warn('THREE.WebGLProgram: Program Info Log:', programLog);			} else if (vertexLog === '' || fragmentLog === '') {				haveDiagnostics = false;			}			if (haveDiagnostics) {				this.diagnostics = {					runnable: runnable,					programLog: programLog,					vertexShader: {						log: vertexLog,						prefix: prefixVertex					},					fragmentShader: {						log: fragmentLog,						prefix: prefixFragment					}				};			}		} // Clean up		// Crashes in iOS9 and iOS10. #18402		// gl.detachShader( program, glVertexShader );		// gl.detachShader( program, glFragmentShader );		gl.deleteShader(glVertexShader);		gl.deleteShader(glFragmentShader); // set up caching for uniform locations		let cachedUniforms;		this.getUniforms = function () {			if (cachedUniforms === undefined) {				cachedUniforms = new WebGLUniforms(gl, program);			}			return cachedUniforms;		}; // set up caching for attribute locations		let cachedAttributes;		this.getAttributes = function () {			if (cachedAttributes === undefined) {				cachedAttributes = fetchAttributeLocations(gl, program);			}			return cachedAttributes;		}; // free resource		this.destroy = function () {			bindingStates.releaseStatesOfProgram(this);			gl.deleteProgram(program);			this.program = undefined;		}; //		this.name = parameters.shaderName;		this.id = programIdCount++;		this.cacheKey = cacheKey;		this.usedTimes = 1;		this.program = program;		this.vertexShader = glVertexShader;		this.fragmentShader = glFragmentShader;		return this;	}	function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) {		const programs = [];		const isWebGL2 = capabilities.isWebGL2;		const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;		const floatVertexTextures = capabilities.floatVertexTextures;		const maxVertexUniforms = capabilities.maxVertexUniforms;		const vertexTextures = capabilities.vertexTextures;		let precision = capabilities.precision;		const shaderIDs = {			MeshDepthMaterial: 'depth',			MeshDistanceMaterial: 'distanceRGBA',			MeshNormalMaterial: 'normal',			MeshBasicMaterial: 'basic',			MeshLambertMaterial: 'lambert',			MeshPhongMaterial: 'phong',			MeshToonMaterial: 'toon',			MeshStandardMaterial: 'physical',			MeshPhysicalMaterial: 'physical',			MeshMatcapMaterial: 'matcap',			LineBasicMaterial: 'basic',			LineDashedMaterial: 'dashed',			PointsMaterial: 'points',			ShadowMaterial: 'shadow',			SpriteMaterial: 'sprite'		};		const parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoat', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap',, 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'alphaTest', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'morphTargetsCount', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'format', 'specularIntensityMap', 'specularColorMap', 'specularColorMapEncoding', 'transmission', 'transmissionMap', 'thicknessMap', 'sheen', 'sheenColorMap', 'sheenColorMapEncoding', 'sheenRoughnessMap'];		function getMaxBones(object) {			const skeleton = object.skeleton;			const bones = skeleton.bones;			if (floatVertexTextures) {				return 1024;			} else {				// default for when object is not specified				// ( for example when prebuilding shader to be used with multiple objects )				//				//	- leave some extra space for other uniforms				//	- limit here is ANGLE's 254 max uniform vectors				//		(up to 54 should be safe)				const nVertexUniforms = maxVertexUniforms;				const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4);				const maxBones = Math.min(nVertexMatrices, bones.length);				if (maxBones < bones.length) {					console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.');					return 0;				}				return maxBones;			}		}		function getTextureEncodingFromMap(map) {			let encoding;			if (map && map.isTexture) {				encoding = map.encoding;			} else if (map && map.isWebGLRenderTarget) {				console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.');				encoding = map.texture.encoding;			} else {				encoding = LinearEncoding;			}			/* if ( isWebGL2 && map && map.isTexture && map.format === RGBAFormat && map.type === UnsignedByteType && map.encoding === sRGBEncoding ) {					encoding = LinearEncoding; // disable inline decode for sRGB textures in WebGL 2				} */			return encoding;		}		function getParameters(material, lights, shadows, scene, object) {			const fog = scene.fog;			const environment = material.isMeshStandardMaterial ? scene.environment : null;			const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);			const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene			// (not to blow over maxLights budget)			const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0;			if (material.precision !== null) {				precision = capabilities.getMaxPrecision(material.precision);				if (precision !== material.precision) {					console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.');				}			}			let vertexShader, fragmentShader;			if (shaderID) {				const shader = ShaderLib[shaderID];				vertexShader = shader.vertexShader;				fragmentShader = shader.fragmentShader;			} else {				vertexShader = material.vertexShader;				fragmentShader = material.fragmentShader;			}			const currentRenderTarget = renderer.getRenderTarget();			const useAlphaTest = material.alphaTest > 0;			const useClearcoat = material.clearcoat > 0;			const parameters = {				isWebGL2: isWebGL2,				shaderID: shaderID,				shaderName: material.type,				vertexShader: vertexShader,				fragmentShader: fragmentShader,				defines: material.defines,				isRawShaderMaterial: material.isRawShaderMaterial === true,				glslVersion: material.glslVersion,				precision: precision,				instancing: object.isInstancedMesh === true,				instancingColor: object.isInstancedMesh === true && object.instanceColor !== null,				supportsVertexTextures: vertexTextures,				outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding,				map: !!material.map,				mapEncoding: getTextureEncodingFromMap(material.map),				matcap: !!material.matcap,				matcapEncoding: getTextureEncodingFromMap(material.matcap),				envMap: !!envMap,				envMapMode: envMap && envMap.mapping,				envMapEncoding: getTextureEncodingFromMap(envMap),				envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping),				lightMap: !!material.lightMap,				lightMapEncoding: getTextureEncodingFromMap(material.lightMap),				aoMap: !!material.aoMap,				emissiveMap: !!material.emissiveMap,				emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap),				bumpMap: !!material.bumpMap,				normalMap: !!material.normalMap,				objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,				tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,				clearcoat: useClearcoat,				clearcoatMap: useClearcoat && !!material.clearcoatMap,				clearcoatRoughnessMap: useClearcoat && !!material.clearcoatRoughnessMap,				clearcoatNormalMap: useClearcoat && !!material.clearcoatNormalMap,				displacementMap: !!material.displacementMap,				roughnessMap: !!material.roughnessMap,				metalnessMap: !!material.metalnessMap,				specularMap: !!material.specularMap,				specularIntensityMap: !!material.specularIntensityMap,				specularColorMap: !!material.specularColorMap,				specularColorMapEncoding: getTextureEncodingFromMap(material.specularColorMap),				alphaMap: !!material.alphaMap,				alphaTest: useAlphaTest,				gradientMap: !!material.gradientMap,				sheen: material.sheen > 0,				sheenColorMap: !!material.sheenColorMap,				sheenColorMapEncoding: getTextureEncodingFromMap(material.sheenColorMap),				sheenRoughnessMap: !!material.sheenRoughnessMap,				transmission: material.transmission > 0,				transmissionMap: !!material.transmissionMap,				thicknessMap: !!material.thicknessMap,				combine: material.combine,				vertexTangents: !!material.normalMap && !!object.geometry && !!object.geometry.attributes.tangent,				vertexColors: material.vertexColors,				vertexAlphas: material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4,				vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularColorMap || !!material.sheenColorMap || material.sheenRoughnessMap,				uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || material.transmission > 0 || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularColorMap || material.sheen > 0 || !!material.sheenColorMap || !!material.sheenRoughnessMap) && !!material.displacementMap,				fog: !!fog,				useFog: material.fog,				fogExp2: fog && fog.isFogExp2,				flatShading: !!material.flatShading,				sizeAttenuation: material.sizeAttenuation,				logarithmicDepthBuffer: logarithmicDepthBuffer,				skinning: object.isSkinnedMesh === true && maxBones > 0,				maxBones: maxBones,				useVertexTexture: floatVertexTextures,				morphTargets: !!object.geometry && !!object.geometry.morphAttributes.position,				morphNormals: !!object.geometry && !!object.geometry.morphAttributes.normal,				morphTargetsCount: !!object.geometry && !!object.geometry.morphAttributes.position ? object.geometry.morphAttributes.position.length : 0,				numDirLights: lights.directional.length,				numPointLights: lights.point.length,				numSpotLights: lights.spot.length,				numRectAreaLights: lights.rectArea.length,				numHemiLights: lights.hemi.length,				numDirLightShadows: lights.directionalShadowMap.length,				numPointLightShadows: lights.pointShadowMap.length,				numSpotLightShadows: lights.spotShadowMap.length,				numClippingPlanes: clipping.numPlanes,				numClipIntersection: clipping.numIntersection,				format: material.format,				dithering: material.dithering,				shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,				shadowMapType: renderer.shadowMap.type,				toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,				physicallyCorrectLights: renderer.physicallyCorrectLights,				premultipliedAlpha: material.premultipliedAlpha,				doubleSided: material.side === DoubleSide,				flipSided: material.side === BackSide,				depthPacking: material.depthPacking !== undefined ? material.depthPacking : false,				index0AttributeName: material.index0AttributeName,				extensionDerivatives: material.extensions && material.extensions.derivatives,				extensionFragDepth: material.extensions && material.extensions.fragDepth,				extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,				extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,				rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'),				rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'),				rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'),				customProgramCacheKey: material.customProgramCacheKey()			};			return parameters;		}		function getProgramCacheKey(parameters) {			const array = [];			if (parameters.shaderID) {				array.push(parameters.shaderID);			} else {				array.push(hashString(parameters.fragmentShader));				array.push(hashString(parameters.vertexShader));			}			if (parameters.defines !== undefined) {				for (const name in parameters.defines) {					array.push(name);					array.push(parameters.defines[name]);				}			}			if (parameters.isRawShaderMaterial === false) {				for (let i = 0; i < parameterNames.length; i++) {					array.push(parameters[parameterNames[i]]);				}				array.push(renderer.outputEncoding);				array.push(renderer.gammaFactor);			}			array.push(parameters.customProgramCacheKey);			return array.join();		}		function getUniforms(material) {			const shaderID = shaderIDs[material.type];			let uniforms;			if (shaderID) {				const shader = ShaderLib[shaderID];				uniforms = UniformsUtils.clone(shader.uniforms);			} else {				uniforms = material.uniforms;			}			return uniforms;		}		function acquireProgram(parameters, cacheKey) {			let program; // Check if code has been already compiled			for (let p = 0, pl = programs.length; p < pl; p++) {				const preexistingProgram = programs[p];				if (preexistingProgram.cacheKey === cacheKey) {					program = preexistingProgram;					++program.usedTimes;					break;				}			}			if (program === undefined) {				program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates);				programs.push(program);			}			return program;		}		function releaseProgram(program) {			if (--program.usedTimes === 0) {				// Remove from unordered set				const i = programs.indexOf(program);				programs[i] = programs[programs.length - 1];				programs.pop(); // Free WebGL resources				program.destroy();			}		}		return {			getParameters: getParameters,			getProgramCacheKey: getProgramCacheKey,			getUniforms: getUniforms,			acquireProgram: acquireProgram,			releaseProgram: releaseProgram,			// Exposed for resource monitoring & error feedback via renderer.info:			programs: programs		};	}	function WebGLProperties() {		let properties = new WeakMap();		function get(object) {			let map = properties.get(object);			if (map === undefined) {				map = {};				properties.set(object, map);			}			return map;		}		function remove(object) {			properties.delete(object);		}		function update(object, key, value) {			properties.get(object)[key] = value;		}		function dispose() {			properties = new WeakMap();		}		return {			get: get,			remove: remove,			update: update,			dispose: dispose		};	}	function painterSortStable(a, b) {		if (a.groupOrder !== b.groupOrder) {			return a.groupOrder - b.groupOrder;		} else if (a.renderOrder !== b.renderOrder) {			return a.renderOrder - b.renderOrder;		} else if (a.program !== b.program) {			return a.program.id - b.program.id;		} else if (a.material.id !== b.material.id) {			return a.material.id - b.material.id;		} else if (a.z !== b.z) {			return a.z - b.z;		} else {			return a.id - b.id;		}	}	function reversePainterSortStable(a, b) {		if (a.groupOrder !== b.groupOrder) {			return a.groupOrder - b.groupOrder;		} else if (a.renderOrder !== b.renderOrder) {			return a.renderOrder - b.renderOrder;		} else if (a.z !== b.z) {			return b.z - a.z;		} else {			return a.id - b.id;		}	}	function WebGLRenderList(properties) {		const renderItems = [];		let renderItemsIndex = 0;		const opaque = [];		const transmissive = [];		const transparent = [];		const defaultProgram = {			id: -1		};		function init() {			renderItemsIndex = 0;			opaque.length = 0;			transmissive.length = 0;			transparent.length = 0;		}		function getNextRenderItem(object, geometry, material, groupOrder, z, group) {			let renderItem = renderItems[renderItemsIndex];			const materialProperties = properties.get(material);			if (renderItem === undefined) {				renderItem = {					id: object.id,					object: object,					geometry: geometry,					material: material,					program: materialProperties.program || defaultProgram,					groupOrder: groupOrder,					renderOrder: object.renderOrder,					z: z,					group: group				};				renderItems[renderItemsIndex] = renderItem;			} else {				renderItem.id = object.id;				renderItem.object = object;				renderItem.geometry = geometry;				renderItem.material = material;				renderItem.program = materialProperties.program || defaultProgram;				renderItem.groupOrder = groupOrder;				renderItem.renderOrder = object.renderOrder;				renderItem.z = z;				renderItem.group = group;			}			renderItemsIndex++;			return renderItem;		}		function push(object, geometry, material, groupOrder, z, group) {			const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);			if (material.transmission > 0.0) {				transmissive.push(renderItem);			} else if (material.transparent === true) {				transparent.push(renderItem);			} else {				opaque.push(renderItem);			}		}		function unshift(object, geometry, material, groupOrder, z, group) {			const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);			if (material.transmission > 0.0) {				transmissive.unshift(renderItem);			} else if (material.transparent === true) {				transparent.unshift(renderItem);			} else {				opaque.unshift(renderItem);			}		}		function sort(customOpaqueSort, customTransparentSort) {			if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable);			if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable);			if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable);		}		function finish() {			// Clear references from inactive renderItems in the list			for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) {				const renderItem = renderItems[i];				if (renderItem.id === null) break;				renderItem.id = null;				renderItem.object = null;				renderItem.geometry = null;				renderItem.material = null;				renderItem.program = null;				renderItem.group = null;			}		}		return {			opaque: opaque,			transmissive: transmissive,			transparent: transparent,			init: init,			push: push,			unshift: unshift,			finish: finish,			sort: sort		};	}	function WebGLRenderLists(properties) {		let lists = new WeakMap();		function get(scene, renderCallDepth) {			let list;			if (lists.has(scene) === false) {				list = new WebGLRenderList(properties);				lists.set(scene, [list]);			} else {				if (renderCallDepth >= lists.get(scene).length) {					list = new WebGLRenderList(properties);					lists.get(scene).push(list);				} else {					list = lists.get(scene)[renderCallDepth];				}			}			return list;		}		function dispose() {			lists = new WeakMap();		}		return {			get: get,			dispose: dispose		};	}	function UniformsCache() {		const lights = {};		return {			get: function (light) {				if (lights[light.id] !== undefined) {					return lights[light.id];				}				let uniforms;				switch (light.type) {					case 'DirectionalLight':						uniforms = {							direction: new Vector3(),							color: new Color()						};						break;					case 'SpotLight':						uniforms = {							position: new Vector3(),							direction: new Vector3(),							color: new Color(),							distance: 0,							coneCos: 0,							penumbraCos: 0,							decay: 0						};						break;					case 'PointLight':						uniforms = {							position: new Vector3(),							color: new Color(),							distance: 0,							decay: 0						};						break;					case 'HemisphereLight':						uniforms = {							direction: new Vector3(),							skyColor: new Color(),							groundColor: new Color()						};						break;					case 'RectAreaLight':						uniforms = {							color: new Color(),							position: new Vector3(),							halfWidth: new Vector3(),							halfHeight: new Vector3()						};						break;				}				lights[light.id] = uniforms;				return uniforms;			}		};	}	function ShadowUniformsCache() {		const lights = {};		return {			get: function (light) {				if (lights[light.id] !== undefined) {					return lights[light.id];				}				let uniforms;				switch (light.type) {					case 'DirectionalLight':						uniforms = {							shadowBias: 0,							shadowNormalBias: 0,							shadowRadius: 1,							shadowMapSize: new Vector2()						};						break;					case 'SpotLight':						uniforms = {							shadowBias: 0,							shadowNormalBias: 0,							shadowRadius: 1,							shadowMapSize: new Vector2()						};						break;					case 'PointLight':						uniforms = {							shadowBias: 0,							shadowNormalBias: 0,							shadowRadius: 1,							shadowMapSize: new Vector2(),							shadowCameraNear: 1,							shadowCameraFar: 1000						};						break;					// TODO (abelnation): set RectAreaLight shadow uniforms				}				lights[light.id] = uniforms;				return uniforms;			}		};	}	let nextVersion = 0;	function shadowCastingLightsFirst(lightA, lightB) {		return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0);	}	function WebGLLights(extensions, capabilities) {		const cache = new UniformsCache();		const shadowCache = ShadowUniformsCache();		const state = {			version: 0,			hash: {				directionalLength: -1,				pointLength: -1,				spotLength: -1,				rectAreaLength: -1,				hemiLength: -1,				numDirectionalShadows: -1,				numPointShadows: -1,				numSpotShadows: -1			},			ambient: [0, 0, 0],			probe: [],			directional: [],			directionalShadow: [],			directionalShadowMap: [],			directionalShadowMatrix: [],			spot: [],			spotShadow: [],			spotShadowMap: [],			spotShadowMatrix: [],			rectArea: [],			rectAreaLTC1: null,			rectAreaLTC2: null,			point: [],			pointShadow: [],			pointShadowMap: [],			pointShadowMatrix: [],			hemi: []		};		for (let i = 0; i < 9; i++) state.probe.push(new Vector3());		const vector3 = new Vector3();		const matrix4 = new Matrix4();		const matrix42 = new Matrix4();		function setup(lights, physicallyCorrectLights) {			let r = 0,					g = 0,					b = 0;			for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0);			let directionalLength = 0;			let pointLength = 0;			let spotLength = 0;			let rectAreaLength = 0;			let hemiLength = 0;			let numDirectionalShadows = 0;			let numPointShadows = 0;			let numSpotShadows = 0;			lights.sort(shadowCastingLightsFirst); // artist-friendly light intensity scaling factor			const scaleFactor = physicallyCorrectLights !== true ? Math.PI : 1;			for (let i = 0, l = lights.length; i < l; i++) {				const light = lights[i];				const color = light.color;				const intensity = light.intensity;				const distance = light.distance;				const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null;				if (light.isAmbientLight) {					r += color.r * intensity * scaleFactor;					g += color.g * intensity * scaleFactor;					b += color.b * intensity * scaleFactor;				} else if (light.isLightProbe) {					for (let j = 0; j < 9; j++) {						state.probe[j].addScaledVector(light.sh.coefficients[j], intensity);					}				} else if (light.isDirectionalLight) {					const uniforms = cache.get(light);					uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);					if (light.castShadow) {						const shadow = light.shadow;						const shadowUniforms = shadowCache.get(light);						shadowUniforms.shadowBias = shadow.bias;						shadowUniforms.shadowNormalBias = shadow.normalBias;						shadowUniforms.shadowRadius = shadow.radius;						shadowUniforms.shadowMapSize = shadow.mapSize;						state.directionalShadow[directionalLength] = shadowUniforms;						state.directionalShadowMap[directionalLength] = shadowMap;						state.directionalShadowMatrix[directionalLength] = light.shadow.matrix;						numDirectionalShadows++;					}					state.directional[directionalLength] = uniforms;					directionalLength++;				} else if (light.isSpotLight) {					const uniforms = cache.get(light);					uniforms.position.setFromMatrixPosition(light.matrixWorld);					uniforms.color.copy(color).multiplyScalar(intensity * scaleFactor);					uniforms.distance = distance;					uniforms.coneCos = Math.cos(light.angle);					uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra));					uniforms.decay = light.decay;					if (light.castShadow) {						const shadow = light.shadow;						const shadowUniforms = shadowCache.get(light);						shadowUniforms.shadowBias = shadow.bias;						shadowUniforms.shadowNormalBias = shadow.normalBias;						shadowUniforms.shadowRadius = shadow.radius;						shadowUniforms.shadowMapSize = shadow.mapSize;						state.spotShadow[spotLength] = shadowUniforms;						state.spotShadowMap[spotLength] = shadowMap;						state.spotShadowMatrix[spotLength] = light.shadow.matrix;						numSpotShadows++;					}					state.spot[spotLength] = uniforms;					spotLength++;				} else if (light.isRectAreaLight) {					const uniforms = cache.get(light); // (a) intensity is the total visible light emitted					//uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );					// (b) intensity is the brightness of the light					uniforms.color.copy(color).multiplyScalar(intensity);					uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);					uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);					state.rectArea[rectAreaLength] = uniforms;					rectAreaLength++;				} else if (light.isPointLight) {					const uniforms = cache.get(light);					uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);					uniforms.distance = light.distance;					uniforms.decay = light.decay;					if (light.castShadow) {						const shadow = light.shadow;						const shadowUniforms = shadowCache.get(light);						shadowUniforms.shadowBias = shadow.bias;						shadowUniforms.shadowNormalBias = shadow.normalBias;						shadowUniforms.shadowRadius = shadow.radius;						shadowUniforms.shadowMapSize = shadow.mapSize;						shadowUniforms.shadowCameraNear = shadow.camera.near;						shadowUniforms.shadowCameraFar = shadow.camera.far;						state.pointShadow[pointLength] = shadowUniforms;						state.pointShadowMap[pointLength] = shadowMap;						state.pointShadowMatrix[pointLength] = light.shadow.matrix;						numPointShadows++;					}					state.point[pointLength] = uniforms;					pointLength++;				} else if (light.isHemisphereLight) {					const uniforms = cache.get(light);					uniforms.skyColor.copy(light.color).multiplyScalar(intensity * scaleFactor);					uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity * scaleFactor);					state.hemi[hemiLength] = uniforms;					hemiLength++;				}			}			if (rectAreaLength > 0) {				if (capabilities.isWebGL2) {					// WebGL 2					state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;					state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;				} else {					// WebGL 1					if (extensions.has('OES_texture_float_linear') === true) {						state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;						state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;					} else if (extensions.has('OES_texture_half_float_linear') === true) {						state.rectAreaLTC1 = UniformsLib.LTC_HALF_1;						state.rectAreaLTC2 = UniformsLib.LTC_HALF_2;					} else {						console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.');					}				}			}			state.ambient[0] = r;			state.ambient[1] = g;			state.ambient[2] = b;			const hash = state.hash;			if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) {				state.directional.length = directionalLength;				state.spot.length = spotLength;				state.rectArea.length = rectAreaLength;				state.point.length = pointLength;				state.hemi.length = hemiLength;				state.directionalShadow.length = numDirectionalShadows;				state.directionalShadowMap.length = numDirectionalShadows;				state.pointShadow.length = numPointShadows;				state.pointShadowMap.length = numPointShadows;				state.spotShadow.length = numSpotShadows;				state.spotShadowMap.length = numSpotShadows;				state.directionalShadowMatrix.length = numDirectionalShadows;				state.pointShadowMatrix.length = numPointShadows;				state.spotShadowMatrix.length = numSpotShadows;				hash.directionalLength = directionalLength;				hash.pointLength = pointLength;				hash.spotLength = spotLength;				hash.rectAreaLength = rectAreaLength;				hash.hemiLength = hemiLength;				hash.numDirectionalShadows = numDirectionalShadows;				hash.numPointShadows = numPointShadows;				hash.numSpotShadows = numSpotShadows;				state.version = nextVersion++;			}		}		function setupView(lights, camera) {			let directionalLength = 0;			let pointLength = 0;			let spotLength = 0;			let rectAreaLength = 0;			let hemiLength = 0;			const viewMatrix = camera.matrixWorldInverse;			for (let i = 0, l = lights.length; i < l; i++) {				const light = lights[i];				if (light.isDirectionalLight) {					const uniforms = state.directional[directionalLength];					uniforms.direction.setFromMatrixPosition(light.matrixWorld);					vector3.setFromMatrixPosition(light.target.matrixWorld);					uniforms.direction.sub(vector3);					uniforms.direction.transformDirection(viewMatrix);					directionalLength++;				} else if (light.isSpotLight) {					const uniforms = state.spot[spotLength];					uniforms.position.setFromMatrixPosition(light.matrixWorld);					uniforms.position.applyMatrix4(viewMatrix);					uniforms.direction.setFromMatrixPosition(light.matrixWorld);					vector3.setFromMatrixPosition(light.target.matrixWorld);					uniforms.direction.sub(vector3);					uniforms.direction.transformDirection(viewMatrix);					spotLength++;				} else if (light.isRectAreaLight) {					const uniforms = state.rectArea[rectAreaLength];					uniforms.position.setFromMatrixPosition(light.matrixWorld);					uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors					matrix42.identity();					matrix4.copy(light.matrixWorld);					matrix4.premultiply(viewMatrix);					matrix42.extractRotation(matrix4);					uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);					uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);					uniforms.halfWidth.applyMatrix4(matrix42);					uniforms.halfHeight.applyMatrix4(matrix42);					rectAreaLength++;				} else if (light.isPointLight) {					const uniforms = state.point[pointLength];					uniforms.position.setFromMatrixPosition(light.matrixWorld);					uniforms.position.applyMatrix4(viewMatrix);					pointLength++;				} else if (light.isHemisphereLight) {					const uniforms = state.hemi[hemiLength];					uniforms.direction.setFromMatrixPosition(light.matrixWorld);					uniforms.direction.transformDirection(viewMatrix);					uniforms.direction.normalize();					hemiLength++;				}			}		}		return {			setup: setup,			setupView: setupView,			state: state		};	}	function WebGLRenderState(extensions, capabilities) {		const lights = new WebGLLights(extensions, capabilities);		const lightsArray = [];		const shadowsArray = [];		function init() {			lightsArray.length = 0;			shadowsArray.length = 0;		}		function pushLight(light) {			lightsArray.push(light);		}		function pushShadow(shadowLight) {			shadowsArray.push(shadowLight);		}		function setupLights(physicallyCorrectLights) {			lights.setup(lightsArray, physicallyCorrectLights);		}		function setupLightsView(camera) {			lights.setupView(lightsArray, camera);		}		const state = {			lightsArray: lightsArray,			shadowsArray: shadowsArray,			lights: lights		};		return {			init: init,			state: state,			setupLights: setupLights,			setupLightsView: setupLightsView,			pushLight: pushLight,			pushShadow: pushShadow		};	}	function WebGLRenderStates(extensions, capabilities) {		let renderStates = new WeakMap();		function get(scene, renderCallDepth = 0) {			let renderState;			if (renderStates.has(scene) === false) {				renderState = new WebGLRenderState(extensions, capabilities);				renderStates.set(scene, [renderState]);			} else {				if (renderCallDepth >= renderStates.get(scene).length) {					renderState = new WebGLRenderState(extensions, capabilities);					renderStates.get(scene).push(renderState);				} else {					renderState = renderStates.get(scene)[renderCallDepth];				}			}			return renderState;		}		function dispose() {			renderStates = new WeakMap();		}		return {			get: get,			dispose: dispose		};	}	/**	 * parameters = {	 *	 *	opacity: <float>,	 *	 *	map: new THREE.Texture( <Image> ),	 *	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	displacementMap: new THREE.Texture( <Image> ),	 *	displacementScale: <float>,	 *	displacementBias: <float>,	 *	 *	wireframe: <boolean>,	 *	wireframeLinewidth: <float>	 * }	 */	class MeshDepthMaterial extends Material {		constructor(parameters) {			super();			this.type = 'MeshDepthMaterial';			this.depthPacking = BasicDepthPacking;			this.map = null;			this.alphaMap = null;			this.displacementMap = null;			this.displacementScale = 1;			this.displacementBias = 0;			this.wireframe = false;			this.wireframeLinewidth = 1;			this.fog = false;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.depthPacking = source.depthPacking;			this.map = source.map;			this.alphaMap = source.alphaMap;			this.displacementMap = source.displacementMap;			this.displacementScale = source.displacementScale;			this.displacementBias = source.displacementBias;			this.wireframe = source.wireframe;			this.wireframeLinewidth = source.wireframeLinewidth;			return this;		}	}	MeshDepthMaterial.prototype.isMeshDepthMaterial = true;	/**	 * parameters = {	 *	 *	referencePosition: <float>,	 *	nearDistance: <float>,	 *	farDistance: <float>,	 *	 *	map: new THREE.Texture( <Image> ),	 *	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	displacementMap: new THREE.Texture( <Image> ),	 *	displacementScale: <float>,	 *	displacementBias: <float>	 *	 * }	 */	class MeshDistanceMaterial extends Material {		constructor(parameters) {			super();			this.type = 'MeshDistanceMaterial';			this.referencePosition = new Vector3();			this.nearDistance = 1;			this.farDistance = 1000;			this.map = null;			this.alphaMap = null;			this.displacementMap = null;			this.displacementScale = 1;			this.displacementBias = 0;			this.fog = false;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.referencePosition.copy(source.referencePosition);			this.nearDistance = source.nearDistance;			this.farDistance = source.farDistance;			this.map = source.map;			this.alphaMap = source.alphaMap;			this.displacementMap = source.displacementMap;			this.displacementScale = source.displacementScale;			this.displacementBias = source.displacementBias;			return this;		}	}	MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;	const vertex = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";	const fragment = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include <packing>\nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";	function WebGLShadowMap(_renderer, _objects, _capabilities) {		let _frustum = new Frustum();		const _shadowMapSize = new Vector2(),					_viewportSize = new Vector2(),					_viewport = new Vector4(),					_depthMaterial = new MeshDepthMaterial({			depthPacking: RGBADepthPacking		}),					_distanceMaterial = new MeshDistanceMaterial(),					_materialCache = {},					_maxTextureSize = _capabilities.maxTextureSize;		const shadowSide = {			0: BackSide,			1: FrontSide,			2: DoubleSide		};		const shadowMaterialVertical = new ShaderMaterial({			defines: {				VSM_SAMPLES: 8			},			uniforms: {				shadow_pass: {					value: null				},				resolution: {					value: new Vector2()				},				radius: {					value: 4.0				}			},			vertexShader: vertex,			fragmentShader: fragment		});		const shadowMaterialHorizontal = shadowMaterialVertical.clone();		shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1;		const fullScreenTri = new BufferGeometry();		fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3));		const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical);		const scope = this;		this.enabled = false;		this.autoUpdate = true;		this.needsUpdate = false;		this.type = PCFShadowMap;		this.render = function (lights, scene, camera) {			if (scope.enabled === false) return;			if (scope.autoUpdate === false && scope.needsUpdate === false) return;			if (lights.length === 0) return;			const currentRenderTarget = _renderer.getRenderTarget();			const activeCubeFace = _renderer.getActiveCubeFace();			const activeMipmapLevel = _renderer.getActiveMipmapLevel();			const _state = _renderer.state; // Set GL state for depth map.			_state.setBlending(NoBlending);			_state.buffers.color.setClear(1, 1, 1, 1);			_state.buffers.depth.setTest(true);			_state.setScissorTest(false); // render depth map			for (let i = 0, il = lights.length; i < il; i++) {				const light = lights[i];				const shadow = light.shadow;				if (shadow === undefined) {					console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.');					continue;				}				if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue;				_shadowMapSize.copy(shadow.mapSize);				const shadowFrameExtents = shadow.getFrameExtents();				_shadowMapSize.multiply(shadowFrameExtents);				_viewportSize.copy(shadow.mapSize);				if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) {					if (_shadowMapSize.x > _maxTextureSize) {						_viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x);						_shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;						shadow.mapSize.x = _viewportSize.x;					}					if (_shadowMapSize.y > _maxTextureSize) {						_viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y);						_shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;						shadow.mapSize.y = _viewportSize.y;					}				}				if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) {					const pars = {						minFilter: LinearFilter,						magFilter: LinearFilter,						format: RGBAFormat					};					shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);					shadow.map.texture.name = light.name + '.shadowMap';					shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);					shadow.camera.updateProjectionMatrix();				}				if (shadow.map === null) {					const pars = {						minFilter: NearestFilter,						magFilter: NearestFilter,						format: RGBAFormat					};					shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);					shadow.map.texture.name = light.name + '.shadowMap';					shadow.camera.updateProjectionMatrix();				}				_renderer.setRenderTarget(shadow.map);				_renderer.clear();				const viewportCount = shadow.getViewportCount();				for (let vp = 0; vp < viewportCount; vp++) {					const viewport = shadow.getViewport(vp);					_viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w);					_state.viewport(_viewport);					shadow.updateMatrices(light, vp);					_frustum = shadow.getFrustum();					renderObject(scene, camera, shadow.camera, light, this.type);				} // do blur pass for VSM				if (!shadow.isPointLightShadow && this.type === VSMShadowMap) {					VSMPass(shadow, camera);				}				shadow.needsUpdate = false;			}			scope.needsUpdate = false;			_renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel);		};		function VSMPass(shadow, camera) {			const geometry = _objects.update(fullScreenMesh);			if (shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples) {				shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples;				shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples;				shadowMaterialVertical.needsUpdate = true;				shadowMaterialHorizontal.needsUpdate = true;			} // vertical pass			shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;			shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;			shadowMaterialVertical.uniforms.radius.value = shadow.radius;			_renderer.setRenderTarget(shadow.mapPass);			_renderer.clear();			_renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass			shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture;			shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize;			shadowMaterialHorizontal.uniforms.radius.value = shadow.radius;			_renderer.setRenderTarget(shadow.map);			_renderer.clear();			_renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null);		}		function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) {			let result = null;			const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial;			if (customMaterial !== undefined) {				result = customMaterial;			} else {				result = light.isPointLight === true ? _distanceMaterial : _depthMaterial;			}			if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 || material.displacementMap && material.displacementScale !== 0 || material.alphaMap && material.alphaTest > 0) {				// in this case we need a unique material instance reflecting the				// appropriate state				const keyA = result.uuid,							keyB = material.uuid;				let materialsForVariant = _materialCache[keyA];				if (materialsForVariant === undefined) {					materialsForVariant = {};					_materialCache[keyA] = materialsForVariant;				}				let cachedMaterial = materialsForVariant[keyB];				if (cachedMaterial === undefined) {					cachedMaterial = result.clone();					materialsForVariant[keyB] = cachedMaterial;				}				result = cachedMaterial;			}			result.visible = material.visible;			result.wireframe = material.wireframe;			if (type === VSMShadowMap) {				result.side = material.shadowSide !== null ? material.shadowSide : material.side;			} else {				result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side];			}			result.alphaMap = material.alphaMap;			result.alphaTest = material.alphaTest;			result.clipShadows = material.clipShadows;			result.clippingPlanes = material.clippingPlanes;			result.clipIntersection = material.clipIntersection;			result.displacementMap = material.displacementMap;			result.displacementScale = material.displacementScale;			result.displacementBias = material.displacementBias;			result.wireframeLinewidth = material.wireframeLinewidth;			result.linewidth = material.linewidth;			if (light.isPointLight === true && result.isMeshDistanceMaterial === true) {				result.referencePosition.setFromMatrixPosition(light.matrixWorld);				result.nearDistance = shadowCameraNear;				result.farDistance = shadowCameraFar;			}			return result;		}		function renderObject(object, camera, shadowCamera, light, type) {			if (object.visible === false) return;			const visible = object.layers.test(camera.layers);			if (visible && (object.isMesh || object.isLine || object.isPoints)) {				if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) {					object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld);					const geometry = _objects.update(object);					const material = object.material;					if (Array.isArray(material)) {						const groups = geometry.groups;						for (let k = 0, kl = groups.length; k < kl; k++) {							const group = groups[k];							const groupMaterial = material[group.materialIndex];							if (groupMaterial && groupMaterial.visible) {								const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type);								_renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group);							}						}					} else if (material.visible) {						const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type);						_renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null);					}				}			}			const children = object.children;			for (let i = 0, l = children.length; i < l; i++) {				renderObject(children[i], camera, shadowCamera, light, type);			}		}	}	function WebGLState(gl, extensions, capabilities) {		const isWebGL2 = capabilities.isWebGL2;		function ColorBuffer() {			let locked = false;			const color = new Vector4();			let currentColorMask = null;			const currentColorClear = new Vector4(0, 0, 0, 0);			return {				setMask: function (colorMask) {					if (currentColorMask !== colorMask && !locked) {						gl.colorMask(colorMask, colorMask, colorMask, colorMask);						currentColorMask = colorMask;					}				},				setLocked: function (lock) {					locked = lock;				},				setClear: function (r, g, b, a, premultipliedAlpha) {					if (premultipliedAlpha === true) {						r *= a;						g *= a;						b *= a;					}					color.set(r, g, b, a);					if (currentColorClear.equals(color) === false) {						gl.clearColor(r, g, b, a);						currentColorClear.copy(color);					}				},				reset: function () {					locked = false;					currentColorMask = null;					currentColorClear.set(-1, 0, 0, 0); // set to invalid state				}			};		}		function DepthBuffer() {			let locked = false;			let currentDepthMask = null;			let currentDepthFunc = null;			let currentDepthClear = null;			return {				setTest: function (depthTest) {					if (depthTest) {						enable(gl.DEPTH_TEST);					} else {						disable(gl.DEPTH_TEST);					}				},				setMask: function (depthMask) {					if (currentDepthMask !== depthMask && !locked) {						gl.depthMask(depthMask);						currentDepthMask = depthMask;					}				},				setFunc: function (depthFunc) {					if (currentDepthFunc !== depthFunc) {						if (depthFunc) {							switch (depthFunc) {								case NeverDepth:									gl.depthFunc(gl.NEVER);									break;								case AlwaysDepth:									gl.depthFunc(gl.ALWAYS);									break;								case LessDepth:									gl.depthFunc(gl.LESS);									break;								case LessEqualDepth:									gl.depthFunc(gl.LEQUAL);									break;								case EqualDepth:									gl.depthFunc(gl.EQUAL);									break;								case GreaterEqualDepth:									gl.depthFunc(gl.GEQUAL);									break;								case GreaterDepth:									gl.depthFunc(gl.GREATER);									break;								case NotEqualDepth:									gl.depthFunc(gl.NOTEQUAL);									break;								default:									gl.depthFunc(gl.LEQUAL);							}						} else {							gl.depthFunc(gl.LEQUAL);						}						currentDepthFunc = depthFunc;					}				},				setLocked: function (lock) {					locked = lock;				},				setClear: function (depth) {					if (currentDepthClear !== depth) {						gl.clearDepth(depth);						currentDepthClear = depth;					}				},				reset: function () {					locked = false;					currentDepthMask = null;					currentDepthFunc = null;					currentDepthClear = null;				}			};		}		function StencilBuffer() {			let locked = false;			let currentStencilMask = null;			let currentStencilFunc = null;			let currentStencilRef = null;			let currentStencilFuncMask = null;			let currentStencilFail = null;			let currentStencilZFail = null;			let currentStencilZPass = null;			let currentStencilClear = null;			return {				setTest: function (stencilTest) {					if (!locked) {						if (stencilTest) {							enable(gl.STENCIL_TEST);						} else {							disable(gl.STENCIL_TEST);						}					}				},				setMask: function (stencilMask) {					if (currentStencilMask !== stencilMask && !locked) {						gl.stencilMask(stencilMask);						currentStencilMask = stencilMask;					}				},				setFunc: function (stencilFunc, stencilRef, stencilMask) {					if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) {						gl.stencilFunc(stencilFunc, stencilRef, stencilMask);						currentStencilFunc = stencilFunc;						currentStencilRef = stencilRef;						currentStencilFuncMask = stencilMask;					}				},				setOp: function (stencilFail, stencilZFail, stencilZPass) {					if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) {						gl.stencilOp(stencilFail, stencilZFail, stencilZPass);						currentStencilFail = stencilFail;						currentStencilZFail = stencilZFail;						currentStencilZPass = stencilZPass;					}				},				setLocked: function (lock) {					locked = lock;				},				setClear: function (stencil) {					if (currentStencilClear !== stencil) {						gl.clearStencil(stencil);						currentStencilClear = stencil;					}				},				reset: function () {					locked = false;					currentStencilMask = null;					currentStencilFunc = null;					currentStencilRef = null;					currentStencilFuncMask = null;					currentStencilFail = null;					currentStencilZFail = null;					currentStencilZPass = null;					currentStencilClear = null;				}			};		} //		const colorBuffer = new ColorBuffer();		const depthBuffer = new DepthBuffer();		const stencilBuffer = new StencilBuffer();		let enabledCapabilities = {};		let currentBoundFramebuffers = {};		let currentProgram = null;		let currentBlendingEnabled = false;		let currentBlending = null;		let currentBlendEquation = null;		let currentBlendSrc = null;		let currentBlendDst = null;		let currentBlendEquationAlpha = null;		let currentBlendSrcAlpha = null;		let currentBlendDstAlpha = null;		let currentPremultipledAlpha = false;		let currentFlipSided = null;		let currentCullFace = null;		let currentLineWidth = null;		let currentPolygonOffsetFactor = null;		let currentPolygonOffsetUnits = null;		const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS);		let lineWidthAvailable = false;		let version = 0;		const glVersion = gl.getParameter(gl.VERSION);		if (glVersion.indexOf('WebGL') !== -1) {			version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]);			lineWidthAvailable = version >= 1.0;		} else if (glVersion.indexOf('OpenGL ES') !== -1) {			version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]);			lineWidthAvailable = version >= 2.0;		}		let currentTextureSlot = null;		let currentBoundTextures = {};		const scissorParam = gl.getParameter(gl.SCISSOR_BOX);		const viewportParam = gl.getParameter(gl.VIEWPORT);		const currentScissor = new Vector4().fromArray(scissorParam);		const currentViewport = new Vector4().fromArray(viewportParam);		function createTexture(type, target, count) {			const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4.			const texture = gl.createTexture();			gl.bindTexture(type, texture);			gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST);			gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST);			for (let i = 0; i < count; i++) {				gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data);			}			return texture;		}		const emptyTextures = {};		emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1);		emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init		colorBuffer.setClear(0, 0, 0, 1);		depthBuffer.setClear(1);		stencilBuffer.setClear(0);		enable(gl.DEPTH_TEST);		depthBuffer.setFunc(LessEqualDepth);		setFlipSided(false);		setCullFace(CullFaceBack);		enable(gl.CULL_FACE);		setBlending(NoBlending); //		function enable(id) {			if (enabledCapabilities[id] !== true) {				gl.enable(id);				enabledCapabilities[id] = true;			}		}		function disable(id) {			if (enabledCapabilities[id] !== false) {				gl.disable(id);				enabledCapabilities[id] = false;			}		}		function bindFramebuffer(target, framebuffer) {			if (currentBoundFramebuffers[target] !== framebuffer) {				gl.bindFramebuffer(target, framebuffer);				currentBoundFramebuffers[target] = framebuffer;				if (isWebGL2) {					// gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER					if (target === gl.DRAW_FRAMEBUFFER) {						currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer;					}					if (target === gl.FRAMEBUFFER) {						currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer;					}				}				return true;			}			return false;		}		function useProgram(program) {			if (currentProgram !== program) {				gl.useProgram(program);				currentProgram = program;				return true;			}			return false;		}		const equationToGL = {			[AddEquation]: gl.FUNC_ADD,			[SubtractEquation]: gl.FUNC_SUBTRACT,			[ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT		};		if (isWebGL2) {			equationToGL[MinEquation] = gl.MIN;			equationToGL[MaxEquation] = gl.MAX;		} else {			const extension = extensions.get('EXT_blend_minmax');			if (extension !== null) {				equationToGL[MinEquation] = extension.MIN_EXT;				equationToGL[MaxEquation] = extension.MAX_EXT;			}		}		const factorToGL = {			[ZeroFactor]: gl.ZERO,			[OneFactor]: gl.ONE,			[SrcColorFactor]: gl.SRC_COLOR,			[SrcAlphaFactor]: gl.SRC_ALPHA,			[SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE,			[DstColorFactor]: gl.DST_COLOR,			[DstAlphaFactor]: gl.DST_ALPHA,			[OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR,			[OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA,			[OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR,			[OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA		};		function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) {			if (blending === NoBlending) {				if (currentBlendingEnabled === true) {					disable(gl.BLEND);					currentBlendingEnabled = false;				}				return;			}			if (currentBlendingEnabled === false) {				enable(gl.BLEND);				currentBlendingEnabled = true;			}			if (blending !== CustomBlending) {				if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) {					if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) {						gl.blendEquation(gl.FUNC_ADD);						currentBlendEquation = AddEquation;						currentBlendEquationAlpha = AddEquation;					}					if (premultipliedAlpha) {						switch (blending) {							case NormalBlending:								gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);								break;							case AdditiveBlending:								gl.blendFunc(gl.ONE, gl.ONE);								break;							case SubtractiveBlending:								gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA);								break;							case MultiplyBlending:								gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA);								break;							default:								console.error('THREE.WebGLState: Invalid blending: ', blending);								break;						}					} else {						switch (blending) {							case NormalBlending:								gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);								break;							case AdditiveBlending:								gl.blendFunc(gl.SRC_ALPHA, gl.ONE);								break;							case SubtractiveBlending:								gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR);								break;							case MultiplyBlending:								gl.blendFunc(gl.ZERO, gl.SRC_COLOR);								break;							default:								console.error('THREE.WebGLState: Invalid blending: ', blending);								break;						}					}					currentBlendSrc = null;					currentBlendDst = null;					currentBlendSrcAlpha = null;					currentBlendDstAlpha = null;					currentBlending = blending;					currentPremultipledAlpha = premultipliedAlpha;				}				return;			} // custom blending			blendEquationAlpha = blendEquationAlpha || blendEquation;			blendSrcAlpha = blendSrcAlpha || blendSrc;			blendDstAlpha = blendDstAlpha || blendDst;			if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) {				gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]);				currentBlendEquation = blendEquation;				currentBlendEquationAlpha = blendEquationAlpha;			}			if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) {				gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]);				currentBlendSrc = blendSrc;				currentBlendDst = blendDst;				currentBlendSrcAlpha = blendSrcAlpha;				currentBlendDstAlpha = blendDstAlpha;			}			currentBlending = blending;			currentPremultipledAlpha = null;		}		function setMaterial(material, frontFaceCW) {			material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE);			let flipSided = material.side === BackSide;			if (frontFaceCW) flipSided = !flipSided;			setFlipSided(flipSided);			material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha);			depthBuffer.setFunc(material.depthFunc);			depthBuffer.setTest(material.depthTest);			depthBuffer.setMask(material.depthWrite);			colorBuffer.setMask(material.colorWrite);			const stencilWrite = material.stencilWrite;			stencilBuffer.setTest(stencilWrite);			if (stencilWrite) {				stencilBuffer.setMask(material.stencilWriteMask);				stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask);				stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass);			}			setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits);			material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE);		} //		function setFlipSided(flipSided) {			if (currentFlipSided !== flipSided) {				if (flipSided) {					gl.frontFace(gl.CW);				} else {					gl.frontFace(gl.CCW);				}				currentFlipSided = flipSided;			}		}		function setCullFace(cullFace) {			if (cullFace !== CullFaceNone) {				enable(gl.CULL_FACE);				if (cullFace !== currentCullFace) {					if (cullFace === CullFaceBack) {						gl.cullFace(gl.BACK);					} else if (cullFace === CullFaceFront) {						gl.cullFace(gl.FRONT);					} else {						gl.cullFace(gl.FRONT_AND_BACK);					}				}			} else {				disable(gl.CULL_FACE);			}			currentCullFace = cullFace;		}		function setLineWidth(width) {			if (width !== currentLineWidth) {				if (lineWidthAvailable) gl.lineWidth(width);				currentLineWidth = width;			}		}		function setPolygonOffset(polygonOffset, factor, units) {			if (polygonOffset) {				enable(gl.POLYGON_OFFSET_FILL);				if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) {					gl.polygonOffset(factor, units);					currentPolygonOffsetFactor = factor;					currentPolygonOffsetUnits = units;				}			} else {				disable(gl.POLYGON_OFFSET_FILL);			}		}		function setScissorTest(scissorTest) {			if (scissorTest) {				enable(gl.SCISSOR_TEST);			} else {				disable(gl.SCISSOR_TEST);			}		} // texture		function activeTexture(webglSlot) {			if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1;			if (currentTextureSlot !== webglSlot) {				gl.activeTexture(webglSlot);				currentTextureSlot = webglSlot;			}		}		function bindTexture(webglType, webglTexture) {			if (currentTextureSlot === null) {				activeTexture();			}			let boundTexture = currentBoundTextures[currentTextureSlot];			if (boundTexture === undefined) {				boundTexture = {					type: undefined,					texture: undefined				};				currentBoundTextures[currentTextureSlot] = boundTexture;			}			if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) {				gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]);				boundTexture.type = webglType;				boundTexture.texture = webglTexture;			}		}		function unbindTexture() {			const boundTexture = currentBoundTextures[currentTextureSlot];			if (boundTexture !== undefined && boundTexture.type !== undefined) {				gl.bindTexture(boundTexture.type, null);				boundTexture.type = undefined;				boundTexture.texture = undefined;			}		}		function compressedTexImage2D() {			try {				gl.compressedTexImage2D.apply(gl, arguments);			} catch (error) {				console.error('THREE.WebGLState:', error);			}		}		function texSubImage2D() {			try {				gl.texSubImage2D.apply(gl, arguments);			} catch (error) {				console.error('THREE.WebGLState:', error);			}		}		function texStorage2D() {			try {				gl.texStorage2D.apply(gl, arguments);			} catch (error) {				console.error('THREE.WebGLState:', error);			}		}		function texImage2D() {			try {				gl.texImage2D.apply(gl, arguments);			} catch (error) {				console.error('THREE.WebGLState:', error);			}		}		function texImage3D() {			try {				gl.texImage3D.apply(gl, arguments);			} catch (error) {				console.error('THREE.WebGLState:', error);			}		} //		function scissor(scissor) {			if (currentScissor.equals(scissor) === false) {				gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w);				currentScissor.copy(scissor);			}		}		function viewport(viewport) {			if (currentViewport.equals(viewport) === false) {				gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w);				currentViewport.copy(viewport);			}		} //		function reset() {			// reset state			gl.disable(gl.BLEND);			gl.disable(gl.CULL_FACE);			gl.disable(gl.DEPTH_TEST);			gl.disable(gl.POLYGON_OFFSET_FILL);			gl.disable(gl.SCISSOR_TEST);			gl.disable(gl.STENCIL_TEST);			gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE);			gl.blendEquation(gl.FUNC_ADD);			gl.blendFunc(gl.ONE, gl.ZERO);			gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO);			gl.colorMask(true, true, true, true);			gl.clearColor(0, 0, 0, 0);			gl.depthMask(true);			gl.depthFunc(gl.LESS);			gl.clearDepth(1);			gl.stencilMask(0xffffffff);			gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff);			gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP);			gl.clearStencil(0);			gl.cullFace(gl.BACK);			gl.frontFace(gl.CCW);			gl.polygonOffset(0, 0);			gl.activeTexture(gl.TEXTURE0);			gl.bindFramebuffer(gl.FRAMEBUFFER, null);			if (isWebGL2 === true) {				gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);				gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null);			}			gl.useProgram(null);			gl.lineWidth(1);			gl.scissor(0, 0, gl.canvas.width, gl.canvas.height);			gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals			enabledCapabilities = {};			currentTextureSlot = null;			currentBoundTextures = {};			currentBoundFramebuffers = {};			currentProgram = null;			currentBlendingEnabled = false;			currentBlending = null;			currentBlendEquation = null;			currentBlendSrc = null;			currentBlendDst = null;			currentBlendEquationAlpha = null;			currentBlendSrcAlpha = null;			currentBlendDstAlpha = null;			currentPremultipledAlpha = false;			currentFlipSided = null;			currentCullFace = null;			currentLineWidth = null;			currentPolygonOffsetFactor = null;			currentPolygonOffsetUnits = null;			currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height);			currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height);			colorBuffer.reset();			depthBuffer.reset();			stencilBuffer.reset();		}		return {			buffers: {				color: colorBuffer,				depth: depthBuffer,				stencil: stencilBuffer			},			enable: enable,			disable: disable,			bindFramebuffer: bindFramebuffer,			useProgram: useProgram,			setBlending: setBlending,			setMaterial: setMaterial,			setFlipSided: setFlipSided,			setCullFace: setCullFace,			setLineWidth: setLineWidth,			setPolygonOffset: setPolygonOffset,			setScissorTest: setScissorTest,			activeTexture: activeTexture,			bindTexture: bindTexture,			unbindTexture: unbindTexture,			compressedTexImage2D: compressedTexImage2D,			texImage2D: texImage2D,			texImage3D: texImage3D,			texStorage2D: texStorage2D,			texSubImage2D: texSubImage2D,			scissor: scissor,			viewport: viewport,			reset: reset		};	}	function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) {		const isWebGL2 = capabilities.isWebGL2;		const maxTextures = capabilities.maxTextures;		const maxCubemapSize = capabilities.maxCubemapSize;		const maxTextureSize = capabilities.maxTextureSize;		const maxSamples = capabilities.maxSamples;		const hasMultisampledRenderToTexture = extensions.has('WEBGL_multisampled_render_to_texture');		const MultisampledRenderToTextureExtension = hasMultisampledRenderToTexture ? extensions.get('WEBGL_multisampled_render_to_texture') : undefined;		const _videoTextures = new WeakMap();		let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,		// also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!		// Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).		let useOffscreenCanvas = false;		try {			useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null;		} catch (err) {// Ignore any errors		}		function createCanvas(width, height) {			// Use OffscreenCanvas when available. Specially needed in web workers			return useOffscreenCanvas ? new OffscreenCanvas(width, height) : createElementNS('canvas');		}		function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) {			let scale = 1; // handle case if texture exceeds max size			if (image.width > maxSize || image.height > maxSize) {				scale = maxSize / Math.max(image.width, image.height);			} // only perform resize if necessary			if (scale < 1 || needsPowerOfTwo === true) {				// only perform resize for certain image types				if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {					const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor;					const width = floor(scale * image.width);					const height = floor(scale * image.height);					if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas					const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas;					canvas.width = width;					canvas.height = height;					const context = canvas.getContext('2d');					context.drawImage(image, 0, 0, width, height);					console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').');					return canvas;				} else {					if ('data' in image) {						console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').');					}					return image;				}			}			return image;		}		function isPowerOfTwo$1(image) {			return isPowerOfTwo(image.width) && isPowerOfTwo(image.height);		}		function textureNeedsPowerOfTwo(texture) {			if (isWebGL2) return false;			return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;		}		function textureNeedsGenerateMipmaps(texture, supportsMips) {			return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;		}		function generateMipmap(target) {			_gl.generateMipmap(target);		}		function getInternalFormat(internalFormatName, glFormat, glType		/*, encoding*/		) {			if (isWebGL2 === false) return glFormat;			if (internalFormatName !== null) {				if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName];				console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'');			}			let internalFormat = glFormat;			if (glFormat === _gl.RED) {				if (glType === _gl.FLOAT) internalFormat = _gl.R32F;				if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F;				if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8;			}			if (glFormat === _gl.RGB) {				if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F;				if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F;				if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8;			}			if (glFormat === _gl.RGBA) {				if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F;				if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F; //if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = ( encoding === sRGBEncoding ) ? _gl.SRGB8_ALPHA8 : _gl.RGBA8;				if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGBA8;			}			if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) {				extensions.get('EXT_color_buffer_float');			}			return internalFormat;		}		function getMipLevels(texture, image, supportsMips) {			if (textureNeedsGenerateMipmaps(texture, supportsMips) === true) {				// generated mipmaps via gl.generateMipmap()				return Math.log2(Math.max(image.width, image.height)) + 1;			} else if (texture.mipmaps.length > 0) {				// user-defined mipmaps				return texture.mipmaps.length;			} else {				// texture without mipmaps (only base level)				return 1;			}		} // Fallback filters for non-power-of-2 textures		function filterFallback(f) {			if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) {				return _gl.NEAREST;			}			return _gl.LINEAR;		} //		function onTextureDispose(event) {			const texture = event.target;			texture.removeEventListener('dispose', onTextureDispose);			deallocateTexture(texture);			if (texture.isVideoTexture) {				_videoTextures.delete(texture);			}			info.memory.textures--;		}		function onRenderTargetDispose(event) {			const renderTarget = event.target;			renderTarget.removeEventListener('dispose', onRenderTargetDispose);			deallocateRenderTarget(renderTarget);		} //		function deallocateTexture(texture) {			const textureProperties = properties.get(texture);			if (textureProperties.__webglInit === undefined) return;			_gl.deleteTexture(textureProperties.__webglTexture);			properties.remove(texture);		}		function deallocateRenderTarget(renderTarget) {			const texture = renderTarget.texture;			const renderTargetProperties = properties.get(renderTarget);			const textureProperties = properties.get(texture);			if (!renderTarget) return;			if (textureProperties.__webglTexture !== undefined) {				_gl.deleteTexture(textureProperties.__webglTexture);				info.memory.textures--;			}			if (renderTarget.depthTexture) {				renderTarget.depthTexture.dispose();			}			if (renderTarget.isWebGLCubeRenderTarget) {				for (let i = 0; i < 6; i++) {					_gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]);					if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]);				}			} else {				_gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer);				if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer);				if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer);				if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer);				if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer);			}			if (renderTarget.isWebGLMultipleRenderTargets) {				for (let i = 0, il = texture.length; i < il; i++) {					const attachmentProperties = properties.get(texture[i]);					if (attachmentProperties.__webglTexture) {						_gl.deleteTexture(attachmentProperties.__webglTexture);						info.memory.textures--;					}					properties.remove(texture[i]);				}			}			properties.remove(texture);			properties.remove(renderTarget);		} //		let textureUnits = 0;		function resetTextureUnits() {			textureUnits = 0;		}		function allocateTextureUnit() {			const textureUnit = textureUnits;			if (textureUnit >= maxTextures) {				console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures);			}			textureUnits += 1;			return textureUnit;		} //		function setTexture2D(texture, slot) {			const textureProperties = properties.get(texture);			if (texture.isVideoTexture) updateVideoTexture(texture);			if (texture.version > 0 && textureProperties.__version !== texture.version) {				const image = texture.image;				if (image === undefined) {					console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined');				} else if (image.complete === false) {					console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete');				} else {					uploadTexture(textureProperties, texture, slot);					return;				}			}			state.activeTexture(_gl.TEXTURE0 + slot);			state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture);		}		function setTexture2DArray(texture, slot) {			const textureProperties = properties.get(texture);			if (texture.version > 0 && textureProperties.__version !== texture.version) {				uploadTexture(textureProperties, texture, slot);				return;			}			state.activeTexture(_gl.TEXTURE0 + slot);			state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture);		}		function setTexture3D(texture, slot) {			const textureProperties = properties.get(texture);			if (texture.version > 0 && textureProperties.__version !== texture.version) {				uploadTexture(textureProperties, texture, slot);				return;			}			state.activeTexture(_gl.TEXTURE0 + slot);			state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture);		}		function setTextureCube(texture, slot) {			const textureProperties = properties.get(texture);			if (texture.version > 0 && textureProperties.__version !== texture.version) {				uploadCubeTexture(textureProperties, texture, slot);				return;			}			state.activeTexture(_gl.TEXTURE0 + slot);			state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);		}		const wrappingToGL = {			[RepeatWrapping]: _gl.REPEAT,			[ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE,			[MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT		};		const filterToGL = {			[NearestFilter]: _gl.NEAREST,			[NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST,			[NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR,			[LinearFilter]: _gl.LINEAR,			[LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST,			[LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR		};		function setTextureParameters(textureType, texture, supportsMips) {			if (supportsMips) {				_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]);				_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]);				if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {					_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]);				}				_gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]);				_gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]);			} else {				_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE);				_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE);				if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {					_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE);				}				if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) {					console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.');				}				_gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter));				_gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter));				if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) {					console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.');				}			}			if (extensions.has('EXT_texture_filter_anisotropic') === true) {				const extension = extensions.get('EXT_texture_filter_anisotropic');				if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2				if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only				if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) {					_gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy()));					properties.get(texture).__currentAnisotropy = texture.anisotropy;				}			}		}		function initTexture(textureProperties, texture) {			if (textureProperties.__webglInit === undefined) {				textureProperties.__webglInit = true;				texture.addEventListener('dispose', onTextureDispose);				textureProperties.__webglTexture = _gl.createTexture();				info.memory.textures++;			}		}		function uploadTexture(textureProperties, texture, slot) {			let textureType = _gl.TEXTURE_2D;			if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY;			if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D;			initTexture(textureProperties, texture);			state.activeTexture(_gl.TEXTURE0 + slot);			state.bindTexture(textureType, textureProperties.__webglTexture);			_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);			_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);			_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);			_gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);			const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false;			const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize);			const supportsMips = isPowerOfTwo$1(image) || isWebGL2,						glFormat = utils.convert(texture.format);			let glType = utils.convert(texture.type),					glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);			setTextureParameters(textureType, texture, supportsMips);			let mipmap;			const mipmaps = texture.mipmaps;			if (texture.isDepthTexture) {				// populate depth texture with dummy data				glInternalFormat = _gl.DEPTH_COMPONENT;				if (isWebGL2) {					if (texture.type === FloatType) {						glInternalFormat = _gl.DEPTH_COMPONENT32F;					} else if (texture.type === UnsignedIntType) {						glInternalFormat = _gl.DEPTH_COMPONENT24;					} else if (texture.type === UnsignedInt248Type) {						glInternalFormat = _gl.DEPTH24_STENCIL8;					} else {						glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D					}				} else {					if (texture.type === FloatType) {						console.error('WebGLRenderer: Floating point depth texture requires WebGL2.');					}				} // validation checks for WebGL 1				if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {					// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are					// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT					// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)					if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) {						console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.');						texture.type = UnsignedShortType;						glType = utils.convert(texture.type);					}				}				if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {					// Depth stencil textures need the DEPTH_STENCIL internal format					// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)					glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are					// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.					// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)					if (texture.type !== UnsignedInt248Type) {						console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.');						texture.type = UnsignedInt248Type;						glType = utils.convert(texture.type);					}				} //				state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null);			} else if (texture.isDataTexture) {				// use manually created mipmaps if available				// if there are no manual mipmaps				// set 0 level mipmap and then use GL to generate other mipmap levels				if (mipmaps.length > 0 && supportsMips) {					for (let i = 0, il = mipmaps.length; i < il; i++) {						mipmap = mipmaps[i];						state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);					}					texture.generateMipmaps = false;				} else {					state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data);				}			} else if (texture.isCompressedTexture) {				for (let i = 0, il = mipmaps.length; i < il; i++) {					mipmap = mipmaps[i];					if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {						if (glFormat !== null) {							state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);						} else {							console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()');						}					} else {						state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);					}				}			} else if (texture.isDataTexture2DArray) {				state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);			} else if (texture.isDataTexture3D) {				state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);			} else {				// regular Texture (image, video, canvas)				// use manually created mipmaps if available				// if there are no manual mipmaps				// set 0 level mipmap and then use GL to generate other mipmap levels				const levels = getMipLevels(texture, image, supportsMips);				const useTexStorage = isWebGL2 && texture.isVideoTexture !== true;				const allocateMemory = textureProperties.__version === undefined;				if (mipmaps.length > 0 && supportsMips) {					if (useTexStorage && allocateMemory) {						state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height);					}					for (let i = 0, il = mipmaps.length; i < il; i++) {						mipmap = mipmaps[i];						if (useTexStorage) {							state.texSubImage2D(_gl.TEXTURE_2D, i, 0, 0, glFormat, glType, mipmap);						} else {							state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap);						}					}					texture.generateMipmaps = false;				} else {					if (useTexStorage) {						if (allocateMemory) {							state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height);						}						state.texSubImage2D(_gl.TEXTURE_2D, 0, 0, 0, glFormat, glType, image);					} else {						state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image);					}				}			}			if (textureNeedsGenerateMipmaps(texture, supportsMips)) {				generateMipmap(textureType);			}			textureProperties.__version = texture.version;			if (texture.onUpdate) texture.onUpdate(texture);		}		function uploadCubeTexture(textureProperties, texture, slot) {			if (texture.image.length !== 6) return;			initTexture(textureProperties, texture);			state.activeTexture(_gl.TEXTURE0 + slot);			state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);			_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);			_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);			_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);			_gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);			const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture);			const isDataTexture = texture.image[0] && texture.image[0].isDataTexture;			const cubeImage = [];			for (let i = 0; i < 6; i++) {				if (!isCompressed && !isDataTexture) {					cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize);				} else {					cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i];				}			}			const image = cubeImage[0],						supportsMips = isPowerOfTwo$1(image) || isWebGL2,						glFormat = utils.convert(texture.format),						glType = utils.convert(texture.type),						glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);			setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);			let mipmaps;			if (isCompressed) {				for (let i = 0; i < 6; i++) {					mipmaps = cubeImage[i].mipmaps;					for (let j = 0; j < mipmaps.length; j++) {						const mipmap = mipmaps[j];						if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {							if (glFormat !== null) {								state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);							} else {								console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()');							}						} else {							state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);						}					}				}			} else {				mipmaps = texture.mipmaps;				for (let i = 0; i < 6; i++) {					if (isDataTexture) {						state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data);						for (let j = 0; j < mipmaps.length; j++) {							const mipmap = mipmaps[j];							const mipmapImage = mipmap.image[i].image;							state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data);						}					} else {						state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]);						for (let j = 0; j < mipmaps.length; j++) {							const mipmap = mipmaps[j];							state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]);						}					}				}			}			if (textureNeedsGenerateMipmaps(texture, supportsMips)) {				// We assume images for cube map have the same size.				generateMipmap(_gl.TEXTURE_CUBE_MAP);			}			textureProperties.__version = texture.version;			if (texture.onUpdate) texture.onUpdate(texture);		} // Render targets		// Setup storage for target texture and bind it to correct framebuffer		function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) {			const glFormat = utils.convert(texture.format);			const glType = utils.convert(texture.type);			const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);			const renderTargetProperties = properties.get(renderTarget);			if (!renderTargetProperties.__hasExternalTextures) {				if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) {					state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null);				} else {					state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null);				}			}			state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);			if (renderTarget.useRenderToTexture) {				MultisampledRenderToTextureExtension.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0, getRenderTargetSamples(renderTarget));			} else {				_gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0);			}			state.bindFramebuffer(_gl.FRAMEBUFFER, null);		} // Setup storage for internal depth/stencil buffers and bind to correct framebuffer		function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) {			_gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer);			if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) {				let glInternalFormat = _gl.DEPTH_COMPONENT16;				if (isMultisample || renderTarget.useRenderToTexture) {					const depthTexture = renderTarget.depthTexture;					if (depthTexture && depthTexture.isDepthTexture) {						if (depthTexture.type === FloatType) {							glInternalFormat = _gl.DEPTH_COMPONENT32F;						} else if (depthTexture.type === UnsignedIntType) {							glInternalFormat = _gl.DEPTH_COMPONENT24;						}					}					const samples = getRenderTargetSamples(renderTarget);					if (renderTarget.useRenderToTexture) {						MultisampledRenderToTextureExtension.renderbufferStorageMultisampleEXT(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);					} else {						_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);					}				} else {					_gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);				}				_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);			} else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) {				const samples = getRenderTargetSamples(renderTarget);				if (isMultisample && renderTarget.useRenderbuffer) {					_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height);				} else if (renderTarget.useRenderToTexture) {					MultisampledRenderToTextureExtension.renderbufferStorageMultisampleEXT(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height);				} else {					_gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height);				}				_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);			} else {				// Use the first texture for MRT so far				const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture;				const glFormat = utils.convert(texture.format);				const glType = utils.convert(texture.type);				const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);				const samples = getRenderTargetSamples(renderTarget);				if (isMultisample && renderTarget.useRenderbuffer) {					_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);				} else if (renderTarget.useRenderToTexture) {					MultisampledRenderToTextureExtension.renderbufferStorageMultisampleEXT(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);				} else {					_gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);				}			}			_gl.bindRenderbuffer(_gl.RENDERBUFFER, null);		} // Setup resources for a Depth Texture for a FBO (needs an extension)		function setupDepthTexture(framebuffer, renderTarget) {			const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget;			if (isCube) throw new Error('Depth Texture with cube render targets is not supported');			state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);			if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) {				throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');			} // upload an empty depth texture with framebuffer size			if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) {				renderTarget.depthTexture.image.width = renderTarget.width;				renderTarget.depthTexture.image.height = renderTarget.height;				renderTarget.depthTexture.needsUpdate = true;			}			setTexture2D(renderTarget.depthTexture, 0);			const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture;			const samples = getRenderTargetSamples(renderTarget);			if (renderTarget.depthTexture.format === DepthFormat) {				if (renderTarget.useRenderToTexture) {					MultisampledRenderToTextureExtension.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples);				} else {					_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);				}			} else if (renderTarget.depthTexture.format === DepthStencilFormat) {				if (renderTarget.useRenderToTexture) {					MultisampledRenderToTextureExtension.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples);				} else {					_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);				}			} else {				throw new Error('Unknown depthTexture format');			}		} // Setup GL resources for a non-texture depth buffer		function setupDepthRenderbuffer(renderTarget) {			const renderTargetProperties = properties.get(renderTarget);			const isCube = renderTarget.isWebGLCubeRenderTarget === true;			if (renderTarget.depthTexture && !renderTargetProperties.__autoAllocateDepthBuffer) {				if (isCube) throw new Error('target.depthTexture not supported in Cube render targets');				setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget);			} else {				if (isCube) {					renderTargetProperties.__webglDepthbuffer = [];					for (let i = 0; i < 6; i++) {						state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]);						renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer();						setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false);					}				} else {					state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);					renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();					setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false);				}			}			state.bindFramebuffer(_gl.FRAMEBUFFER, null);		} // rebind framebuffer with external textures		function rebindTextures(renderTarget, colorTexture, depthTexture) {			const renderTargetProperties = properties.get(renderTarget);			if (colorTexture !== undefined) {				setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, renderTarget.texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D);			}			if (depthTexture !== undefined) {				setupDepthRenderbuffer(renderTarget);			}		} // Set up GL resources for the render target		function setupRenderTarget(renderTarget) {			const texture = renderTarget.texture;			const renderTargetProperties = properties.get(renderTarget);			const textureProperties = properties.get(texture);			renderTarget.addEventListener('dispose', onRenderTargetDispose);			if (renderTarget.isWebGLMultipleRenderTargets !== true) {				if (textureProperties.__webglTexture === undefined) {					textureProperties.__webglTexture = _gl.createTexture();				}				textureProperties.__version = texture.version;				info.memory.textures++;			}			const isCube = renderTarget.isWebGLCubeRenderTarget === true;			const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true;			const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray;			const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858			if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) {				texture.format = RGBAFormat;				console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.');			} // Setup framebuffer			if (isCube) {				renderTargetProperties.__webglFramebuffer = [];				for (let i = 0; i < 6; i++) {					renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer();				}			} else {				renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();				if (isMultipleRenderTargets) {					if (capabilities.drawBuffers) {						const textures = renderTarget.texture;						for (let i = 0, il = textures.length; i < il; i++) {							const attachmentProperties = properties.get(textures[i]);							if (attachmentProperties.__webglTexture === undefined) {								attachmentProperties.__webglTexture = _gl.createTexture();								info.memory.textures++;							}						}					} else {						console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.');					}				} else if (renderTarget.useRenderbuffer) {					if (isWebGL2) {						renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();						renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();						_gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);						const glFormat = utils.convert(texture.format);						const glType = utils.convert(texture.type);						const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);						const samples = getRenderTargetSamples(renderTarget);						_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);						state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);						_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);						_gl.bindRenderbuffer(_gl.RENDERBUFFER, null);						if (renderTarget.depthBuffer) {							renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();							setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true);						}						state.bindFramebuffer(_gl.FRAMEBUFFER, null);					} else {						console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');					}				}			} // Setup color buffer			if (isCube) {				state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);				setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);				for (let i = 0; i < 6; i++) {					setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i);				}				if (textureNeedsGenerateMipmaps(texture, supportsMips)) {					generateMipmap(_gl.TEXTURE_CUBE_MAP);				}				state.unbindTexture();			} else if (isMultipleRenderTargets) {				const textures = renderTarget.texture;				for (let i = 0, il = textures.length; i < il; i++) {					const attachment = textures[i];					const attachmentProperties = properties.get(attachment);					state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture);					setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips);					setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D);					if (textureNeedsGenerateMipmaps(attachment, supportsMips)) {						generateMipmap(_gl.TEXTURE_2D);					}				}				state.unbindTexture();			} else {				let glTextureType = _gl.TEXTURE_2D;				if (isRenderTarget3D) {					// Render targets containing layers, i.e: Texture 3D and 2d arrays					if (isWebGL2) {						const isTexture3D = texture.isDataTexture3D;						glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY;					} else {						console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.');					}				}				state.bindTexture(glTextureType, textureProperties.__webglTexture);				setTextureParameters(glTextureType, texture, supportsMips);				setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType);				if (textureNeedsGenerateMipmaps(texture, supportsMips)) {					generateMipmap(glTextureType);				}				state.unbindTexture();			} // Setup depth and stencil buffers			if (renderTarget.depthBuffer) {				setupDepthRenderbuffer(renderTarget);			}		}		function updateRenderTargetMipmap(renderTarget) {			const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2;			const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture];			for (let i = 0, il = textures.length; i < il; i++) {				const texture = textures[i];				if (textureNeedsGenerateMipmaps(texture, supportsMips)) {					const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;					const webglTexture = properties.get(texture).__webglTexture;					state.bindTexture(target, webglTexture);					generateMipmap(target);					state.unbindTexture();				}			}		}		function updateMultisampleRenderTarget(renderTarget) {			if (renderTarget.useRenderbuffer) {				if (isWebGL2) {					const width = renderTarget.width;					const height = renderTarget.height;					let mask = _gl.COLOR_BUFFER_BIT;					const invalidationArray = [_gl.COLOR_ATTACHMENT0];					const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT;					if (renderTarget.depthBuffer) {						invalidationArray.push(depthStyle);					}					if (!renderTarget.ignoreDepthForMultisampleCopy) {						if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT;						if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT;					}					const renderTargetProperties = properties.get(renderTarget);					state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);					state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);					if (renderTarget.ignoreDepthForMultisampleCopy) {						_gl.invalidateFramebuffer(_gl.READ_FRAMEBUFFER, [depthStyle]);						_gl.invalidateFramebuffer(_gl.DRAW_FRAMEBUFFER, [depthStyle]);					}					_gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST);					_gl.invalidateFramebuffer(_gl.READ_FRAMEBUFFER, invalidationArray);					state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null);					state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);				} else {					console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');				}			}		}		function getRenderTargetSamples(renderTarget) {			return isWebGL2 && (renderTarget.useRenderbuffer || renderTarget.useRenderToTexture) ? Math.min(maxSamples, renderTarget.samples) : 0;		}		function updateVideoTexture(texture) {			const frame = info.render.frame; // Check the last frame we updated the VideoTexture			if (_videoTextures.get(texture) !== frame) {				_videoTextures.set(texture, frame);				texture.update();			}		} // backwards compatibility		let warnedTexture2D = false;		let warnedTextureCube = false;		function safeSetTexture2D(texture, slot) {			if (texture && texture.isWebGLRenderTarget) {				if (warnedTexture2D === false) {					console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.');					warnedTexture2D = true;				}				texture = texture.texture;			}			setTexture2D(texture, slot);		}		function safeSetTextureCube(texture, slot) {			if (texture && texture.isWebGLCubeRenderTarget) {				if (warnedTextureCube === false) {					console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.');					warnedTextureCube = true;				}				texture = texture.texture;			}			setTextureCube(texture, slot);		} //		this.allocateTextureUnit = allocateTextureUnit;		this.resetTextureUnits = resetTextureUnits;		this.setTexture2D = setTexture2D;		this.setTexture2DArray = setTexture2DArray;		this.setTexture3D = setTexture3D;		this.setTextureCube = setTextureCube;		this.rebindTextures = rebindTextures;		this.setupRenderTarget = setupRenderTarget;		this.updateRenderTargetMipmap = updateRenderTargetMipmap;		this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;		this.setupDepthRenderbuffer = setupDepthRenderbuffer;		this.setupFrameBufferTexture = setupFrameBufferTexture;		this.safeSetTexture2D = safeSetTexture2D;		this.safeSetTextureCube = safeSetTextureCube;	}	function WebGLUtils(gl, extensions, capabilities) {		const isWebGL2 = capabilities.isWebGL2;		function convert(p) {			let extension;			if (p === UnsignedByteType) return gl.UNSIGNED_BYTE;			if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4;			if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1;			if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5;			if (p === ByteType) return gl.BYTE;			if (p === ShortType) return gl.SHORT;			if (p === UnsignedShortType) return gl.UNSIGNED_SHORT;			if (p === IntType) return gl.INT;			if (p === UnsignedIntType) return gl.UNSIGNED_INT;			if (p === FloatType) return gl.FLOAT;			if (p === HalfFloatType) {				if (isWebGL2) return gl.HALF_FLOAT;				extension = extensions.get('OES_texture_half_float');				if (extension !== null) {					return extension.HALF_FLOAT_OES;				} else {					return null;				}			}			if (p === AlphaFormat) return gl.ALPHA;			if (p === RGBFormat) return gl.RGB;			if (p === RGBAFormat) return gl.RGBA;			if (p === LuminanceFormat) return gl.LUMINANCE;			if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA;			if (p === DepthFormat) return gl.DEPTH_COMPONENT;			if (p === DepthStencilFormat) return gl.DEPTH_STENCIL;			if (p === RedFormat) return gl.RED; // WebGL2 formats.			if (p === RedIntegerFormat) return gl.RED_INTEGER;			if (p === RGFormat) return gl.RG;			if (p === RGIntegerFormat) return gl.RG_INTEGER;			if (p === RGBIntegerFormat) return gl.RGB_INTEGER;			if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER;			if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) {				extension = extensions.get('WEBGL_compressed_texture_s3tc');				if (extension !== null) {					if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;					if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;					if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;					if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;				} else {					return null;				}			}			if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) {				extension = extensions.get('WEBGL_compressed_texture_pvrtc');				if (extension !== null) {					if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;					if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;					if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;					if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;				} else {					return null;				}			}			if (p === RGB_ETC1_Format) {				extension = extensions.get('WEBGL_compressed_texture_etc1');				if (extension !== null) {					return extension.COMPRESSED_RGB_ETC1_WEBGL;				} else {					return null;				}			}			if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) {				extension = extensions.get('WEBGL_compressed_texture_etc');				if (extension !== null) {					if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2;					if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC;				}			}			if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) {				extension = extensions.get('WEBGL_compressed_texture_astc');				if (extension !== null) {					// TODO Complete?					return p;				} else {					return null;				}			}			if (p === RGBA_BPTC_Format) {				extension = extensions.get('EXT_texture_compression_bptc');				if (extension !== null) {					// TODO Complete?					return p;				} else {					return null;				}			}			if (p === UnsignedInt248Type) {				if (isWebGL2) return gl.UNSIGNED_INT_24_8;				extension = extensions.get('WEBGL_depth_texture');				if (extension !== null) {					return extension.UNSIGNED_INT_24_8_WEBGL;				} else {					return null;				}			}		}		return {			convert: convert		};	}	class ArrayCamera extends PerspectiveCamera {		constructor(array = []) {			super();			this.cameras = array;		}	}	ArrayCamera.prototype.isArrayCamera = true;	class Group extends Object3D {		constructor() {			super();			this.type = 'Group';		}	}	Group.prototype.isGroup = true;	const _moveEvent = {		type: 'move'	};	class WebXRController {		constructor() {			this._targetRay = null;			this._grip = null;			this._hand = null;		}		getHandSpace() {			if (this._hand === null) {				this._hand = new Group();				this._hand.matrixAutoUpdate = false;				this._hand.visible = false;				this._hand.joints = {};				this._hand.inputState = {					pinching: false				};			}			return this._hand;		}		getTargetRaySpace() {			if (this._targetRay === null) {				this._targetRay = new Group();				this._targetRay.matrixAutoUpdate = false;				this._targetRay.visible = false;				this._targetRay.hasLinearVelocity = false;				this._targetRay.linearVelocity = new Vector3();				this._targetRay.hasAngularVelocity = false;				this._targetRay.angularVelocity = new Vector3();			}			return this._targetRay;		}		getGripSpace() {			if (this._grip === null) {				this._grip = new Group();				this._grip.matrixAutoUpdate = false;				this._grip.visible = false;				this._grip.hasLinearVelocity = false;				this._grip.linearVelocity = new Vector3();				this._grip.hasAngularVelocity = false;				this._grip.angularVelocity = new Vector3();			}			return this._grip;		}		dispatchEvent(event) {			if (this._targetRay !== null) {				this._targetRay.dispatchEvent(event);			}			if (this._grip !== null) {				this._grip.dispatchEvent(event);			}			if (this._hand !== null) {				this._hand.dispatchEvent(event);			}			return this;		}		disconnect(inputSource) {			this.dispatchEvent({				type: 'disconnected',				data: inputSource			});			if (this._targetRay !== null) {				this._targetRay.visible = false;			}			if (this._grip !== null) {				this._grip.visible = false;			}			if (this._hand !== null) {				this._hand.visible = false;			}			return this;		}		update(inputSource, frame, referenceSpace) {			let inputPose = null;			let gripPose = null;			let handPose = null;			const targetRay = this._targetRay;			const grip = this._grip;			const hand = this._hand;			if (inputSource && frame.session.visibilityState !== 'visible-blurred') {				if (targetRay !== null) {					inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace);					if (inputPose !== null) {						targetRay.matrix.fromArray(inputPose.transform.matrix);						targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale);						if (inputPose.linearVelocity) {							targetRay.hasLinearVelocity = true;							targetRay.linearVelocity.copy(inputPose.linearVelocity);						} else {							targetRay.hasLinearVelocity = false;						}						if (inputPose.angularVelocity) {							targetRay.hasAngularVelocity = true;							targetRay.angularVelocity.copy(inputPose.angularVelocity);						} else {							targetRay.hasAngularVelocity = false;						}						this.dispatchEvent(_moveEvent);					}				}				if (hand && inputSource.hand) {					handPose = true;					for (const inputjoint of inputSource.hand.values()) {						// Update the joints groups with the XRJoint poses						const jointPose = frame.getJointPose(inputjoint, referenceSpace);						if (hand.joints[inputjoint.jointName] === undefined) {							// The transform of this joint will be updated with the joint pose on each frame							const joint = new Group();							joint.matrixAutoUpdate = false;							joint.visible = false;							hand.joints[inputjoint.jointName] = joint; // ??							hand.add(joint);						}						const joint = hand.joints[inputjoint.jointName];						if (jointPose !== null) {							joint.matrix.fromArray(jointPose.transform.matrix);							joint.matrix.decompose(joint.position, joint.rotation, joint.scale);							joint.jointRadius = jointPose.radius;						}						joint.visible = jointPose !== null;					} // Custom events					// Check pinchz					const indexTip = hand.joints['index-finger-tip'];					const thumbTip = hand.joints['thumb-tip'];					const distance = indexTip.position.distanceTo(thumbTip.position);					const distanceToPinch = 0.02;					const threshold = 0.005;					if (hand.inputState.pinching && distance > distanceToPinch + threshold) {						hand.inputState.pinching = false;						this.dispatchEvent({							type: 'pinchend',							handedness: inputSource.handedness,							target: this						});					} else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) {						hand.inputState.pinching = true;						this.dispatchEvent({							type: 'pinchstart',							handedness: inputSource.handedness,							target: this						});					}				} else {					if (grip !== null && inputSource.gripSpace) {						gripPose = frame.getPose(inputSource.gripSpace, referenceSpace);						if (gripPose !== null) {							grip.matrix.fromArray(gripPose.transform.matrix);							grip.matrix.decompose(grip.position, grip.rotation, grip.scale);							if (gripPose.linearVelocity) {								grip.hasLinearVelocity = true;								grip.linearVelocity.copy(gripPose.linearVelocity);							} else {								grip.hasLinearVelocity = false;							}							if (gripPose.angularVelocity) {								grip.hasAngularVelocity = true;								grip.angularVelocity.copy(gripPose.angularVelocity);							} else {								grip.hasAngularVelocity = false;							}						}					}				}			}			if (targetRay !== null) {				targetRay.visible = inputPose !== null;			}			if (grip !== null) {				grip.visible = gripPose !== null;			}			if (hand !== null) {				hand.visible = handPose !== null;			}			return this;		}	}	class DepthTexture extends Texture {		constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) {			format = format !== undefined ? format : DepthFormat;			if (format !== DepthFormat && format !== DepthStencilFormat) {				throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat');			}			if (type === undefined && format === DepthFormat) type = UnsignedShortType;			if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type;			super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);			this.image = {				width: width,				height: height			};			this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;			this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;			this.flipY = false;			this.generateMipmaps = false;		}	}	DepthTexture.prototype.isDepthTexture = true;	class WebXRManager extends EventDispatcher {		constructor(renderer, gl) {			super();			const scope = this;			let session = null;			let framebufferScaleFactor = 1.0;			let referenceSpace = null;			let referenceSpaceType = 'local-floor';			const hasMultisampledRenderToTexture = renderer.extensions.has('WEBGL_multisampled_render_to_texture');			let pose = null;			let glBinding = null;			let glProjLayer = null;			let glBaseLayer = null;			let isMultisample = false;			let xrFrame = null;			const attributes = gl.getContextAttributes();			let initialRenderTarget = null;			let newRenderTarget = null;			const controllers = [];			const inputSourcesMap = new Map(); //			const cameraL = new PerspectiveCamera();			cameraL.layers.enable(1);			cameraL.viewport = new Vector4();			const cameraR = new PerspectiveCamera();			cameraR.layers.enable(2);			cameraR.viewport = new Vector4();			const cameras = [cameraL, cameraR];			const cameraVR = new ArrayCamera();			cameraVR.layers.enable(1);			cameraVR.layers.enable(2);			let _currentDepthNear = null;			let _currentDepthFar = null; //			this.cameraAutoUpdate = true;			this.enabled = false;			this.isPresenting = false;			this.getController = function (index) {				let controller = controllers[index];				if (controller === undefined) {					controller = new WebXRController();					controllers[index] = controller;				}				return controller.getTargetRaySpace();			};			this.getControllerGrip = function (index) {				let controller = controllers[index];				if (controller === undefined) {					controller = new WebXRController();					controllers[index] = controller;				}				return controller.getGripSpace();			};			this.getHand = function (index) {				let controller = controllers[index];				if (controller === undefined) {					controller = new WebXRController();					controllers[index] = controller;				}				return controller.getHandSpace();			}; //			function onSessionEvent(event) {				const controller = inputSourcesMap.get(event.inputSource);				if (controller) {					controller.dispatchEvent({						type: event.type,						data: event.inputSource					});				}			}			function onSessionEnd() {				inputSourcesMap.forEach(function (controller, inputSource) {					controller.disconnect(inputSource);				});				inputSourcesMap.clear();				_currentDepthNear = null;				_currentDepthFar = null; // restore framebuffer/rendering state				renderer.setRenderTarget(initialRenderTarget);				glBaseLayer = null;				glProjLayer = null;				glBinding = null;				session = null;				newRenderTarget = null; //				animation.stop();				scope.isPresenting = false;				scope.dispatchEvent({					type: 'sessionend'				});			}			this.setFramebufferScaleFactor = function (value) {				framebufferScaleFactor = value;				if (scope.isPresenting === true) {					console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.');				}			};			this.setReferenceSpaceType = function (value) {				referenceSpaceType = value;				if (scope.isPresenting === true) {					console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.');				}			};			this.getReferenceSpace = function () {				return referenceSpace;			};			this.getBaseLayer = function () {				return glProjLayer !== null ? glProjLayer : glBaseLayer;			};			this.getBinding = function () {				return glBinding;			};			this.getFrame = function () {				return xrFrame;			};			this.getSession = function () {				return session;			};			this.setSession = async function (value) {				session = value;				if (session !== null) {					initialRenderTarget = renderer.getRenderTarget();					session.addEventListener('select', onSessionEvent);					session.addEventListener('selectstart', onSessionEvent);					session.addEventListener('selectend', onSessionEvent);					session.addEventListener('squeeze', onSessionEvent);					session.addEventListener('squeezestart', onSessionEvent);					session.addEventListener('squeezeend', onSessionEvent);					session.addEventListener('end', onSessionEnd);					session.addEventListener('inputsourceschange', onInputSourcesChange);					if (attributes.xrCompatible !== true) {						await gl.makeXRCompatible();					}					if (session.renderState.layers === undefined || renderer.capabilities.isWebGL2 === false) {						const layerInit = {							antialias: session.renderState.layers === undefined ? attributes.antialias : true,							alpha: attributes.alpha,							depth: attributes.depth,							stencil: attributes.stencil,							framebufferScaleFactor: framebufferScaleFactor						};						glBaseLayer = new XRWebGLLayer(session, gl, layerInit);						session.updateRenderState({							baseLayer: glBaseLayer						});						newRenderTarget = new WebGLRenderTarget(glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight);					} else {						isMultisample = attributes.antialias;						let depthFormat = null;						let depthType = null;						let glDepthFormat = null;						if (attributes.depth) {							glDepthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT16;							depthFormat = attributes.stencil ? DepthStencilFormat : DepthFormat;							depthType = attributes.stencil ? UnsignedInt248Type : UnsignedShortType;						}						const projectionlayerInit = {							colorFormat: attributes.alpha || isMultisample ? gl.RGBA8 : gl.RGB8,							depthFormat: glDepthFormat,							scaleFactor: framebufferScaleFactor						};						glBinding = new XRWebGLBinding(session, gl);						glProjLayer = glBinding.createProjectionLayer(projectionlayerInit);						session.updateRenderState({							layers: [glProjLayer]						});						if (isMultisample) {							newRenderTarget = new WebGLMultisampleRenderTarget(glProjLayer.textureWidth, glProjLayer.textureHeight, {								format: RGBAFormat,								type: UnsignedByteType,								depthTexture: new DepthTexture(glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat),								stencilBuffer: attributes.stencil,								ignoreDepth: glProjLayer.ignoreDepthValues,								useRenderToTexture: hasMultisampledRenderToTexture							});						} else {							newRenderTarget = new WebGLRenderTarget(glProjLayer.textureWidth, glProjLayer.textureHeight, {								format: attributes.alpha ? RGBAFormat : RGBFormat,								type: UnsignedByteType,								depthTexture: new DepthTexture(glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat),								stencilBuffer: attributes.stencil,								ignoreDepth: glProjLayer.ignoreDepthValues							});						}					} // Set foveation to maximum.					this.setFoveation(0);					referenceSpace = await session.requestReferenceSpace(referenceSpaceType);					animation.setContext(session);					animation.start();					scope.isPresenting = true;					scope.dispatchEvent({						type: 'sessionstart'					});				}			};			function onInputSourcesChange(event) {				const inputSources = session.inputSources; // Assign inputSources to available controllers				for (let i = 0; i < controllers.length; i++) {					inputSourcesMap.set(inputSources[i], controllers[i]);				} // Notify disconnected				for (let i = 0; i < event.removed.length; i++) {					const inputSource = event.removed[i];					const controller = inputSourcesMap.get(inputSource);					if (controller) {						controller.dispatchEvent({							type: 'disconnected',							data: inputSource						});						inputSourcesMap.delete(inputSource);					}				} // Notify connected				for (let i = 0; i < event.added.length; i++) {					const inputSource = event.added[i];					const controller = inputSourcesMap.get(inputSource);					if (controller) {						controller.dispatchEvent({							type: 'connected',							data: inputSource						});					}				}			} //			const cameraLPos = new Vector3();			const cameraRPos = new Vector3();			/**			 * Assumes 2 cameras that are parallel and share an X-axis, and that			 * the cameras' projection and world matrices have already been set.			 * And that near and far planes are identical for both cameras.			 * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765			 */			function setProjectionFromUnion(camera, cameraL, cameraR) {				cameraLPos.setFromMatrixPosition(cameraL.matrixWorld);				cameraRPos.setFromMatrixPosition(cameraR.matrixWorld);				const ipd = cameraLPos.distanceTo(cameraRPos);				const projL = cameraL.projectionMatrix.elements;				const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and				// most likely identical top and bottom frustum extents.				// Use the left camera for these values.				const near = projL[14] / (projL[10] - 1);				const far = projL[14] / (projL[10] + 1);				const topFov = (projL[9] + 1) / projL[5];				const bottomFov = (projL[9] - 1) / projL[5];				const leftFov = (projL[8] - 1) / projL[0];				const rightFov = (projR[8] + 1) / projR[0];				const left = near * leftFov;				const right = near * rightFov; // Calculate the new camera's position offset from the				// left camera. xOffset should be roughly half `ipd`.				const zOffset = ipd / (-leftFov + rightFov);				const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset?				cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale);				camera.translateX(xOffset);				camera.translateZ(zOffset);				camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale);				camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale				// the values so that the near plane's position does not change in world space,				// although must now be relative to the new union camera.				const near2 = near + zOffset;				const far2 = far + zOffset;				const left2 = left - xOffset;				const right2 = right + (ipd - xOffset);				const top2 = topFov * far / far2 * near2;				const bottom2 = bottomFov * far / far2 * near2;				camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2);			}			function updateCamera(camera, parent) {				if (parent === null) {					camera.matrixWorld.copy(camera.matrix);				} else {					camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix);				}				camera.matrixWorldInverse.copy(camera.matrixWorld).invert();			}			this.updateCamera = function (camera) {				if (session === null) return;				cameraVR.near = cameraR.near = cameraL.near = camera.near;				cameraVR.far = cameraR.far = cameraL.far = camera.far;				if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) {					// Note that the new renderState won't apply until the next frame. See #18320					session.updateRenderState({						depthNear: cameraVR.near,						depthFar: cameraVR.far					});					_currentDepthNear = cameraVR.near;					_currentDepthFar = cameraVR.far;				}				const parent = camera.parent;				const cameras = cameraVR.cameras;				updateCamera(cameraVR, parent);				for (let i = 0; i < cameras.length; i++) {					updateCamera(cameras[i], parent);				}				cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale); // update user camera and its children				camera.position.copy(cameraVR.position);				camera.quaternion.copy(cameraVR.quaternion);				camera.scale.copy(cameraVR.scale);				camera.matrix.copy(cameraVR.matrix);				camera.matrixWorld.copy(cameraVR.matrixWorld);				const children = camera.children;				for (let i = 0, l = children.length; i < l; i++) {					children[i].updateMatrixWorld(true);				} // update projection matrix for proper view frustum culling				if (cameras.length === 2) {					setProjectionFromUnion(cameraVR, cameraL, cameraR);				} else {					// assume single camera setup (AR)					cameraVR.projectionMatrix.copy(cameraL.projectionMatrix);				}			};			this.getCamera = function () {				return cameraVR;			};			this.getFoveation = function () {				if (glProjLayer !== null) {					return glProjLayer.fixedFoveation;				}				if (glBaseLayer !== null) {					return glBaseLayer.fixedFoveation;				}				return undefined;			};			this.setFoveation = function (foveation) {				// 0 = no foveation = full resolution				// 1 = maximum foveation = the edges render at lower resolution				if (glProjLayer !== null) {					glProjLayer.fixedFoveation = foveation;				}				if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined) {					glBaseLayer.fixedFoveation = foveation;				}			}; // Animation Loop			let onAnimationFrameCallback = null;			function onAnimationFrame(time, frame) {				pose = frame.getViewerPose(referenceSpace);				xrFrame = frame;				if (pose !== null) {					const views = pose.views;					if (glBaseLayer !== null) {						renderer.setRenderTargetFramebuffer(newRenderTarget, glBaseLayer.framebuffer);						renderer.setRenderTarget(newRenderTarget);					}					let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list					if (views.length !== cameraVR.cameras.length) {						cameraVR.cameras.length = 0;						cameraVRNeedsUpdate = true;					}					for (let i = 0; i < views.length; i++) {						const view = views[i];						let viewport = null;						if (glBaseLayer !== null) {							viewport = glBaseLayer.getViewport(view);						} else {							const glSubImage = glBinding.getViewSubImage(glProjLayer, view);							viewport = glSubImage.viewport; // For side-by-side projection, we only produce a single texture for both eyes.							if (i === 0) {								renderer.setRenderTargetTextures(newRenderTarget, glSubImage.colorTexture, glProjLayer.ignoreDepthValues ? undefined : glSubImage.depthStencilTexture);								renderer.setRenderTarget(newRenderTarget);							}						}						const camera = cameras[i];						camera.matrix.fromArray(view.transform.matrix);						camera.projectionMatrix.fromArray(view.projectionMatrix);						camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height);						if (i === 0) {							cameraVR.matrix.copy(camera.matrix);						}						if (cameraVRNeedsUpdate === true) {							cameraVR.cameras.push(camera);						}					}				} //				const inputSources = session.inputSources;				for (let i = 0; i < controllers.length; i++) {					const controller = controllers[i];					const inputSource = inputSources[i];					controller.update(inputSource, frame, referenceSpace);				}				if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame);				xrFrame = null;			}			const animation = new WebGLAnimation();			animation.setAnimationLoop(onAnimationFrame);			this.setAnimationLoop = function (callback) {				onAnimationFrameCallback = callback;			};			this.dispose = function () {};		}	}	function WebGLMaterials(properties) {		function refreshFogUniforms(uniforms, fog) {			uniforms.fogColor.value.copy(fog.color);			if (fog.isFog) {				uniforms.fogNear.value = fog.near;				uniforms.fogFar.value = fog.far;			} else if (fog.isFogExp2) {				uniforms.fogDensity.value = fog.density;			}		}		function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) {			if (material.isMeshBasicMaterial) {				refreshUniformsCommon(uniforms, material);			} else if (material.isMeshLambertMaterial) {				refreshUniformsCommon(uniforms, material);				refreshUniformsLambert(uniforms, material);			} else if (material.isMeshToonMaterial) {				refreshUniformsCommon(uniforms, material);				refreshUniformsToon(uniforms, material);			} else if (material.isMeshPhongMaterial) {				refreshUniformsCommon(uniforms, material);				refreshUniformsPhong(uniforms, material);			} else if (material.isMeshStandardMaterial) {				refreshUniformsCommon(uniforms, material);				if (material.isMeshPhysicalMaterial) {					refreshUniformsPhysical(uniforms, material, transmissionRenderTarget);				} else {					refreshUniformsStandard(uniforms, material);				}			} else if (material.isMeshMatcapMaterial) {				refreshUniformsCommon(uniforms, material);				refreshUniformsMatcap(uniforms, material);			} else if (material.isMeshDepthMaterial) {				refreshUniformsCommon(uniforms, material);				refreshUniformsDepth(uniforms, material);			} else if (material.isMeshDistanceMaterial) {				refreshUniformsCommon(uniforms, material);				refreshUniformsDistance(uniforms, material);			} else if (material.isMeshNormalMaterial) {				refreshUniformsCommon(uniforms, material);				refreshUniformsNormal(uniforms, material);			} else if (material.isLineBasicMaterial) {				refreshUniformsLine(uniforms, material);				if (material.isLineDashedMaterial) {					refreshUniformsDash(uniforms, material);				}			} else if (material.isPointsMaterial) {				refreshUniformsPoints(uniforms, material, pixelRatio, height);			} else if (material.isSpriteMaterial) {				refreshUniformsSprites(uniforms, material);			} else if (material.isShadowMaterial) {				uniforms.color.value.copy(material.color);				uniforms.opacity.value = material.opacity;			} else if (material.isShaderMaterial) {				material.uniformsNeedUpdate = false; // #15581			}		}		function refreshUniformsCommon(uniforms, material) {			uniforms.opacity.value = material.opacity;			if (material.color) {				uniforms.diffuse.value.copy(material.color);			}			if (material.emissive) {				uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);			}			if (material.map) {				uniforms.map.value = material.map;			}			if (material.alphaMap) {				uniforms.alphaMap.value = material.alphaMap;			}			if (material.specularMap) {				uniforms.specularMap.value = material.specularMap;			}			if (material.alphaTest > 0) {				uniforms.alphaTest.value = material.alphaTest;			}			const envMap = properties.get(material).envMap;			if (envMap) {				uniforms.envMap.value = envMap;				uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1;				uniforms.reflectivity.value = material.reflectivity;				uniforms.ior.value = material.ior;				uniforms.refractionRatio.value = material.refractionRatio;			}			if (material.lightMap) {				uniforms.lightMap.value = material.lightMap;				uniforms.lightMapIntensity.value = material.lightMapIntensity;			}			if (material.aoMap) {				uniforms.aoMap.value = material.aoMap;				uniforms.aoMapIntensity.value = material.aoMapIntensity;			} // uv repeat and offset setting priorities			// 1. color map			// 2. specular map			// 3. displacementMap map			// 4. normal map			// 5. bump map			// 6. roughnessMap map			// 7. metalnessMap map			// 8. alphaMap map			// 9. emissiveMap map			// 10. clearcoat map			// 11. clearcoat normal map			// 12. clearcoat roughnessMap map			// 13. specular intensity map			// 14. specular tint map			// 15. transmission map			// 16. thickness map			let uvScaleMap;			if (material.map) {				uvScaleMap = material.map;			} else if (material.specularMap) {				uvScaleMap = material.specularMap;			} else if (material.displacementMap) {				uvScaleMap = material.displacementMap;			} else if (material.normalMap) {				uvScaleMap = material.normalMap;			} else if (material.bumpMap) {				uvScaleMap = material.bumpMap;			} else if (material.roughnessMap) {				uvScaleMap = material.roughnessMap;			} else if (material.metalnessMap) {				uvScaleMap = material.metalnessMap;			} else if (material.alphaMap) {				uvScaleMap = material.alphaMap;			} else if (material.emissiveMap) {				uvScaleMap = material.emissiveMap;			} else if (material.clearcoatMap) {				uvScaleMap = material.clearcoatMap;			} else if (material.clearcoatNormalMap) {				uvScaleMap = material.clearcoatNormalMap;			} else if (material.clearcoatRoughnessMap) {				uvScaleMap = material.clearcoatRoughnessMap;			} else if (material.specularIntensityMap) {				uvScaleMap = material.specularIntensityMap;			} else if (material.specularColorMap) {				uvScaleMap = material.specularColorMap;			} else if (material.transmissionMap) {				uvScaleMap = material.transmissionMap;			} else if (material.thicknessMap) {				uvScaleMap = material.thicknessMap;			} else if (material.sheenColorMap) {				uvScaleMap = material.sheenColorMap;			} else if (material.sheenRoughnessMap) {				uvScaleMap = material.sheenRoughnessMap;			}			if (uvScaleMap !== undefined) {				// backwards compatibility				if (uvScaleMap.isWebGLRenderTarget) {					uvScaleMap = uvScaleMap.texture;				}				if (uvScaleMap.matrixAutoUpdate === true) {					uvScaleMap.updateMatrix();				}				uniforms.uvTransform.value.copy(uvScaleMap.matrix);			} // uv repeat and offset setting priorities for uv2			// 1. ao map			// 2. light map			let uv2ScaleMap;			if (material.aoMap) {				uv2ScaleMap = material.aoMap;			} else if (material.lightMap) {				uv2ScaleMap = material.lightMap;			}			if (uv2ScaleMap !== undefined) {				// backwards compatibility				if (uv2ScaleMap.isWebGLRenderTarget) {					uv2ScaleMap = uv2ScaleMap.texture;				}				if (uv2ScaleMap.matrixAutoUpdate === true) {					uv2ScaleMap.updateMatrix();				}				uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix);			}		}		function refreshUniformsLine(uniforms, material) {			uniforms.diffuse.value.copy(material.color);			uniforms.opacity.value = material.opacity;		}		function refreshUniformsDash(uniforms, material) {			uniforms.dashSize.value = material.dashSize;			uniforms.totalSize.value = material.dashSize + material.gapSize;			uniforms.scale.value = material.scale;		}		function refreshUniformsPoints(uniforms, material, pixelRatio, height) {			uniforms.diffuse.value.copy(material.color);			uniforms.opacity.value = material.opacity;			uniforms.size.value = material.size * pixelRatio;			uniforms.scale.value = height * 0.5;			if (material.map) {				uniforms.map.value = material.map;			}			if (material.alphaMap) {				uniforms.alphaMap.value = material.alphaMap;			}			if (material.alphaTest > 0) {				uniforms.alphaTest.value = material.alphaTest;			} // uv repeat and offset setting priorities			// 1. color map			// 2. alpha map			let uvScaleMap;			if (material.map) {				uvScaleMap = material.map;			} else if (material.alphaMap) {				uvScaleMap = material.alphaMap;			}			if (uvScaleMap !== undefined) {				if (uvScaleMap.matrixAutoUpdate === true) {					uvScaleMap.updateMatrix();				}				uniforms.uvTransform.value.copy(uvScaleMap.matrix);			}		}		function refreshUniformsSprites(uniforms, material) {			uniforms.diffuse.value.copy(material.color);			uniforms.opacity.value = material.opacity;			uniforms.rotation.value = material.rotation;			if (material.map) {				uniforms.map.value = material.map;			}			if (material.alphaMap) {				uniforms.alphaMap.value = material.alphaMap;			}			if (material.alphaTest > 0) {				uniforms.alphaTest.value = material.alphaTest;			} // uv repeat and offset setting priorities			// 1. color map			// 2. alpha map			let uvScaleMap;			if (material.map) {				uvScaleMap = material.map;			} else if (material.alphaMap) {				uvScaleMap = material.alphaMap;			}			if (uvScaleMap !== undefined) {				if (uvScaleMap.matrixAutoUpdate === true) {					uvScaleMap.updateMatrix();				}				uniforms.uvTransform.value.copy(uvScaleMap.matrix);			}		}		function refreshUniformsLambert(uniforms, material) {			if (material.emissiveMap) {				uniforms.emissiveMap.value = material.emissiveMap;			}		}		function refreshUniformsPhong(uniforms, material) {			uniforms.specular.value.copy(material.specular);			uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 )			if (material.emissiveMap) {				uniforms.emissiveMap.value = material.emissiveMap;			}			if (material.bumpMap) {				uniforms.bumpMap.value = material.bumpMap;				uniforms.bumpScale.value = material.bumpScale;				if (material.side === BackSide) uniforms.bumpScale.value *= -1;			}			if (material.normalMap) {				uniforms.normalMap.value = material.normalMap;				uniforms.normalScale.value.copy(material.normalScale);				if (material.side === BackSide) uniforms.normalScale.value.negate();			}			if (material.displacementMap) {				uniforms.displacementMap.value = material.displacementMap;				uniforms.displacementScale.value = material.displacementScale;				uniforms.displacementBias.value = material.displacementBias;			}		}		function refreshUniformsToon(uniforms, material) {			if (material.gradientMap) {				uniforms.gradientMap.value = material.gradientMap;			}			if (material.emissiveMap) {				uniforms.emissiveMap.value = material.emissiveMap;			}			if (material.bumpMap) {				uniforms.bumpMap.value = material.bumpMap;				uniforms.bumpScale.value = material.bumpScale;				if (material.side === BackSide) uniforms.bumpScale.value *= -1;			}			if (material.normalMap) {				uniforms.normalMap.value = material.normalMap;				uniforms.normalScale.value.copy(material.normalScale);				if (material.side === BackSide) uniforms.normalScale.value.negate();			}			if (material.displacementMap) {				uniforms.displacementMap.value = material.displacementMap;				uniforms.displacementScale.value = material.displacementScale;				uniforms.displacementBias.value = material.displacementBias;			}		}		function refreshUniformsStandard(uniforms, material) {			uniforms.roughness.value = material.roughness;			uniforms.metalness.value = material.metalness;			if (material.roughnessMap) {				uniforms.roughnessMap.value = material.roughnessMap;			}			if (material.metalnessMap) {				uniforms.metalnessMap.value = material.metalnessMap;			}			if (material.emissiveMap) {				uniforms.emissiveMap.value = material.emissiveMap;			}			if (material.bumpMap) {				uniforms.bumpMap.value = material.bumpMap;				uniforms.bumpScale.value = material.bumpScale;				if (material.side === BackSide) uniforms.bumpScale.value *= -1;			}			if (material.normalMap) {				uniforms.normalMap.value = material.normalMap;				uniforms.normalScale.value.copy(material.normalScale);				if (material.side === BackSide) uniforms.normalScale.value.negate();			}			if (material.displacementMap) {				uniforms.displacementMap.value = material.displacementMap;				uniforms.displacementScale.value = material.displacementScale;				uniforms.displacementBias.value = material.displacementBias;			}			const envMap = properties.get(material).envMap;			if (envMap) {				//uniforms.envMap.value = material.envMap; // part of uniforms common				uniforms.envMapIntensity.value = material.envMapIntensity;			}		}		function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) {			refreshUniformsStandard(uniforms, material);			uniforms.ior.value = material.ior; // also part of uniforms common			if (material.sheen > 0) {				uniforms.sheenColor.value.copy(material.sheenColor).multiplyScalar(material.sheen);				uniforms.sheenRoughness.value = material.sheenRoughness;				if (material.sheenColorMap) {					uniforms.sheenColorMap.value = material.sheenColorMap;				}				if (material.sheenRoughnessMap) {					uniforms.sheenRoughnessMap.value = material.sheenRoughnessMap;				}			}			if (material.clearcoat > 0) {				uniforms.clearcoat.value = material.clearcoat;				uniforms.clearcoatRoughness.value = material.clearcoatRoughness;				if (material.clearcoatMap) {					uniforms.clearcoatMap.value = material.clearcoatMap;				}				if (material.clearcoatRoughnessMap) {					uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;				}				if (material.clearcoatNormalMap) {					uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale);					uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;					if (material.side === BackSide) {						uniforms.clearcoatNormalScale.value.negate();					}				}			}			if (material.transmission > 0) {				uniforms.transmission.value = material.transmission;				uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture;				uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height);				if (material.transmissionMap) {					uniforms.transmissionMap.value = material.transmissionMap;				}				uniforms.thickness.value = material.thickness;				if (material.thicknessMap) {					uniforms.thicknessMap.value = material.thicknessMap;				}				uniforms.attenuationDistance.value = material.attenuationDistance;				uniforms.attenuationColor.value.copy(material.attenuationColor);			}			uniforms.specularIntensity.value = material.specularIntensity;			uniforms.specularColor.value.copy(material.specularColor);			if (material.specularIntensityMap) {				uniforms.specularIntensityMap.value = material.specularIntensityMap;			}			if (material.specularColorMap) {				uniforms.specularColorMap.value = material.specularColorMap;			}		}		function refreshUniformsMatcap(uniforms, material) {			if (material.matcap) {				uniforms.matcap.value = material.matcap;			}			if (material.bumpMap) {				uniforms.bumpMap.value = material.bumpMap;				uniforms.bumpScale.value = material.bumpScale;				if (material.side === BackSide) uniforms.bumpScale.value *= -1;			}			if (material.normalMap) {				uniforms.normalMap.value = material.normalMap;				uniforms.normalScale.value.copy(material.normalScale);				if (material.side === BackSide) uniforms.normalScale.value.negate();			}			if (material.displacementMap) {				uniforms.displacementMap.value = material.displacementMap;				uniforms.displacementScale.value = material.displacementScale;				uniforms.displacementBias.value = material.displacementBias;			}		}		function refreshUniformsDepth(uniforms, material) {			if (material.displacementMap) {				uniforms.displacementMap.value = material.displacementMap;				uniforms.displacementScale.value = material.displacementScale;				uniforms.displacementBias.value = material.displacementBias;			}		}		function refreshUniformsDistance(uniforms, material) {			if (material.displacementMap) {				uniforms.displacementMap.value = material.displacementMap;				uniforms.displacementScale.value = material.displacementScale;				uniforms.displacementBias.value = material.displacementBias;			}			uniforms.referencePosition.value.copy(material.referencePosition);			uniforms.nearDistance.value = material.nearDistance;			uniforms.farDistance.value = material.farDistance;		}		function refreshUniformsNormal(uniforms, material) {			if (material.bumpMap) {				uniforms.bumpMap.value = material.bumpMap;				uniforms.bumpScale.value = material.bumpScale;				if (material.side === BackSide) uniforms.bumpScale.value *= -1;			}			if (material.normalMap) {				uniforms.normalMap.value = material.normalMap;				uniforms.normalScale.value.copy(material.normalScale);				if (material.side === BackSide) uniforms.normalScale.value.negate();			}			if (material.displacementMap) {				uniforms.displacementMap.value = material.displacementMap;				uniforms.displacementScale.value = material.displacementScale;				uniforms.displacementBias.value = material.displacementBias;			}		}		return {			refreshFogUniforms: refreshFogUniforms,			refreshMaterialUniforms: refreshMaterialUniforms		};	}	function createCanvasElement() {		const canvas = createElementNS('canvas');		canvas.style.display = 'block';		return canvas;	}	function WebGLRenderer(parameters = {}) {		const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(),					_context = parameters.context !== undefined ? parameters.context : null,					_alpha = parameters.alpha !== undefined ? parameters.alpha : false,					_depth = parameters.depth !== undefined ? parameters.depth : true,					_stencil = parameters.stencil !== undefined ? parameters.stencil : true,					_antialias = parameters.antialias !== undefined ? parameters.antialias : false,					_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,					_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,					_powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',					_failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;		let currentRenderList = null;		let currentRenderState = null; // render() can be called from within a callback triggered by another render.		// We track this so that the nested render call gets its list and state isolated from the parent render call.		const renderListStack = [];		const renderStateStack = []; // public properties		this.domElement = _canvas; // Debug configuration container		this.debug = {			/**			 * Enables error checking and reporting when shader programs are being compiled			 * @type {boolean}			 */			checkShaderErrors: true		}; // clearing		this.autoClear = true;		this.autoClearColor = true;		this.autoClearDepth = true;		this.autoClearStencil = true; // scene graph		this.sortObjects = true; // user-defined clipping		this.clippingPlanes = [];		this.localClippingEnabled = false; // physically based shading		this.gammaFactor = 2.0; // for backwards compatibility		this.outputEncoding = LinearEncoding; // physical lights		this.physicallyCorrectLights = false; // tone mapping		this.toneMapping = NoToneMapping;		this.toneMappingExposure = 1.0; // internal properties		const _this = this;		let _isContextLost = false; // internal state cache		let _currentActiveCubeFace = 0;		let _currentActiveMipmapLevel = 0;		let _currentRenderTarget = null;		let _currentMaterialId = -1;		let _currentCamera = null;		const _currentViewport = new Vector4();		const _currentScissor = new Vector4();		let _currentScissorTest = null; //		let _width = _canvas.width;		let _height = _canvas.height;		let _pixelRatio = 1;		let _opaqueSort = null;		let _transparentSort = null;		const _viewport = new Vector4(0, 0, _width, _height);		const _scissor = new Vector4(0, 0, _width, _height);		let _scissorTest = false; //		const _currentDrawBuffers = []; // frustum		const _frustum = new Frustum(); // clipping		let _clippingEnabled = false;		let _localClippingEnabled = false; // transmission		let _transmissionRenderTarget = null; // camera matrices cache		const _projScreenMatrix = new Matrix4();		const _vector3 = new Vector3();		const _emptyScene = {			background: null,			fog: null,			environment: null,			overrideMaterial: null,			isScene: true		};		function getTargetPixelRatio() {			return _currentRenderTarget === null ? _pixelRatio : 1;		} // initialize		let _gl = _context;		function getContext(contextNames, contextAttributes) {			for (let i = 0; i < contextNames.length; i++) {				const contextName = contextNames[i];				const context = _canvas.getContext(contextName, contextAttributes);				if (context !== null) return context;			}			return null;		}		try {			const contextAttributes = {				alpha: _alpha,				depth: _depth,				stencil: _stencil,				antialias: _antialias,				premultipliedAlpha: _premultipliedAlpha,				preserveDrawingBuffer: _preserveDrawingBuffer,				powerPreference: _powerPreference,				failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat			}; // OffscreenCanvas does not have setAttribute, see #22811			if ('setAttribute' in _canvas) _canvas.setAttribute('data-engine', `three.js r${REVISION}`); // event listeners must be registered before WebGL context is created, see #12753			_canvas.addEventListener('webglcontextlost', onContextLost, false);			_canvas.addEventListener('webglcontextrestored', onContextRestore, false);			if (_gl === null) {				const contextNames = ['webgl2', 'webgl', 'experimental-webgl'];				if (_this.isWebGL1Renderer === true) {					contextNames.shift();				}				_gl = getContext(contextNames, contextAttributes);				if (_gl === null) {					if (getContext(contextNames)) {						throw new Error('Error creating WebGL context with your selected attributes.');					} else {						throw new Error('Error creating WebGL context.');					}				}			} // Some experimental-webgl implementations do not have getShaderPrecisionFormat			if (_gl.getShaderPrecisionFormat === undefined) {				_gl.getShaderPrecisionFormat = function () {					return {						'rangeMin': 1,						'rangeMax': 1,						'precision': 1					};				};			}		} catch (error) {			console.error('THREE.WebGLRenderer: ' + error.message);			throw error;		}		let extensions, capabilities, state, info;		let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects;		let programCache, materials, renderLists, renderStates, clipping, shadowMap;		let background, morphtargets, bufferRenderer, indexedBufferRenderer;		let utils, bindingStates;		function initGLContext() {			extensions = new WebGLExtensions(_gl);			capabilities = new WebGLCapabilities(_gl, extensions, parameters);			extensions.init(capabilities);			utils = new WebGLUtils(_gl, extensions, capabilities);			state = new WebGLState(_gl, extensions, capabilities);			_currentDrawBuffers[0] = _gl.BACK;			info = new WebGLInfo(_gl);			properties = new WebGLProperties();			textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info);			cubemaps = new WebGLCubeMaps(_this);			cubeuvmaps = new WebGLCubeUVMaps(_this);			attributes = new WebGLAttributes(_gl, capabilities);			bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities);			geometries = new WebGLGeometries(_gl, attributes, info, bindingStates);			objects = new WebGLObjects(_gl, geometries, attributes, info);			morphtargets = new WebGLMorphtargets(_gl, capabilities, textures);			clipping = new WebGLClipping(properties);			programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping);			materials = new WebGLMaterials(properties);			renderLists = new WebGLRenderLists(properties);			renderStates = new WebGLRenderStates(extensions, capabilities);			background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha);			shadowMap = new WebGLShadowMap(_this, objects, capabilities);			bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities);			indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities);			info.programs = programCache.programs;			_this.capabilities = capabilities;			_this.extensions = extensions;			_this.properties = properties;			_this.renderLists = renderLists;			_this.shadowMap = shadowMap;			_this.state = state;			_this.info = info;		}		initGLContext(); // xr		const xr = new WebXRManager(_this, _gl);		this.xr = xr; // API		this.getContext = function () {			return _gl;		};		this.getContextAttributes = function () {			return _gl.getContextAttributes();		};		this.forceContextLoss = function () {			const extension = extensions.get('WEBGL_lose_context');			if (extension) extension.loseContext();		};		this.forceContextRestore = function () {			const extension = extensions.get('WEBGL_lose_context');			if (extension) extension.restoreContext();		};		this.getPixelRatio = function () {			return _pixelRatio;		};		this.setPixelRatio = function (value) {			if (value === undefined) return;			_pixelRatio = value;			this.setSize(_width, _height, false);		};		this.getSize = function (target) {			return target.set(_width, _height);		};		this.setSize = function (width, height, updateStyle) {			if (xr.isPresenting) {				console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.');				return;			}			_width = width;			_height = height;			_canvas.width = Math.floor(width * _pixelRatio);			_canvas.height = Math.floor(height * _pixelRatio);			if (updateStyle !== false) {				_canvas.style.width = width + 'px';				_canvas.style.height = height + 'px';			}			this.setViewport(0, 0, width, height);		};		this.getDrawingBufferSize = function (target) {			return target.set(_width * _pixelRatio, _height * _pixelRatio).floor();		};		this.setDrawingBufferSize = function (width, height, pixelRatio) {			_width = width;			_height = height;			_pixelRatio = pixelRatio;			_canvas.width = Math.floor(width * pixelRatio);			_canvas.height = Math.floor(height * pixelRatio);			this.setViewport(0, 0, width, height);		};		this.getCurrentViewport = function (target) {			return target.copy(_currentViewport);		};		this.getViewport = function (target) {			return target.copy(_viewport);		};		this.setViewport = function (x, y, width, height) {			if (x.isVector4) {				_viewport.set(x.x, x.y, x.z, x.w);			} else {				_viewport.set(x, y, width, height);			}			state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor());		};		this.getScissor = function (target) {			return target.copy(_scissor);		};		this.setScissor = function (x, y, width, height) {			if (x.isVector4) {				_scissor.set(x.x, x.y, x.z, x.w);			} else {				_scissor.set(x, y, width, height);			}			state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor());		};		this.getScissorTest = function () {			return _scissorTest;		};		this.setScissorTest = function (boolean) {			state.setScissorTest(_scissorTest = boolean);		};		this.setOpaqueSort = function (method) {			_opaqueSort = method;		};		this.setTransparentSort = function (method) {			_transparentSort = method;		}; // Clearing		this.getClearColor = function (target) {			return target.copy(background.getClearColor());		};		this.setClearColor = function () {			background.setClearColor.apply(background, arguments);		};		this.getClearAlpha = function () {			return background.getClearAlpha();		};		this.setClearAlpha = function () {			background.setClearAlpha.apply(background, arguments);		};		this.clear = function (color, depth, stencil) {			let bits = 0;			if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT;			if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT;			if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT;			_gl.clear(bits);		};		this.clearColor = function () {			this.clear(true, false, false);		};		this.clearDepth = function () {			this.clear(false, true, false);		};		this.clearStencil = function () {			this.clear(false, false, true);		}; //		this.dispose = function () {			_canvas.removeEventListener('webglcontextlost', onContextLost, false);			_canvas.removeEventListener('webglcontextrestored', onContextRestore, false);			renderLists.dispose();			renderStates.dispose();			properties.dispose();			cubemaps.dispose();			cubeuvmaps.dispose();			objects.dispose();			bindingStates.dispose();			xr.dispose();			xr.removeEventListener('sessionstart', onXRSessionStart);			xr.removeEventListener('sessionend', onXRSessionEnd);			if (_transmissionRenderTarget) {				_transmissionRenderTarget.dispose();				_transmissionRenderTarget = null;			}			animation.stop();		}; // Events		function onContextLost(event) {			event.preventDefault();			console.log('THREE.WebGLRenderer: Context Lost.');			_isContextLost = true;		}		function onContextRestore() {			console.log('THREE.WebGLRenderer: Context Restored.');			_isContextLost = false;			const infoAutoReset = info.autoReset;			const shadowMapEnabled = shadowMap.enabled;			const shadowMapAutoUpdate = shadowMap.autoUpdate;			const shadowMapNeedsUpdate = shadowMap.needsUpdate;			const shadowMapType = shadowMap.type;			initGLContext();			info.autoReset = infoAutoReset;			shadowMap.enabled = shadowMapEnabled;			shadowMap.autoUpdate = shadowMapAutoUpdate;			shadowMap.needsUpdate = shadowMapNeedsUpdate;			shadowMap.type = shadowMapType;		}		function onMaterialDispose(event) {			const material = event.target;			material.removeEventListener('dispose', onMaterialDispose);			deallocateMaterial(material);		} // Buffer deallocation		function deallocateMaterial(material) {			releaseMaterialProgramReferences(material);			properties.remove(material);		}		function releaseMaterialProgramReferences(material) {			const programs = properties.get(material).programs;			if (programs !== undefined) {				programs.forEach(function (program) {					programCache.releaseProgram(program);				});			}		} // Buffer rendering		this.renderBufferDirect = function (camera, scene, geometry, material, object, group) {			if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)			const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0;			const program = setProgram(camera, scene, geometry, material, object);			state.setMaterial(material, frontFaceCW); //			let index = geometry.index;			const position = geometry.attributes.position; //			if (index === null) {				if (position === undefined || position.count === 0) return;			} else if (index.count === 0) {				return;			} //			let rangeFactor = 1;			if (material.wireframe === true) {				index = geometries.getWireframeAttribute(geometry);				rangeFactor = 2;			}			bindingStates.setup(object, material, program, geometry, index);			let attribute;			let renderer = bufferRenderer;			if (index !== null) {				attribute = attributes.get(index);				renderer = indexedBufferRenderer;				renderer.setIndex(attribute);			} //			const dataCount = index !== null ? index.count : position.count;			const rangeStart = geometry.drawRange.start * rangeFactor;			const rangeCount = geometry.drawRange.count * rangeFactor;			const groupStart = group !== null ? group.start * rangeFactor : 0;			const groupCount = group !== null ? group.count * rangeFactor : Infinity;			const drawStart = Math.max(rangeStart, groupStart);			const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1;			const drawCount = Math.max(0, drawEnd - drawStart + 1);			if (drawCount === 0) return; //			if (object.isMesh) {				if (material.wireframe === true) {					state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio());					renderer.setMode(_gl.LINES);				} else {					renderer.setMode(_gl.TRIANGLES);				}			} else if (object.isLine) {				let lineWidth = material.linewidth;				if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material				state.setLineWidth(lineWidth * getTargetPixelRatio());				if (object.isLineSegments) {					renderer.setMode(_gl.LINES);				} else if (object.isLineLoop) {					renderer.setMode(_gl.LINE_LOOP);				} else {					renderer.setMode(_gl.LINE_STRIP);				}			} else if (object.isPoints) {				renderer.setMode(_gl.POINTS);			} else if (object.isSprite) {				renderer.setMode(_gl.TRIANGLES);			}			if (object.isInstancedMesh) {				renderer.renderInstances(drawStart, drawCount, object.count);			} else if (geometry.isInstancedBufferGeometry) {				const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount);				renderer.renderInstances(drawStart, drawCount, instanceCount);			} else {				renderer.render(drawStart, drawCount);			}		}; // Compile		this.compile = function (scene, camera) {			currentRenderState = renderStates.get(scene);			currentRenderState.init();			renderStateStack.push(currentRenderState);			scene.traverseVisible(function (object) {				if (object.isLight && object.layers.test(camera.layers)) {					currentRenderState.pushLight(object);					if (object.castShadow) {						currentRenderState.pushShadow(object);					}				}			});			currentRenderState.setupLights(_this.physicallyCorrectLights);			scene.traverse(function (object) {				const material = object.material;				if (material) {					if (Array.isArray(material)) {						for (let i = 0; i < material.length; i++) {							const material2 = material[i];							getProgram(material2, scene, object);						}					} else {						getProgram(material, scene, object);					}				}			});			renderStateStack.pop();			currentRenderState = null;		}; // Animation Loop		let onAnimationFrameCallback = null;		function onAnimationFrame(time) {			if (onAnimationFrameCallback) onAnimationFrameCallback(time);		}		function onXRSessionStart() {			animation.stop();		}		function onXRSessionEnd() {			animation.start();		}		const animation = new WebGLAnimation();		animation.setAnimationLoop(onAnimationFrame);		if (typeof window !== 'undefined') animation.setContext(window);		this.setAnimationLoop = function (callback) {			onAnimationFrameCallback = callback;			xr.setAnimationLoop(callback);			callback === null ? animation.stop() : animation.start();		};		xr.addEventListener('sessionstart', onXRSessionStart);		xr.addEventListener('sessionend', onXRSessionEnd); // Rendering		this.render = function (scene, camera) {			if (camera !== undefined && camera.isCamera !== true) {				console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.');				return;			}			if (_isContextLost === true) return; // update scene graph			if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum			if (camera.parent === null) camera.updateMatrixWorld();			if (xr.enabled === true && xr.isPresenting === true) {				if (xr.cameraAutoUpdate === true) xr.updateCamera(camera);				camera = xr.getCamera(); // use XR camera for rendering			} //			if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget);			currentRenderState = renderStates.get(scene, renderStateStack.length);			currentRenderState.init();			renderStateStack.push(currentRenderState);			_projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);			_frustum.setFromProjectionMatrix(_projScreenMatrix);			_localClippingEnabled = this.localClippingEnabled;			_clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera);			currentRenderList = renderLists.get(scene, renderListStack.length);			currentRenderList.init();			renderListStack.push(currentRenderList);			projectObject(scene, camera, 0, _this.sortObjects);			currentRenderList.finish();			if (_this.sortObjects === true) {				currentRenderList.sort(_opaqueSort, _transparentSort);			} //			if (_clippingEnabled === true) clipping.beginShadows();			const shadowsArray = currentRenderState.state.shadowsArray;			shadowMap.render(shadowsArray, scene, camera);			if (_clippingEnabled === true) clipping.endShadows(); //			if (this.info.autoReset === true) this.info.reset(); //			background.render(currentRenderList, scene); // render scene			currentRenderState.setupLights(_this.physicallyCorrectLights);			if (camera.isArrayCamera) {				const cameras = camera.cameras;				for (let i = 0, l = cameras.length; i < l; i++) {					const camera2 = cameras[i];					renderScene(currentRenderList, scene, camera2, camera2.viewport);				}			} else {				renderScene(currentRenderList, scene, camera);			} //			if (_currentRenderTarget !== null) {				// resolve multisample renderbuffers to a single-sample texture if necessary				textures.updateMultisampleRenderTarget(_currentRenderTarget); // Generate mipmap if we're using any kind of mipmap filtering				textures.updateRenderTargetMipmap(_currentRenderTarget);			} //			if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render			state.buffers.depth.setTest(true);			state.buffers.depth.setMask(true);			state.buffers.color.setMask(true);			state.setPolygonOffset(false); // _gl.finish();			bindingStates.resetDefaultState();			_currentMaterialId = -1;			_currentCamera = null;			renderStateStack.pop();			if (renderStateStack.length > 0) {				currentRenderState = renderStateStack[renderStateStack.length - 1];			} else {				currentRenderState = null;			}			renderListStack.pop();			if (renderListStack.length > 0) {				currentRenderList = renderListStack[renderListStack.length - 1];			} else {				currentRenderList = null;			}		};		function projectObject(object, camera, groupOrder, sortObjects) {			if (object.visible === false) return;			const visible = object.layers.test(camera.layers);			if (visible) {				if (object.isGroup) {					groupOrder = object.renderOrder;				} else if (object.isLOD) {					if (object.autoUpdate === true) object.update(camera);				} else if (object.isLight) {					currentRenderState.pushLight(object);					if (object.castShadow) {						currentRenderState.pushShadow(object);					}				} else if (object.isSprite) {					if (!object.frustumCulled || _frustum.intersectsSprite(object)) {						if (sortObjects) {							_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);						}						const geometry = objects.update(object);						const material = object.material;						if (material.visible) {							currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);						}					}				} else if (object.isMesh || object.isLine || object.isPoints) {					if (object.isSkinnedMesh) {						// update skeleton only once in a frame						if (object.skeleton.frame !== info.render.frame) {							object.skeleton.update();							object.skeleton.frame = info.render.frame;						}					}					if (!object.frustumCulled || _frustum.intersectsObject(object)) {						if (sortObjects) {							_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);						}						const geometry = objects.update(object);						const material = object.material;						if (Array.isArray(material)) {							const groups = geometry.groups;							for (let i = 0, l = groups.length; i < l; i++) {								const group = groups[i];								const groupMaterial = material[group.materialIndex];								if (groupMaterial && groupMaterial.visible) {									currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group);								}							}						} else if (material.visible) {							currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);						}					}				}			}			const children = object.children;			for (let i = 0, l = children.length; i < l; i++) {				projectObject(children[i], camera, groupOrder, sortObjects);			}		}		function renderScene(currentRenderList, scene, camera, viewport) {			const opaqueObjects = currentRenderList.opaque;			const transmissiveObjects = currentRenderList.transmissive;			const transparentObjects = currentRenderList.transparent;			currentRenderState.setupLightsView(camera);			if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, scene, camera);			if (viewport) state.viewport(_currentViewport.copy(viewport));			if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera);			if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera);			if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera);		}		function renderTransmissionPass(opaqueObjects, scene, camera) {			if (_transmissionRenderTarget === null) {				const needsAntialias = _antialias === true && capabilities.isWebGL2 === true;				const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget;				_transmissionRenderTarget = new renderTargetType(1024, 1024, {					generateMipmaps: true,					type: utils.convert(HalfFloatType) !== null ? HalfFloatType : UnsignedByteType,					minFilter: LinearMipmapLinearFilter,					magFilter: NearestFilter,					wrapS: ClampToEdgeWrapping,					wrapT: ClampToEdgeWrapping,					useRenderToTexture: extensions.has('WEBGL_multisampled_render_to_texture')				});			}			const currentRenderTarget = _this.getRenderTarget();			_this.setRenderTarget(_transmissionRenderTarget);			_this.clear(); // Turn off the features which can affect the frag color for opaque objects pass.			// Otherwise they are applied twice in opaque objects pass and transmission objects pass.			const currentToneMapping = _this.toneMapping;			_this.toneMapping = NoToneMapping;			renderObjects(opaqueObjects, scene, camera);			_this.toneMapping = currentToneMapping;			textures.updateMultisampleRenderTarget(_transmissionRenderTarget);			textures.updateRenderTargetMipmap(_transmissionRenderTarget);			_this.setRenderTarget(currentRenderTarget);		}		function renderObjects(renderList, scene, camera) {			const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;			for (let i = 0, l = renderList.length; i < l; i++) {				const renderItem = renderList[i];				const object = renderItem.object;				const geometry = renderItem.geometry;				const material = overrideMaterial === null ? renderItem.material : overrideMaterial;				const group = renderItem.group;				if (object.layers.test(camera.layers)) {					renderObject(object, scene, camera, geometry, material, group);				}			}		}		function renderObject(object, scene, camera, geometry, material, group) {			object.onBeforeRender(_this, scene, camera, geometry, material, group);			object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld);			object.normalMatrix.getNormalMatrix(object.modelViewMatrix);			material.onBeforeRender(_this, scene, camera, geometry, object, group);			if (material.transparent === true && material.side === DoubleSide) {				material.side = BackSide;				material.needsUpdate = true;				_this.renderBufferDirect(camera, scene, geometry, material, object, group);				material.side = FrontSide;				material.needsUpdate = true;				_this.renderBufferDirect(camera, scene, geometry, material, object, group);				material.side = DoubleSide;			} else {				_this.renderBufferDirect(camera, scene, geometry, material, object, group);			}			object.onAfterRender(_this, scene, camera, geometry, material, group);		}		function getProgram(material, scene, object) {			if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...			const materialProperties = properties.get(material);			const lights = currentRenderState.state.lights;			const shadowsArray = currentRenderState.state.shadowsArray;			const lightsStateVersion = lights.state.version;			const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object);			const programCacheKey = programCache.getProgramCacheKey(parameters);			let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change			materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;			materialProperties.fog = scene.fog;			materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment);			if (programs === undefined) {				// new material				material.addEventListener('dispose', onMaterialDispose);				programs = new Map();				materialProperties.programs = programs;			}			let program = programs.get(programCacheKey);			if (program !== undefined) {				// early out if program and light state is identical				if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) {					updateCommonMaterialProperties(material, parameters);					return program;				}			} else {				parameters.uniforms = programCache.getUniforms(material);				material.onBuild(object, parameters, _this);				material.onBeforeCompile(parameters, _this);				program = programCache.acquireProgram(parameters, programCacheKey);				programs.set(programCacheKey, program);				materialProperties.uniforms = parameters.uniforms;			}			const uniforms = materialProperties.uniforms;			if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) {				uniforms.clippingPlanes = clipping.uniform;			}			updateCommonMaterialProperties(material, parameters); // store the light setup it was created for			materialProperties.needsLights = materialNeedsLights(material);			materialProperties.lightsStateVersion = lightsStateVersion;			if (materialProperties.needsLights) {				// wire up the material to this renderer's lighting state				uniforms.ambientLightColor.value = lights.state.ambient;				uniforms.lightProbe.value = lights.state.probe;				uniforms.directionalLights.value = lights.state.directional;				uniforms.directionalLightShadows.value = lights.state.directionalShadow;				uniforms.spotLights.value = lights.state.spot;				uniforms.spotLightShadows.value = lights.state.spotShadow;				uniforms.rectAreaLights.value = lights.state.rectArea;				uniforms.ltc_1.value = lights.state.rectAreaLTC1;				uniforms.ltc_2.value = lights.state.rectAreaLTC2;				uniforms.pointLights.value = lights.state.point;				uniforms.pointLightShadows.value = lights.state.pointShadow;				uniforms.hemisphereLights.value = lights.state.hemi;				uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;				uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;				uniforms.spotShadowMap.value = lights.state.spotShadowMap;				uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;				uniforms.pointShadowMap.value = lights.state.pointShadowMap;				uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms			}			const progUniforms = program.getUniforms();			const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms);			materialProperties.currentProgram = program;			materialProperties.uniformsList = uniformsList;			return program;		}		function updateCommonMaterialProperties(material, parameters) {			const materialProperties = properties.get(material);			materialProperties.outputEncoding = parameters.outputEncoding;			materialProperties.instancing = parameters.instancing;			materialProperties.skinning = parameters.skinning;			materialProperties.morphTargets = parameters.morphTargets;			materialProperties.morphNormals = parameters.morphNormals;			materialProperties.morphTargetsCount = parameters.morphTargetsCount;			materialProperties.numClippingPlanes = parameters.numClippingPlanes;			materialProperties.numIntersection = parameters.numClipIntersection;			materialProperties.vertexAlphas = parameters.vertexAlphas;			materialProperties.vertexTangents = parameters.vertexTangents;		}		function setProgram(camera, scene, geometry, material, object) {			if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...			textures.resetTextureUnits();			const fog = scene.fog;			const environment = material.isMeshStandardMaterial ? scene.environment : null;			const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding;			const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);			const vertexAlphas = material.vertexColors === true && !!geometry.attributes.color && geometry.attributes.color.itemSize === 4;			const vertexTangents = !!material.normalMap && !!geometry.attributes.tangent;			const morphTargets = !!geometry.morphAttributes.position;			const morphNormals = !!geometry.morphAttributes.normal;			const morphTargetsCount = !!geometry.morphAttributes.position ? geometry.morphAttributes.position.length : 0;			const materialProperties = properties.get(material);			const lights = currentRenderState.state.lights;			if (_clippingEnabled === true) {				if (_localClippingEnabled === true || camera !== _currentCamera) {					const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup					// object instead of the material, once it becomes feasible					// (#8465, #8379)					clipping.setState(material, camera, useCache);				}			} //			let needsProgramChange = false;			if (material.version === materialProperties.__version) {				if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) {					needsProgramChange = true;				} else if (materialProperties.outputEncoding !== encoding) {					needsProgramChange = true;				} else if (object.isInstancedMesh && materialProperties.instancing === false) {					needsProgramChange = true;				} else if (!object.isInstancedMesh && materialProperties.instancing === true) {					needsProgramChange = true;				} else if (object.isSkinnedMesh && materialProperties.skinning === false) {					needsProgramChange = true;				} else if (!object.isSkinnedMesh && materialProperties.skinning === true) {					needsProgramChange = true;				} else if (materialProperties.envMap !== envMap) {					needsProgramChange = true;				} else if (material.fog && materialProperties.fog !== fog) {					needsProgramChange = true;				} else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) {					needsProgramChange = true;				} else if (materialProperties.vertexAlphas !== vertexAlphas) {					needsProgramChange = true;				} else if (materialProperties.vertexTangents !== vertexTangents) {					needsProgramChange = true;				} else if (materialProperties.morphTargets !== morphTargets) {					needsProgramChange = true;				} else if (materialProperties.morphNormals !== morphNormals) {					needsProgramChange = true;				} else if (capabilities.isWebGL2 === true && materialProperties.morphTargetsCount !== morphTargetsCount) {					needsProgramChange = true;				}			} else {				needsProgramChange = true;				materialProperties.__version = material.version;			} //			let program = materialProperties.currentProgram;			if (needsProgramChange === true) {				program = getProgram(material, scene, object);			}			let refreshProgram = false;			let refreshMaterial = false;			let refreshLights = false;			const p_uniforms = program.getUniforms(),						m_uniforms = materialProperties.uniforms;			if (state.useProgram(program.program)) {				refreshProgram = true;				refreshMaterial = true;				refreshLights = true;			}			if (material.id !== _currentMaterialId) {				_currentMaterialId = material.id;				refreshMaterial = true;			}			if (refreshProgram || _currentCamera !== camera) {				p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix);				if (capabilities.logarithmicDepthBuffer) {					p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2));				}				if (_currentCamera !== camera) {					_currentCamera = camera; // lighting uniforms depend on the camera so enforce an update					// now, in case this material supports lights - or later, when					// the next material that does gets activated:					refreshMaterial = true; // set to true on material change					refreshLights = true; // remains set until update done				} // load material specific uniforms				// (shader material also gets them for the sake of genericity)				if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) {					const uCamPos = p_uniforms.map.cameraPosition;					if (uCamPos !== undefined) {						uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld));					}				}				if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) {					p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true);				}				if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) {					p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse);				}			} // skinning and morph target uniforms must be set even if material didn't change			// auto-setting of texture unit for bone and morph texture must go before other textures			// otherwise textures used for skinning and morphing can take over texture units reserved for other material textures			if (object.isSkinnedMesh) {				p_uniforms.setOptional(_gl, object, 'bindMatrix');				p_uniforms.setOptional(_gl, object, 'bindMatrixInverse');				const skeleton = object.skeleton;				if (skeleton) {					if (capabilities.floatVertexTextures) {						if (skeleton.boneTexture === null) skeleton.computeBoneTexture();						p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures);						p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize);					} else {						p_uniforms.setOptional(_gl, skeleton, 'boneMatrices');					}				}			}			if (!!geometry && (geometry.morphAttributes.position !== undefined || geometry.morphAttributes.normal !== undefined)) {				morphtargets.update(object, geometry, material, program);			}			if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) {				materialProperties.receiveShadow = object.receiveShadow;				p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow);			}			if (refreshMaterial) {				p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure);				if (materialProperties.needsLights) {					// the current material requires lighting info					// note: all lighting uniforms are always set correctly					// they simply reference the renderer's state for their					// values					//					// use the current material's .needsUpdate flags to set					// the GL state when required					markUniformsLightsNeedsUpdate(m_uniforms, refreshLights);				} // refresh uniforms common to several materials				if (fog && material.fog) {					materials.refreshFogUniforms(m_uniforms, fog);				}				materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget);				WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);			}			if (material.isShaderMaterial && material.uniformsNeedUpdate === true) {				WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);				material.uniformsNeedUpdate = false;			}			if (material.isSpriteMaterial) {				p_uniforms.setValue(_gl, 'center', object.center);			} // common matrices			p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix);			p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix);			p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld);			return program;		} // If uniforms are marked as clean, they don't need to be loaded to the GPU.		function markUniformsLightsNeedsUpdate(uniforms, value) {			uniforms.ambientLightColor.needsUpdate = value;			uniforms.lightProbe.needsUpdate = value;			uniforms.directionalLights.needsUpdate = value;			uniforms.directionalLightShadows.needsUpdate = value;			uniforms.pointLights.needsUpdate = value;			uniforms.pointLightShadows.needsUpdate = value;			uniforms.spotLights.needsUpdate = value;			uniforms.spotLightShadows.needsUpdate = value;			uniforms.rectAreaLights.needsUpdate = value;			uniforms.hemisphereLights.needsUpdate = value;		}		function materialNeedsLights(material) {			return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true;		}		this.getActiveCubeFace = function () {			return _currentActiveCubeFace;		};		this.getActiveMipmapLevel = function () {			return _currentActiveMipmapLevel;		};		this.getRenderTarget = function () {			return _currentRenderTarget;		};		this.setRenderTargetTextures = function (renderTarget, colorTexture, depthTexture) {			properties.get(renderTarget.texture).__webglTexture = colorTexture;			properties.get(renderTarget.depthTexture).__webglTexture = depthTexture;			const renderTargetProperties = properties.get(renderTarget);			renderTargetProperties.__hasExternalTextures = true;			if (renderTargetProperties.__hasExternalTextures) {				renderTargetProperties.__autoAllocateDepthBuffer = depthTexture === undefined;				if (!renderTargetProperties.__autoAllocateDepthBuffer) {					// The multisample_render_to_texture extension doesn't work properly if there					// are midframe flushes and an external depth buffer. Disable use of the extension.					if (renderTarget.useRenderToTexture) {						console.warn('render-to-texture extension was disabled because an external texture was provided');						renderTarget.useRenderToTexture = false;						renderTarget.useRenderbuffer = true;					}				}			}		};		this.setRenderTargetFramebuffer = function (renderTarget, defaultFramebuffer) {			const renderTargetProperties = properties.get(renderTarget);			renderTargetProperties.__webglFramebuffer = defaultFramebuffer;			renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === undefined;		};		this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) {			_currentRenderTarget = renderTarget;			_currentActiveCubeFace = activeCubeFace;			_currentActiveMipmapLevel = activeMipmapLevel;			let useDefaultFramebuffer = true;			if (renderTarget) {				const renderTargetProperties = properties.get(renderTarget);				if (renderTargetProperties.__useDefaultFramebuffer !== undefined) {					// We need to make sure to rebind the framebuffer.					state.bindFramebuffer(_gl.FRAMEBUFFER, null);					useDefaultFramebuffer = false;				} else if (renderTargetProperties.__webglFramebuffer === undefined) {					textures.setupRenderTarget(renderTarget);				} else if (renderTargetProperties.__hasExternalTextures) {					// Color and depth texture must be rebound in order for the swapchain to update.					textures.rebindTextures(renderTarget, properties.get(renderTarget.texture).__webglTexture, properties.get(renderTarget.depthTexture).__webglTexture);				}			}			let framebuffer = null;			let isCube = false;			let isRenderTarget3D = false;			if (renderTarget) {				const texture = renderTarget.texture;				if (texture.isDataTexture3D || texture.isDataTexture2DArray) {					isRenderTarget3D = true;				}				const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer;				if (renderTarget.isWebGLCubeRenderTarget) {					framebuffer = __webglFramebuffer[activeCubeFace];					isCube = true;				} else if (renderTarget.useRenderbuffer) {					framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer;				} else {					framebuffer = __webglFramebuffer;				}				_currentViewport.copy(renderTarget.viewport);				_currentScissor.copy(renderTarget.scissor);				_currentScissorTest = renderTarget.scissorTest;			} else {				_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor();				_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor();				_currentScissorTest = _scissorTest;			}			const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);			if (framebufferBound && capabilities.drawBuffers && useDefaultFramebuffer) {				let needsUpdate = false;				if (renderTarget) {					if (renderTarget.isWebGLMultipleRenderTargets) {						const textures = renderTarget.texture;						if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {							for (let i = 0, il = textures.length; i < il; i++) {								_currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i;							}							_currentDrawBuffers.length = textures.length;							needsUpdate = true;						}					} else {						if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {							_currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0;							_currentDrawBuffers.length = 1;							needsUpdate = true;						}					}				} else {					if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) {						_currentDrawBuffers[0] = _gl.BACK;						_currentDrawBuffers.length = 1;						needsUpdate = true;					}				}				if (needsUpdate) {					if (capabilities.isWebGL2) {						_gl.drawBuffers(_currentDrawBuffers);					} else {						extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers);					}				}			}			state.viewport(_currentViewport);			state.scissor(_currentScissor);			state.setScissorTest(_currentScissorTest);			if (isCube) {				const textureProperties = properties.get(renderTarget.texture);				_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel);			} else if (isRenderTarget3D) {				const textureProperties = properties.get(renderTarget.texture);				const layer = activeCubeFace || 0;				_gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer);			}			_currentMaterialId = -1; // reset current material to ensure correct uniform bindings		};		this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) {			if (!(renderTarget && renderTarget.isWebGLRenderTarget)) {				console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.');				return;			}			let framebuffer = properties.get(renderTarget).__webglFramebuffer;			if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) {				framebuffer = framebuffer[activeCubeFaceIndex];			}			if (framebuffer) {				state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);				try {					const texture = renderTarget.texture;					const textureFormat = texture.format;					const textureType = texture.type;					if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) {						console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.');						return;					}					const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float'));					if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513)					!(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox					!halfFloatSupportedByExt) {						console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.');						return;					}					if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) {						// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)						if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) {							_gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer);						}					} else {						console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.');					}				} finally {					// restore framebuffer of current render target if necessary					const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null;					state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);				}			}		};		this.copyFramebufferToTexture = function (position, texture, level = 0) {			const levelScale = Math.pow(2, -level);			const width = Math.floor(texture.image.width * levelScale);			const height = Math.floor(texture.image.height * levelScale);			let glFormat = utils.convert(texture.format);			if (capabilities.isWebGL2) {				// Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100				// Not needed in Chrome 93+				if (glFormat === _gl.RGB) glFormat = _gl.RGB8;				if (glFormat === _gl.RGBA) glFormat = _gl.RGBA8;			}			textures.setTexture2D(texture, 0);			_gl.copyTexImage2D(_gl.TEXTURE_2D, level, glFormat, position.x, position.y, width, height, 0);			state.unbindTexture();		};		this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) {			const width = srcTexture.image.width;			const height = srcTexture.image.height;			const glFormat = utils.convert(dstTexture.format);			const glType = utils.convert(dstTexture.type);			textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei			// parameters, make sure they are correct for the dstTexture			_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);			_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);			_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);			if (srcTexture.isDataTexture) {				_gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data);			} else {				if (srcTexture.isCompressedTexture) {					_gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data);				} else {					_gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image);				}			} // Generate mipmaps only when copying level 0			if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D);			state.unbindTexture();		};		this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) {			if (_this.isWebGL1Renderer) {				console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.');				return;			}			const width = sourceBox.max.x - sourceBox.min.x + 1;			const height = sourceBox.max.y - sourceBox.min.y + 1;			const depth = sourceBox.max.z - sourceBox.min.z + 1;			const glFormat = utils.convert(dstTexture.format);			const glType = utils.convert(dstTexture.type);			let glTarget;			if (dstTexture.isDataTexture3D) {				textures.setTexture3D(dstTexture, 0);				glTarget = _gl.TEXTURE_3D;			} else if (dstTexture.isDataTexture2DArray) {				textures.setTexture2DArray(dstTexture, 0);				glTarget = _gl.TEXTURE_2D_ARRAY;			} else {				console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.');				return;			}			_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);			_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);			_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);			const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH);			const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT);			const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS);			const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS);			const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES);			const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image;			_gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width);			_gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height);			_gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x);			_gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y);			_gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z);			if (srcTexture.isDataTexture || srcTexture.isDataTexture3D) {				_gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data);			} else {				if (srcTexture.isCompressedTexture) {					console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.');					_gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data);				} else {					_gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image);				}			}			_gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen);			_gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight);			_gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels);			_gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows);			_gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0			if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget);			state.unbindTexture();		};		this.initTexture = function (texture) {			textures.setTexture2D(texture, 0);			state.unbindTexture();		};		this.resetState = function () {			_currentActiveCubeFace = 0;			_currentActiveMipmapLevel = 0;			_currentRenderTarget = null;			state.reset();			bindingStates.reset();		};		if (typeof __THREE_DEVTOOLS__ !== 'undefined') {			__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {				detail: this			})); // eslint-disable-line no-undef		}	}	WebGLRenderer.prototype.isWebGLRenderer = true;	class WebGL1Renderer extends WebGLRenderer {}	WebGL1Renderer.prototype.isWebGL1Renderer = true;	class FogExp2 {		constructor(color, density = 0.00025) {			this.name = '';			this.color = new Color(color);			this.density = density;		}		clone() {			return new FogExp2(this.color, this.density);		}		toJSON() {			return {				type: 'FogExp2',				color: this.color.getHex(),				density: this.density			};		}	}	FogExp2.prototype.isFogExp2 = true;	class Fog {		constructor(color, near = 1, far = 1000) {			this.name = '';			this.color = new Color(color);			this.near = near;			this.far = far;		}		clone() {			return new Fog(this.color, this.near, this.far);		}		toJSON() {			return {				type: 'Fog',				color: this.color.getHex(),				near: this.near,				far: this.far			};		}	}	Fog.prototype.isFog = true;	class Scene extends Object3D {		constructor() {			super();			this.type = 'Scene';			this.background = null;			this.environment = null;			this.fog = null;			this.overrideMaterial = null;			this.autoUpdate = true; // checked by the renderer			if (typeof __THREE_DEVTOOLS__ !== 'undefined') {				__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {					detail: this				})); // eslint-disable-line no-undef			}		}		copy(source, recursive) {			super.copy(source, recursive);			if (source.background !== null) this.background = source.background.clone();			if (source.environment !== null) this.environment = source.environment.clone();			if (source.fog !== null) this.fog = source.fog.clone();			if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone();			this.autoUpdate = source.autoUpdate;			this.matrixAutoUpdate = source.matrixAutoUpdate;			return this;		}		toJSON(meta) {			const data = super.toJSON(meta);			if (this.fog !== null) data.object.fog = this.fog.toJSON();			return data;		}	}	Scene.prototype.isScene = true;	class InterleavedBuffer {		constructor(array, stride) {			this.array = array;			this.stride = stride;			this.count = array !== undefined ? array.length / stride : 0;			this.usage = StaticDrawUsage;			this.updateRange = {				offset: 0,				count: -1			};			this.version = 0;			this.uuid = generateUUID();		}		onUploadCallback() {}		set needsUpdate(value) {			if (value === true) this.version++;		}		setUsage(value) {			this.usage = value;			return this;		}		copy(source) {			this.array = new source.array.constructor(source.array);			this.count = source.count;			this.stride = source.stride;			this.usage = source.usage;			return this;		}		copyAt(index1, attribute, index2) {			index1 *= this.stride;			index2 *= attribute.stride;			for (let i = 0, l = this.stride; i < l; i++) {				this.array[index1 + i] = attribute.array[index2 + i];			}			return this;		}		set(value, offset = 0) {			this.array.set(value, offset);			return this;		}		clone(data) {			if (data.arrayBuffers === undefined) {				data.arrayBuffers = {};			}			if (this.array.buffer._uuid === undefined) {				this.array.buffer._uuid = generateUUID();			}			if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {				data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer;			}			const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]);			const ib = new this.constructor(array, this.stride);			ib.setUsage(this.usage);			return ib;		}		onUpload(callback) {			this.onUploadCallback = callback;			return this;		}		toJSON(data) {			if (data.arrayBuffers === undefined) {				data.arrayBuffers = {};			} // generate UUID for array buffer if necessary			if (this.array.buffer._uuid === undefined) {				this.array.buffer._uuid = generateUUID();			}			if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {				data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer));			} //			return {				uuid: this.uuid,				buffer: this.array.buffer._uuid,				type: this.array.constructor.name,				stride: this.stride			};		}	}	InterleavedBuffer.prototype.isInterleavedBuffer = true;	const _vector$6 = /*@__PURE__*/new Vector3();	class InterleavedBufferAttribute {		constructor(interleavedBuffer, itemSize, offset, normalized = false) {			this.name = '';			this.data = interleavedBuffer;			this.itemSize = itemSize;			this.offset = offset;			this.normalized = normalized === true;		}		get count() {			return this.data.count;		}		get array() {			return this.data.array;		}		set needsUpdate(value) {			this.data.needsUpdate = value;		}		applyMatrix4(m) {			for (let i = 0, l = this.data.count; i < l; i++) {				_vector$6.x = this.getX(i);				_vector$6.y = this.getY(i);				_vector$6.z = this.getZ(i);				_vector$6.applyMatrix4(m);				this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);			}			return this;		}		applyNormalMatrix(m) {			for (let i = 0, l = this.count; i < l; i++) {				_vector$6.x = this.getX(i);				_vector$6.y = this.getY(i);				_vector$6.z = this.getZ(i);				_vector$6.applyNormalMatrix(m);				this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);			}			return this;		}		transformDirection(m) {			for (let i = 0, l = this.count; i < l; i++) {				_vector$6.x = this.getX(i);				_vector$6.y = this.getY(i);				_vector$6.z = this.getZ(i);				_vector$6.transformDirection(m);				this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);			}			return this;		}		setX(index, x) {			this.data.array[index * this.data.stride + this.offset] = x;			return this;		}		setY(index, y) {			this.data.array[index * this.data.stride + this.offset + 1] = y;			return this;		}		setZ(index, z) {			this.data.array[index * this.data.stride + this.offset + 2] = z;			return this;		}		setW(index, w) {			this.data.array[index * this.data.stride + this.offset + 3] = w;			return this;		}		getX(index) {			return this.data.array[index * this.data.stride + this.offset];		}		getY(index) {			return this.data.array[index * this.data.stride + this.offset + 1];		}		getZ(index) {			return this.data.array[index * this.data.stride + this.offset + 2];		}		getW(index) {			return this.data.array[index * this.data.stride + this.offset + 3];		}		setXY(index, x, y) {			index = index * this.data.stride + this.offset;			this.data.array[index + 0] = x;			this.data.array[index + 1] = y;			return this;		}		setXYZ(index, x, y, z) {			index = index * this.data.stride + this.offset;			this.data.array[index + 0] = x;			this.data.array[index + 1] = y;			this.data.array[index + 2] = z;			return this;		}		setXYZW(index, x, y, z, w) {			index = index * this.data.stride + this.offset;			this.data.array[index + 0] = x;			this.data.array[index + 1] = y;			this.data.array[index + 2] = z;			this.data.array[index + 3] = w;			return this;		}		clone(data) {			if (data === undefined) {				console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.');				const array = [];				for (let i = 0; i < this.count; i++) {					const index = i * this.data.stride + this.offset;					for (let j = 0; j < this.itemSize; j++) {						array.push(this.data.array[index + j]);					}				}				return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized);			} else {				if (data.interleavedBuffers === undefined) {					data.interleavedBuffers = {};				}				if (data.interleavedBuffers[this.data.uuid] === undefined) {					data.interleavedBuffers[this.data.uuid] = this.data.clone(data);				}				return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized);			}		}		toJSON(data) {			if (data === undefined) {				console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.');				const array = [];				for (let i = 0; i < this.count; i++) {					const index = i * this.data.stride + this.offset;					for (let j = 0; j < this.itemSize; j++) {						array.push(this.data.array[index + j]);					}				} // deinterleave data and save it as an ordinary buffer attribute for now				return {					itemSize: this.itemSize,					type: this.array.constructor.name,					array: array,					normalized: this.normalized				};			} else {				// save as true interlaved attribtue				if (data.interleavedBuffers === undefined) {					data.interleavedBuffers = {};				}				if (data.interleavedBuffers[this.data.uuid] === undefined) {					data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data);				}				return {					isInterleavedBufferAttribute: true,					itemSize: this.itemSize,					data: this.data.uuid,					offset: this.offset,					normalized: this.normalized				};			}		}	}	InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true;	/**	 * parameters = {	 *	color: <hex>,	 *	map: new THREE.Texture( <Image> ),	 *	alphaMap: new THREE.Texture( <Image> ),	 *	rotation: <float>,	 *	sizeAttenuation: <bool>	 * }	 */	class SpriteMaterial extends Material {		constructor(parameters) {			super();			this.type = 'SpriteMaterial';			this.color = new Color(0xffffff);			this.map = null;			this.alphaMap = null;			this.rotation = 0;			this.sizeAttenuation = true;			this.transparent = true;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			this.map = source.map;			this.alphaMap = source.alphaMap;			this.rotation = source.rotation;			this.sizeAttenuation = source.sizeAttenuation;			return this;		}	}	SpriteMaterial.prototype.isSpriteMaterial = true;	let _geometry;	const _intersectPoint = /*@__PURE__*/new Vector3();	const _worldScale = /*@__PURE__*/new Vector3();	const _mvPosition = /*@__PURE__*/new Vector3();	const _alignedPosition = /*@__PURE__*/new Vector2();	const _rotatedPosition = /*@__PURE__*/new Vector2();	const _viewWorldMatrix = /*@__PURE__*/new Matrix4();	const _vA = /*@__PURE__*/new Vector3();	const _vB = /*@__PURE__*/new Vector3();	const _vC = /*@__PURE__*/new Vector3();	const _uvA = /*@__PURE__*/new Vector2();	const _uvB = /*@__PURE__*/new Vector2();	const _uvC = /*@__PURE__*/new Vector2();	class Sprite extends Object3D {		constructor(material) {			super();			this.type = 'Sprite';			if (_geometry === undefined) {				_geometry = new BufferGeometry();				const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]);				const interleavedBuffer = new InterleavedBuffer(float32Array, 5);				_geometry.setIndex([0, 1, 2, 0, 2, 3]);				_geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false));				_geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false));			}			this.geometry = _geometry;			this.material = material !== undefined ? material : new SpriteMaterial();			this.center = new Vector2(0.5, 0.5);		}		raycast(raycaster, intersects) {			if (raycaster.camera === null) {				console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.');			}			_worldScale.setFromMatrixScale(this.matrixWorld);			_viewWorldMatrix.copy(raycaster.camera.matrixWorld);			this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld);			_mvPosition.setFromMatrixPosition(this.modelViewMatrix);			if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) {				_worldScale.multiplyScalar(-_mvPosition.z);			}			const rotation = this.material.rotation;			let sin, cos;			if (rotation !== 0) {				cos = Math.cos(rotation);				sin = Math.sin(rotation);			}			const center = this.center;			transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);			transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);			transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);			_uvA.set(0, 0);			_uvB.set(1, 0);			_uvC.set(1, 1); // check first triangle			let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint);			if (intersect === null) {				// check second triangle				transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);				_uvB.set(0, 1);				intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint);				if (intersect === null) {					return;				}			}			const distance = raycaster.ray.origin.distanceTo(_intersectPoint);			if (distance < raycaster.near || distance > raycaster.far) return;			intersects.push({				distance: distance,				point: _intersectPoint.clone(),				uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()),				face: null,				object: this			});		}		copy(source) {			super.copy(source);			if (source.center !== undefined) this.center.copy(source.center);			this.material = source.material;			return this;		}	}	Sprite.prototype.isSprite = true;	function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) {		// compute position in camera space		_alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero		if (sin !== undefined) {			_rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y;			_rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y;		} else {			_rotatedPosition.copy(_alignedPosition);		}		vertexPosition.copy(mvPosition);		vertexPosition.x += _rotatedPosition.x;		vertexPosition.y += _rotatedPosition.y; // transform to world space		vertexPosition.applyMatrix4(_viewWorldMatrix);	}	const _v1$2 = /*@__PURE__*/new Vector3();	const _v2$1 = /*@__PURE__*/new Vector3();	class LOD extends Object3D {		constructor() {			super();			this._currentLevel = 0;			this.type = 'LOD';			Object.defineProperties(this, {				levels: {					enumerable: true,					value: []				},				isLOD: {					value: true				}			});			this.autoUpdate = true;		}		copy(source) {			super.copy(source, false);			const levels = source.levels;			for (let i = 0, l = levels.length; i < l; i++) {				const level = levels[i];				this.addLevel(level.object.clone(), level.distance);			}			this.autoUpdate = source.autoUpdate;			return this;		}		addLevel(object, distance = 0) {			distance = Math.abs(distance);			const levels = this.levels;			let l;			for (l = 0; l < levels.length; l++) {				if (distance < levels[l].distance) {					break;				}			}			levels.splice(l, 0, {				distance: distance,				object: object			});			this.add(object);			return this;		}		getCurrentLevel() {			return this._currentLevel;		}		getObjectForDistance(distance) {			const levels = this.levels;			if (levels.length > 0) {				let i, l;				for (i = 1, l = levels.length; i < l; i++) {					if (distance < levels[i].distance) {						break;					}				}				return levels[i - 1].object;			}			return null;		}		raycast(raycaster, intersects) {			const levels = this.levels;			if (levels.length > 0) {				_v1$2.setFromMatrixPosition(this.matrixWorld);				const distance = raycaster.ray.origin.distanceTo(_v1$2);				this.getObjectForDistance(distance).raycast(raycaster, intersects);			}		}		update(camera) {			const levels = this.levels;			if (levels.length > 1) {				_v1$2.setFromMatrixPosition(camera.matrixWorld);				_v2$1.setFromMatrixPosition(this.matrixWorld);				const distance = _v1$2.distanceTo(_v2$1) / camera.zoom;				levels[0].object.visible = true;				let i, l;				for (i = 1, l = levels.length; i < l; i++) {					if (distance >= levels[i].distance) {						levels[i - 1].object.visible = false;						levels[i].object.visible = true;					} else {						break;					}				}				this._currentLevel = i - 1;				for (; i < l; i++) {					levels[i].object.visible = false;				}			}		}		toJSON(meta) {			const data = super.toJSON(meta);			if (this.autoUpdate === false) data.object.autoUpdate = false;			data.object.levels = [];			const levels = this.levels;			for (let i = 0, l = levels.length; i < l; i++) {				const level = levels[i];				data.object.levels.push({					object: level.object.uuid,					distance: level.distance				});			}			return data;		}	}	const _basePosition = /*@__PURE__*/new Vector3();	const _skinIndex = /*@__PURE__*/new Vector4();	const _skinWeight = /*@__PURE__*/new Vector4();	const _vector$5 = /*@__PURE__*/new Vector3();	const _matrix = /*@__PURE__*/new Matrix4();	class SkinnedMesh extends Mesh {		constructor(geometry, material) {			super(geometry, material);			this.type = 'SkinnedMesh';			this.bindMode = 'attached';			this.bindMatrix = new Matrix4();			this.bindMatrixInverse = new Matrix4();		}		copy(source) {			super.copy(source);			this.bindMode = source.bindMode;			this.bindMatrix.copy(source.bindMatrix);			this.bindMatrixInverse.copy(source.bindMatrixInverse);			this.skeleton = source.skeleton;			return this;		}		bind(skeleton, bindMatrix) {			this.skeleton = skeleton;			if (bindMatrix === undefined) {				this.updateMatrixWorld(true);				this.skeleton.calculateInverses();				bindMatrix = this.matrixWorld;			}			this.bindMatrix.copy(bindMatrix);			this.bindMatrixInverse.copy(bindMatrix).invert();		}		pose() {			this.skeleton.pose();		}		normalizeSkinWeights() {			const vector = new Vector4();			const skinWeight = this.geometry.attributes.skinWeight;			for (let i = 0, l = skinWeight.count; i < l; i++) {				vector.x = skinWeight.getX(i);				vector.y = skinWeight.getY(i);				vector.z = skinWeight.getZ(i);				vector.w = skinWeight.getW(i);				const scale = 1.0 / vector.manhattanLength();				if (scale !== Infinity) {					vector.multiplyScalar(scale);				} else {					vector.set(1, 0, 0, 0); // do something reasonable				}				skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w);			}		}		updateMatrixWorld(force) {			super.updateMatrixWorld(force);			if (this.bindMode === 'attached') {				this.bindMatrixInverse.copy(this.matrixWorld).invert();			} else if (this.bindMode === 'detached') {				this.bindMatrixInverse.copy(this.bindMatrix).invert();			} else {				console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode);			}		}		boneTransform(index, target) {			const skeleton = this.skeleton;			const geometry = this.geometry;			_skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index);			_skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index);			_basePosition.copy(target).applyMatrix4(this.bindMatrix);			target.set(0, 0, 0);			for (let i = 0; i < 4; i++) {				const weight = _skinWeight.getComponent(i);				if (weight !== 0) {					const boneIndex = _skinIndex.getComponent(i);					_matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]);					target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight);				}			}			return target.applyMatrix4(this.bindMatrixInverse);		}	}	SkinnedMesh.prototype.isSkinnedMesh = true;	class Bone extends Object3D {		constructor() {			super();			this.type = 'Bone';		}	}	Bone.prototype.isBone = true;	class DataTexture extends Texture {		constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) {			super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);			this.image = {				data: data,				width: width,				height: height			};			this.magFilter = magFilter;			this.minFilter = minFilter;			this.generateMipmaps = false;			this.flipY = false;			this.unpackAlignment = 1;			this.needsUpdate = true;		}	}	DataTexture.prototype.isDataTexture = true;	const _offsetMatrix = /*@__PURE__*/new Matrix4();	const _identityMatrix = /*@__PURE__*/new Matrix4();	class Skeleton {		constructor(bones = [], boneInverses = []) {			this.uuid = generateUUID();			this.bones = bones.slice(0);			this.boneInverses = boneInverses;			this.boneMatrices = null;			this.boneTexture = null;			this.boneTextureSize = 0;			this.frame = -1;			this.init();		}		init() {			const bones = this.bones;			const boneInverses = this.boneInverses;			this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary			if (boneInverses.length === 0) {				this.calculateInverses();			} else {				// handle special case				if (bones.length !== boneInverses.length) {					console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.');					this.boneInverses = [];					for (let i = 0, il = this.bones.length; i < il; i++) {						this.boneInverses.push(new Matrix4());					}				}			}		}		calculateInverses() {			this.boneInverses.length = 0;			for (let i = 0, il = this.bones.length; i < il; i++) {				const inverse = new Matrix4();				if (this.bones[i]) {					inverse.copy(this.bones[i].matrixWorld).invert();				}				this.boneInverses.push(inverse);			}		}		pose() {			// recover the bind-time world matrices			for (let i = 0, il = this.bones.length; i < il; i++) {				const bone = this.bones[i];				if (bone) {					bone.matrixWorld.copy(this.boneInverses[i]).invert();				}			} // compute the local matrices, positions, rotations and scales			for (let i = 0, il = this.bones.length; i < il; i++) {				const bone = this.bones[i];				if (bone) {					if (bone.parent && bone.parent.isBone) {						bone.matrix.copy(bone.parent.matrixWorld).invert();						bone.matrix.multiply(bone.matrixWorld);					} else {						bone.matrix.copy(bone.matrixWorld);					}					bone.matrix.decompose(bone.position, bone.quaternion, bone.scale);				}			}		}		update() {			const bones = this.bones;			const boneInverses = this.boneInverses;			const boneMatrices = this.boneMatrices;			const boneTexture = this.boneTexture; // flatten bone matrices to array			for (let i = 0, il = bones.length; i < il; i++) {				// compute the offset between the current and the original transform				const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix;				_offsetMatrix.multiplyMatrices(matrix, boneInverses[i]);				_offsetMatrix.toArray(boneMatrices, i * 16);			}			if (boneTexture !== null) {				boneTexture.needsUpdate = true;			}		}		clone() {			return new Skeleton(this.bones, this.boneInverses);		}		computeBoneTexture() {			// layout (1 matrix = 4 pixels)			//			RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)			//	with	8x8	pixel texture max	 16 bones * 4 pixels =	(8 * 8)			//			 16x16 pixel texture max	 64 bones * 4 pixels = (16 * 16)			//			 32x32 pixel texture max	256 bones * 4 pixels = (32 * 32)			//			 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)			let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix			size = ceilPowerOfTwo(size);			size = Math.max(size, 4);			const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel			boneMatrices.set(this.boneMatrices); // copy current values			const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType);			this.boneMatrices = boneMatrices;			this.boneTexture = boneTexture;			this.boneTextureSize = size;			return this;		}		getBoneByName(name) {			for (let i = 0, il = this.bones.length; i < il; i++) {				const bone = this.bones[i];				if (bone.name === name) {					return bone;				}			}			return undefined;		}		dispose() {			if (this.boneTexture !== null) {				this.boneTexture.dispose();				this.boneTexture = null;			}		}		fromJSON(json, bones) {			this.uuid = json.uuid;			for (let i = 0, l = json.bones.length; i < l; i++) {				const uuid = json.bones[i];				let bone = bones[uuid];				if (bone === undefined) {					console.warn('THREE.Skeleton: No bone found with UUID:', uuid);					bone = new Bone();				}				this.bones.push(bone);				this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i]));			}			this.init();			return this;		}		toJSON() {			const data = {				metadata: {					version: 4.5,					type: 'Skeleton',					generator: 'Skeleton.toJSON'				},				bones: [],				boneInverses: []			};			data.uuid = this.uuid;			const bones = this.bones;			const boneInverses = this.boneInverses;			for (let i = 0, l = bones.length; i < l; i++) {				const bone = bones[i];				data.bones.push(bone.uuid);				const boneInverse = boneInverses[i];				data.boneInverses.push(boneInverse.toArray());			}			return data;		}	}	class InstancedBufferAttribute extends BufferAttribute {		constructor(array, itemSize, normalized, meshPerAttribute = 1) {			if (typeof normalized === 'number') {				meshPerAttribute = normalized;				normalized = false;				console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.');			}			super(array, itemSize, normalized);			this.meshPerAttribute = meshPerAttribute;		}		copy(source) {			super.copy(source);			this.meshPerAttribute = source.meshPerAttribute;			return this;		}		toJSON() {			const data = super.toJSON();			data.meshPerAttribute = this.meshPerAttribute;			data.isInstancedBufferAttribute = true;			return data;		}	}	InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true;	const _instanceLocalMatrix = /*@__PURE__*/new Matrix4();	const _instanceWorldMatrix = /*@__PURE__*/new Matrix4();	const _instanceIntersects = [];	const _mesh = /*@__PURE__*/new Mesh();	class InstancedMesh extends Mesh {		constructor(geometry, material, count) {			super(geometry, material);			this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16);			this.instanceColor = null;			this.count = count;			this.frustumCulled = false;		}		copy(source) {			super.copy(source);			this.instanceMatrix.copy(source.instanceMatrix);			if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone();			this.count = source.count;			return this;		}		getColorAt(index, color) {			color.fromArray(this.instanceColor.array, index * 3);		}		getMatrixAt(index, matrix) {			matrix.fromArray(this.instanceMatrix.array, index * 16);		}		raycast(raycaster, intersects) {			const matrixWorld = this.matrixWorld;			const raycastTimes = this.count;			_mesh.geometry = this.geometry;			_mesh.material = this.material;			if (_mesh.material === undefined) return;			for (let instanceId = 0; instanceId < raycastTimes; instanceId++) {				// calculate the world matrix for each instance				this.getMatrixAt(instanceId, _instanceLocalMatrix);				_instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance				_mesh.matrixWorld = _instanceWorldMatrix;				_mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast				for (let i = 0, l = _instanceIntersects.length; i < l; i++) {					const intersect = _instanceIntersects[i];					intersect.instanceId = instanceId;					intersect.object = this;					intersects.push(intersect);				}				_instanceIntersects.length = 0;			}		}		setColorAt(index, color) {			if (this.instanceColor === null) {				this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3), 3);			}			color.toArray(this.instanceColor.array, index * 3);		}		setMatrixAt(index, matrix) {			matrix.toArray(this.instanceMatrix.array, index * 16);		}		updateMorphTargets() {}		dispose() {			this.dispatchEvent({				type: 'dispose'			});		}	}	InstancedMesh.prototype.isInstancedMesh = true;	/**	 * parameters = {	 *	color: <hex>,	 *	opacity: <float>,	 *	 *	linewidth: <float>,	 *	linecap: "round",	 *	linejoin: "round"	 * }	 */	class LineBasicMaterial extends Material {		constructor(parameters) {			super();			this.type = 'LineBasicMaterial';			this.color = new Color(0xffffff);			this.linewidth = 1;			this.linecap = 'round';			this.linejoin = 'round';			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			this.linewidth = source.linewidth;			this.linecap = source.linecap;			this.linejoin = source.linejoin;			return this;		}	}	LineBasicMaterial.prototype.isLineBasicMaterial = true;	const _start$1 = /*@__PURE__*/new Vector3();	const _end$1 = /*@__PURE__*/new Vector3();	const _inverseMatrix$1 = /*@__PURE__*/new Matrix4();	const _ray$1 = /*@__PURE__*/new Ray();	const _sphere$1 = /*@__PURE__*/new Sphere();	class Line extends Object3D {		constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) {			super();			this.type = 'Line';			this.geometry = geometry;			this.material = material;			this.updateMorphTargets();		}		copy(source) {			super.copy(source);			this.material = source.material;			this.geometry = source.geometry;			return this;		}		computeLineDistances() {			const geometry = this.geometry;			if (geometry.isBufferGeometry) {				// we assume non-indexed geometry				if (geometry.index === null) {					const positionAttribute = geometry.attributes.position;					const lineDistances = [0];					for (let i = 1, l = positionAttribute.count; i < l; i++) {						_start$1.fromBufferAttribute(positionAttribute, i - 1);						_end$1.fromBufferAttribute(positionAttribute, i);						lineDistances[i] = lineDistances[i - 1];						lineDistances[i] += _start$1.distanceTo(_end$1);					}					geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));				} else {					console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');				}			} else if (geometry.isGeometry) {				console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');			}			return this;		}		raycast(raycaster, intersects) {			const geometry = this.geometry;			const matrixWorld = this.matrixWorld;			const threshold = raycaster.params.Line.threshold;			const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray			if (geometry.boundingSphere === null) geometry.computeBoundingSphere();			_sphere$1.copy(geometry.boundingSphere);			_sphere$1.applyMatrix4(matrixWorld);			_sphere$1.radius += threshold;			if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; //			_inverseMatrix$1.copy(matrixWorld).invert();			_ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1);			const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);			const localThresholdSq = localThreshold * localThreshold;			const vStart = new Vector3();			const vEnd = new Vector3();			const interSegment = new Vector3();			const interRay = new Vector3();			const step = this.isLineSegments ? 2 : 1;			if (geometry.isBufferGeometry) {				const index = geometry.index;				const attributes = geometry.attributes;				const positionAttribute = attributes.position;				if (index !== null) {					const start = Math.max(0, drawRange.start);					const end = Math.min(index.count, drawRange.start + drawRange.count);					for (let i = start, l = end - 1; i < l; i += step) {						const a = index.getX(i);						const b = index.getX(i + 1);						vStart.fromBufferAttribute(positionAttribute, a);						vEnd.fromBufferAttribute(positionAttribute, b);						const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);						if (distSq > localThresholdSq) continue;						interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation						const distance = raycaster.ray.origin.distanceTo(interRay);						if (distance < raycaster.near || distance > raycaster.far) continue;						intersects.push({							distance: distance,							// What do we want? intersection point on the ray or on the segment??							// point: raycaster.ray.at( distance ),							point: interSegment.clone().applyMatrix4(this.matrixWorld),							index: i,							face: null,							faceIndex: null,							object: this						});					}				} else {					const start = Math.max(0, drawRange.start);					const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);					for (let i = start, l = end - 1; i < l; i += step) {						vStart.fromBufferAttribute(positionAttribute, i);						vEnd.fromBufferAttribute(positionAttribute, i + 1);						const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);						if (distSq > localThresholdSq) continue;						interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation						const distance = raycaster.ray.origin.distanceTo(interRay);						if (distance < raycaster.near || distance > raycaster.far) continue;						intersects.push({							distance: distance,							// What do we want? intersection point on the ray or on the segment??							// point: raycaster.ray.at( distance ),							point: interSegment.clone().applyMatrix4(this.matrixWorld),							index: i,							face: null,							faceIndex: null,							object: this						});					}				}			} else if (geometry.isGeometry) {				console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');			}		}		updateMorphTargets() {			const geometry = this.geometry;			if (geometry.isBufferGeometry) {				const morphAttributes = geometry.morphAttributes;				const keys = Object.keys(morphAttributes);				if (keys.length > 0) {					const morphAttribute = morphAttributes[keys[0]];					if (morphAttribute !== undefined) {						this.morphTargetInfluences = [];						this.morphTargetDictionary = {};						for (let m = 0, ml = morphAttribute.length; m < ml; m++) {							const name = morphAttribute[m].name || String(m);							this.morphTargetInfluences.push(0);							this.morphTargetDictionary[name] = m;						}					}				}			} else {				const morphTargets = geometry.morphTargets;				if (morphTargets !== undefined && morphTargets.length > 0) {					console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');				}			}		}	}	Line.prototype.isLine = true;	const _start = /*@__PURE__*/new Vector3();	const _end = /*@__PURE__*/new Vector3();	class LineSegments extends Line {		constructor(geometry, material) {			super(geometry, material);			this.type = 'LineSegments';		}		computeLineDistances() {			const geometry = this.geometry;			if (geometry.isBufferGeometry) {				// we assume non-indexed geometry				if (geometry.index === null) {					const positionAttribute = geometry.attributes.position;					const lineDistances = [];					for (let i = 0, l = positionAttribute.count; i < l; i += 2) {						_start.fromBufferAttribute(positionAttribute, i);						_end.fromBufferAttribute(positionAttribute, i + 1);						lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1];						lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end);					}					geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));				} else {					console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');				}			} else if (geometry.isGeometry) {				console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');			}			return this;		}	}	LineSegments.prototype.isLineSegments = true;	class LineLoop extends Line {		constructor(geometry, material) {			super(geometry, material);			this.type = 'LineLoop';		}	}	LineLoop.prototype.isLineLoop = true;	/**	 * parameters = {	 *	color: <hex>,	 *	opacity: <float>,	 *	map: new THREE.Texture( <Image> ),	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	size: <float>,	 *	sizeAttenuation: <bool>	 *	 * }	 */	class PointsMaterial extends Material {		constructor(parameters) {			super();			this.type = 'PointsMaterial';			this.color = new Color(0xffffff);			this.map = null;			this.alphaMap = null;			this.size = 1;			this.sizeAttenuation = true;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			this.map = source.map;			this.alphaMap = source.alphaMap;			this.size = source.size;			this.sizeAttenuation = source.sizeAttenuation;			return this;		}	}	PointsMaterial.prototype.isPointsMaterial = true;	const _inverseMatrix = /*@__PURE__*/new Matrix4();	const _ray = /*@__PURE__*/new Ray();	const _sphere = /*@__PURE__*/new Sphere();	const _position$2 = /*@__PURE__*/new Vector3();	class Points extends Object3D {		constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) {			super();			this.type = 'Points';			this.geometry = geometry;			this.material = material;			this.updateMorphTargets();		}		copy(source) {			super.copy(source);			this.material = source.material;			this.geometry = source.geometry;			return this;		}		raycast(raycaster, intersects) {			const geometry = this.geometry;			const matrixWorld = this.matrixWorld;			const threshold = raycaster.params.Points.threshold;			const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray			if (geometry.boundingSphere === null) geometry.computeBoundingSphere();			_sphere.copy(geometry.boundingSphere);			_sphere.applyMatrix4(matrixWorld);			_sphere.radius += threshold;			if (raycaster.ray.intersectsSphere(_sphere) === false) return; //			_inverseMatrix.copy(matrixWorld).invert();			_ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix);			const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);			const localThresholdSq = localThreshold * localThreshold;			if (geometry.isBufferGeometry) {				const index = geometry.index;				const attributes = geometry.attributes;				const positionAttribute = attributes.position;				if (index !== null) {					const start = Math.max(0, drawRange.start);					const end = Math.min(index.count, drawRange.start + drawRange.count);					for (let i = start, il = end; i < il; i++) {						const a = index.getX(i);						_position$2.fromBufferAttribute(positionAttribute, a);						testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this);					}				} else {					const start = Math.max(0, drawRange.start);					const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);					for (let i = start, l = end; i < l; i++) {						_position$2.fromBufferAttribute(positionAttribute, i);						testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this);					}				}			} else {				console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');			}		}		updateMorphTargets() {			const geometry = this.geometry;			if (geometry.isBufferGeometry) {				const morphAttributes = geometry.morphAttributes;				const keys = Object.keys(morphAttributes);				if (keys.length > 0) {					const morphAttribute = morphAttributes[keys[0]];					if (morphAttribute !== undefined) {						this.morphTargetInfluences = [];						this.morphTargetDictionary = {};						for (let m = 0, ml = morphAttribute.length; m < ml; m++) {							const name = morphAttribute[m].name || String(m);							this.morphTargetInfluences.push(0);							this.morphTargetDictionary[name] = m;						}					}				}			} else {				const morphTargets = geometry.morphTargets;				if (morphTargets !== undefined && morphTargets.length > 0) {					console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');				}			}		}	}	Points.prototype.isPoints = true;	function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) {		const rayPointDistanceSq = _ray.distanceSqToPoint(point);		if (rayPointDistanceSq < localThresholdSq) {			const intersectPoint = new Vector3();			_ray.closestPointToPoint(point, intersectPoint);			intersectPoint.applyMatrix4(matrixWorld);			const distance = raycaster.ray.origin.distanceTo(intersectPoint);			if (distance < raycaster.near || distance > raycaster.far) return;			intersects.push({				distance: distance,				distanceToRay: Math.sqrt(rayPointDistanceSq),				point: intersectPoint,				index: index,				face: null,				object: object			});		}	}	class VideoTexture extends Texture {		constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {			super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);			this.format = format !== undefined ? format : RGBFormat;			this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;			this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;			this.generateMipmaps = false;			const scope = this;			function updateVideo() {				scope.needsUpdate = true;				video.requestVideoFrameCallback(updateVideo);			}			if ('requestVideoFrameCallback' in video) {				video.requestVideoFrameCallback(updateVideo);			}		}		clone() {			return new this.constructor(this.image).copy(this);		}		update() {			const video = this.image;			const hasVideoFrameCallback = ('requestVideoFrameCallback' in video);			if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) {				this.needsUpdate = true;			}		}	}	VideoTexture.prototype.isVideoTexture = true;	class CompressedTexture extends Texture {		constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) {			super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);			this.image = {				width: width,				height: height			};			this.mipmaps = mipmaps; // no flipping for cube textures			// (also flipping doesn't work for compressed textures )			this.flipY = false; // can't generate mipmaps for compressed textures			// mips must be embedded in DDS files			this.generateMipmaps = false;		}	}	CompressedTexture.prototype.isCompressedTexture = true;	class CanvasTexture extends Texture {		constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {			super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);			this.needsUpdate = true;		}	}	CanvasTexture.prototype.isCanvasTexture = true;	class CircleGeometry extends BufferGeometry {		constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) {			super();			this.type = 'CircleGeometry';			this.parameters = {				radius: radius,				segments: segments,				thetaStart: thetaStart,				thetaLength: thetaLength			};			segments = Math.max(3, segments); // buffers			const indices = [];			const vertices = [];			const normals = [];			const uvs = []; // helper variables			const vertex = new Vector3();			const uv = new Vector2(); // center point			vertices.push(0, 0, 0);			normals.push(0, 0, 1);			uvs.push(0.5, 0.5);			for (let s = 0, i = 3; s <= segments; s++, i += 3) {				const segment = thetaStart + s / segments * thetaLength; // vertex				vertex.x = radius * Math.cos(segment);				vertex.y = radius * Math.sin(segment);				vertices.push(vertex.x, vertex.y, vertex.z); // normal				normals.push(0, 0, 1); // uvs				uv.x = (vertices[i] / radius + 1) / 2;				uv.y = (vertices[i + 1] / radius + 1) / 2;				uvs.push(uv.x, uv.y);			} // indices			for (let i = 1; i <= segments; i++) {				indices.push(i, i + 1, 0);			} // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));		}		static fromJSON(data) {			return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength);		}	}	class CylinderGeometry extends BufferGeometry {		constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {			super();			this.type = 'CylinderGeometry';			this.parameters = {				radiusTop: radiusTop,				radiusBottom: radiusBottom,				height: height,				radialSegments: radialSegments,				heightSegments: heightSegments,				openEnded: openEnded,				thetaStart: thetaStart,				thetaLength: thetaLength			};			const scope = this;			radialSegments = Math.floor(radialSegments);			heightSegments = Math.floor(heightSegments); // buffers			const indices = [];			const vertices = [];			const normals = [];			const uvs = []; // helper variables			let index = 0;			const indexArray = [];			const halfHeight = height / 2;			let groupStart = 0; // generate geometry			generateTorso();			if (openEnded === false) {				if (radiusTop > 0) generateCap(true);				if (radiusBottom > 0) generateCap(false);			} // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));			function generateTorso() {				const normal = new Vector3();				const vertex = new Vector3();				let groupCount = 0; // this will be used to calculate the normal				const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs				for (let y = 0; y <= heightSegments; y++) {					const indexRow = [];					const v = y / heightSegments; // calculate the radius of the current row					const radius = v * (radiusBottom - radiusTop) + radiusTop;					for (let x = 0; x <= radialSegments; x++) {						const u = x / radialSegments;						const theta = u * thetaLength + thetaStart;						const sinTheta = Math.sin(theta);						const cosTheta = Math.cos(theta); // vertex						vertex.x = radius * sinTheta;						vertex.y = -v * height + halfHeight;						vertex.z = radius * cosTheta;						vertices.push(vertex.x, vertex.y, vertex.z); // normal						normal.set(sinTheta, slope, cosTheta).normalize();						normals.push(normal.x, normal.y, normal.z); // uv						uvs.push(u, 1 - v); // save index of vertex in respective row						indexRow.push(index++);					} // now save vertices of the row in our index array					indexArray.push(indexRow);				} // generate indices				for (let x = 0; x < radialSegments; x++) {					for (let y = 0; y < heightSegments; y++) {						// we use the index array to access the correct indices						const a = indexArray[y][x];						const b = indexArray[y + 1][x];						const c = indexArray[y + 1][x + 1];						const d = indexArray[y][x + 1]; // faces						indices.push(a, b, d);						indices.push(b, c, d); // update group counter						groupCount += 6;					}				} // add a group to the geometry. this will ensure multi material support				scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups				groupStart += groupCount;			}			function generateCap(top) {				// save the index of the first center vertex				const centerIndexStart = index;				const uv = new Vector2();				const vertex = new Vector3();				let groupCount = 0;				const radius = top === true ? radiusTop : radiusBottom;				const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap.				// because the geometry needs one set of uvs per face,				// we must generate a center vertex per face/segment				for (let x = 1; x <= radialSegments; x++) {					// vertex					vertices.push(0, halfHeight * sign, 0); // normal					normals.push(0, sign, 0); // uv					uvs.push(0.5, 0.5); // increase index					index++;				} // save the index of the last center vertex				const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs				for (let x = 0; x <= radialSegments; x++) {					const u = x / radialSegments;					const theta = u * thetaLength + thetaStart;					const cosTheta = Math.cos(theta);					const sinTheta = Math.sin(theta); // vertex					vertex.x = radius * sinTheta;					vertex.y = halfHeight * sign;					vertex.z = radius * cosTheta;					vertices.push(vertex.x, vertex.y, vertex.z); // normal					normals.push(0, sign, 0); // uv					uv.x = cosTheta * 0.5 + 0.5;					uv.y = sinTheta * 0.5 * sign + 0.5;					uvs.push(uv.x, uv.y); // increase index					index++;				} // generate indices				for (let x = 0; x < radialSegments; x++) {					const c = centerIndexStart + x;					const i = centerIndexEnd + x;					if (top === true) {						// face top						indices.push(i, i + 1, c);					} else {						// face bottom						indices.push(i + 1, i, c);					}					groupCount += 3;				} // add a group to the geometry. this will ensure multi material support				scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups				groupStart += groupCount;			}		}		static fromJSON(data) {			return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);		}	}	class ConeGeometry extends CylinderGeometry {		constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {			super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength);			this.type = 'ConeGeometry';			this.parameters = {				radius: radius,				height: height,				radialSegments: radialSegments,				heightSegments: heightSegments,				openEnded: openEnded,				thetaStart: thetaStart,				thetaLength: thetaLength			};		}		static fromJSON(data) {			return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);		}	}	class PolyhedronGeometry extends BufferGeometry {		constructor(vertices = [], indices = [], radius = 1, detail = 0) {			super();			this.type = 'PolyhedronGeometry';			this.parameters = {				vertices: vertices,				indices: indices,				radius: radius,				detail: detail			}; // default buffer data			const vertexBuffer = [];			const uvBuffer = []; // the subdivision creates the vertex buffer data			subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius			applyRadius(radius); // finally, create the uv data			generateUVs(); // build non-indexed geometry			this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3));			this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3));			this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2));			if (detail === 0) {				this.computeVertexNormals(); // flat normals			} else {				this.normalizeNormals(); // smooth normals			} // helper functions			function subdivide(detail) {				const a = new Vector3();				const b = new Vector3();				const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value				for (let i = 0; i < indices.length; i += 3) {					// get the vertices of the face					getVertexByIndex(indices[i + 0], a);					getVertexByIndex(indices[i + 1], b);					getVertexByIndex(indices[i + 2], c); // perform subdivision					subdivideFace(a, b, c, detail);				}			}			function subdivideFace(a, b, c, detail) {				const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision				const v = []; // construct all of the vertices for this subdivision				for (let i = 0; i <= cols; i++) {					v[i] = [];					const aj = a.clone().lerp(c, i / cols);					const bj = b.clone().lerp(c, i / cols);					const rows = cols - i;					for (let j = 0; j <= rows; j++) {						if (j === 0 && i === cols) {							v[i][j] = aj;						} else {							v[i][j] = aj.clone().lerp(bj, j / rows);						}					}				} // construct all of the faces				for (let i = 0; i < cols; i++) {					for (let j = 0; j < 2 * (cols - i) - 1; j++) {						const k = Math.floor(j / 2);						if (j % 2 === 0) {							pushVertex(v[i][k + 1]);							pushVertex(v[i + 1][k]);							pushVertex(v[i][k]);						} else {							pushVertex(v[i][k + 1]);							pushVertex(v[i + 1][k + 1]);							pushVertex(v[i + 1][k]);						}					}				}			}			function applyRadius(radius) {				const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex				for (let i = 0; i < vertexBuffer.length; i += 3) {					vertex.x = vertexBuffer[i + 0];					vertex.y = vertexBuffer[i + 1];					vertex.z = vertexBuffer[i + 2];					vertex.normalize().multiplyScalar(radius);					vertexBuffer[i + 0] = vertex.x;					vertexBuffer[i + 1] = vertex.y;					vertexBuffer[i + 2] = vertex.z;				}			}			function generateUVs() {				const vertex = new Vector3();				for (let i = 0; i < vertexBuffer.length; i += 3) {					vertex.x = vertexBuffer[i + 0];					vertex.y = vertexBuffer[i + 1];					vertex.z = vertexBuffer[i + 2];					const u = azimuth(vertex) / 2 / Math.PI + 0.5;					const v = inclination(vertex) / Math.PI + 0.5;					uvBuffer.push(u, 1 - v);				}				correctUVs();				correctSeam();			}			function correctSeam() {				// handle case when face straddles the seam, see #3269				for (let i = 0; i < uvBuffer.length; i += 6) {					// uv data of a single face					const x0 = uvBuffer[i + 0];					const x1 = uvBuffer[i + 2];					const x2 = uvBuffer[i + 4];					const max = Math.max(x0, x1, x2);					const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary					if (max > 0.9 && min < 0.1) {						if (x0 < 0.2) uvBuffer[i + 0] += 1;						if (x1 < 0.2) uvBuffer[i + 2] += 1;						if (x2 < 0.2) uvBuffer[i + 4] += 1;					}				}			}			function pushVertex(vertex) {				vertexBuffer.push(vertex.x, vertex.y, vertex.z);			}			function getVertexByIndex(index, vertex) {				const stride = index * 3;				vertex.x = vertices[stride + 0];				vertex.y = vertices[stride + 1];				vertex.z = vertices[stride + 2];			}			function correctUVs() {				const a = new Vector3();				const b = new Vector3();				const c = new Vector3();				const centroid = new Vector3();				const uvA = new Vector2();				const uvB = new Vector2();				const uvC = new Vector2();				for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) {					a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]);					b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]);					c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]);					uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]);					uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]);					uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]);					centroid.copy(a).add(b).add(c).divideScalar(3);					const azi = azimuth(centroid);					correctUV(uvA, j + 0, a, azi);					correctUV(uvB, j + 2, b, azi);					correctUV(uvC, j + 4, c, azi);				}			}			function correctUV(uv, stride, vector, azimuth) {				if (azimuth < 0 && uv.x === 1) {					uvBuffer[stride] = uv.x - 1;				}				if (vector.x === 0 && vector.z === 0) {					uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5;				}			} // Angle around the Y axis, counter-clockwise when looking from above.			function azimuth(vector) {				return Math.atan2(vector.z, -vector.x);			} // Angle above the XZ plane.			function inclination(vector) {				return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z));			}		}		static fromJSON(data) {			return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details);		}	}	class DodecahedronGeometry extends PolyhedronGeometry {		constructor(radius = 1, detail = 0) {			const t = (1 + Math.sqrt(5)) / 2;			const r = 1 / t;			const vertices = [// (±1, ±1, ±1)			-1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ)			0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0)			-r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ)			-t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r];			const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9];			super(vertices, indices, radius, detail);			this.type = 'DodecahedronGeometry';			this.parameters = {				radius: radius,				detail: detail			};		}		static fromJSON(data) {			return new DodecahedronGeometry(data.radius, data.detail);		}	}	const _v0 = new Vector3();	const _v1$1 = new Vector3();	const _normal = new Vector3();	const _triangle = new Triangle();	class EdgesGeometry extends BufferGeometry {		constructor(geometry = null, thresholdAngle = 1) {			super();			this.type = 'EdgesGeometry';			this.parameters = {				geometry: geometry,				thresholdAngle: thresholdAngle			};			if (geometry !== null) {				const precisionPoints = 4;				const precision = Math.pow(10, precisionPoints);				const thresholdDot = Math.cos(DEG2RAD * thresholdAngle);				const indexAttr = geometry.getIndex();				const positionAttr = geometry.getAttribute('position');				const indexCount = indexAttr ? indexAttr.count : positionAttr.count;				const indexArr = [0, 0, 0];				const vertKeys = ['a', 'b', 'c'];				const hashes = new Array(3);				const edgeData = {};				const vertices = [];				for (let i = 0; i < indexCount; i += 3) {					if (indexAttr) {						indexArr[0] = indexAttr.getX(i);						indexArr[1] = indexAttr.getX(i + 1);						indexArr[2] = indexAttr.getX(i + 2);					} else {						indexArr[0] = i;						indexArr[1] = i + 1;						indexArr[2] = i + 2;					}					const {						a,						b,						c					} = _triangle;					a.fromBufferAttribute(positionAttr, indexArr[0]);					b.fromBufferAttribute(positionAttr, indexArr[1]);					c.fromBufferAttribute(positionAttr, indexArr[2]);					_triangle.getNormal(_normal); // create hashes for the edge from the vertices					hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`;					hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`;					hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles					if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) {						continue;					} // iterate over every edge					for (let j = 0; j < 3; j++) {						// get the first and next vertex making up the edge						const jNext = (j + 1) % 3;						const vecHash0 = hashes[j];						const vecHash1 = hashes[jNext];						const v0 = _triangle[vertKeys[j]];						const v1 = _triangle[vertKeys[jNext]];						const hash = `${vecHash0}_${vecHash1}`;						const reverseHash = `${vecHash1}_${vecHash0}`;						if (reverseHash in edgeData && edgeData[reverseHash]) {							// if we found a sibling edge add it into the vertex array if							// it meets the angle threshold and delete the edge from the map.							if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) {								vertices.push(v0.x, v0.y, v0.z);								vertices.push(v1.x, v1.y, v1.z);							}							edgeData[reverseHash] = null;						} else if (!(hash in edgeData)) {							// if we've already got an edge here then skip adding a new one							edgeData[hash] = {								index0: indexArr[j],								index1: indexArr[jNext],								normal: _normal.clone()							};						}					}				} // iterate over all remaining, unmatched edges and add them to the vertex array				for (const key in edgeData) {					if (edgeData[key]) {						const {							index0,							index1						} = edgeData[key];						_v0.fromBufferAttribute(positionAttr, index0);						_v1$1.fromBufferAttribute(positionAttr, index1);						vertices.push(_v0.x, _v0.y, _v0.z);						vertices.push(_v1$1.x, _v1$1.y, _v1$1.z);					}				}				this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			}		}	}	/**	 * Extensible curve object.	 *	 * Some common of curve methods:	 * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )	 * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )	 * .getPoints(), .getSpacedPoints()	 * .getLength()	 * .updateArcLengths()	 *	 * This following curves inherit from THREE.Curve:	 *	 * -- 2D curves --	 * THREE.ArcCurve	 * THREE.CubicBezierCurve	 * THREE.EllipseCurve	 * THREE.LineCurve	 * THREE.QuadraticBezierCurve	 * THREE.SplineCurve	 *	 * -- 3D curves --	 * THREE.CatmullRomCurve3	 * THREE.CubicBezierCurve3	 * THREE.LineCurve3	 * THREE.QuadraticBezierCurve3	 *	 * A series of curves can be represented as a THREE.CurvePath.	 *	 **/	class Curve {		constructor() {			this.type = 'Curve';			this.arcLengthDivisions = 200;		} // Virtual base class method to overwrite and implement in subclasses		//	- t [0 .. 1]		getPoint() {			console.warn('THREE.Curve: .getPoint() not implemented.');			return null;		} // Get point at relative position in curve according to arc length		// - u [0 .. 1]		getPointAt(u, optionalTarget) {			const t = this.getUtoTmapping(u);			return this.getPoint(t, optionalTarget);		} // Get sequence of points using getPoint( t )		getPoints(divisions = 5) {			const points = [];			for (let d = 0; d <= divisions; d++) {				points.push(this.getPoint(d / divisions));			}			return points;		} // Get sequence of points using getPointAt( u )		getSpacedPoints(divisions = 5) {			const points = [];			for (let d = 0; d <= divisions; d++) {				points.push(this.getPointAt(d / divisions));			}			return points;		} // Get total curve arc length		getLength() {			const lengths = this.getLengths();			return lengths[lengths.length - 1];		} // Get list of cumulative segment lengths		getLengths(divisions = this.arcLengthDivisions) {			if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) {				return this.cacheArcLengths;			}			this.needsUpdate = false;			const cache = [];			let current,					last = this.getPoint(0);			let sum = 0;			cache.push(0);			for (let p = 1; p <= divisions; p++) {				current = this.getPoint(p / divisions);				sum += current.distanceTo(last);				cache.push(sum);				last = current;			}			this.cacheArcLengths = cache;			return cache; // { sums: cache, sum: sum }; Sum is in the last element.		}		updateArcLengths() {			this.needsUpdate = true;			this.getLengths();		} // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant		getUtoTmapping(u, distance) {			const arcLengths = this.getLengths();			let i = 0;			const il = arcLengths.length;			let targetArcLength; // The targeted u distance value to get			if (distance) {				targetArcLength = distance;			} else {				targetArcLength = u * arcLengths[il - 1];			} // binary search for the index with largest value smaller than target u distance			let low = 0,					high = il - 1,					comparison;			while (low <= high) {				i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats				comparison = arcLengths[i] - targetArcLength;				if (comparison < 0) {					low = i + 1;				} else if (comparison > 0) {					high = i - 1;				} else {					high = i;					break; // DONE				}			}			i = high;			if (arcLengths[i] === targetArcLength) {				return i / (il - 1);			} // we could get finer grain at lengths, or use simple interpolation between two points			const lengthBefore = arcLengths[i];			const lengthAfter = arcLengths[i + 1];			const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points			const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t			const t = (i + segmentFraction) / (il - 1);			return t;		} // Returns a unit vector tangent at t		// In case any sub curve does not implement its tangent derivation,		// 2 points a small delta apart will be used to find its gradient		// which seems to give a reasonable approximation		getTangent(t, optionalTarget) {			const delta = 0.0001;			let t1 = t - delta;			let t2 = t + delta; // Capping in case of danger			if (t1 < 0) t1 = 0;			if (t2 > 1) t2 = 1;			const pt1 = this.getPoint(t1);			const pt2 = this.getPoint(t2);			const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3());			tangent.copy(pt2).sub(pt1).normalize();			return tangent;		}		getTangentAt(u, optionalTarget) {			const t = this.getUtoTmapping(u);			return this.getTangent(t, optionalTarget);		}		computeFrenetFrames(segments, closed) {			// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf			const normal = new Vector3();			const tangents = [];			const normals = [];			const binormals = [];			const vec = new Vector3();			const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve			for (let i = 0; i <= segments; i++) {				const u = i / segments;				tangents[i] = this.getTangentAt(u, new Vector3());			} // select an initial normal vector perpendicular to the first tangent vector,			// and in the direction of the minimum tangent xyz component			normals[0] = new Vector3();			binormals[0] = new Vector3();			let min = Number.MAX_VALUE;			const tx = Math.abs(tangents[0].x);			const ty = Math.abs(tangents[0].y);			const tz = Math.abs(tangents[0].z);			if (tx <= min) {				min = tx;				normal.set(1, 0, 0);			}			if (ty <= min) {				min = ty;				normal.set(0, 1, 0);			}			if (tz <= min) {				normal.set(0, 0, 1);			}			vec.crossVectors(tangents[0], normal).normalize();			normals[0].crossVectors(tangents[0], vec);			binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve			for (let i = 1; i <= segments; i++) {				normals[i] = normals[i - 1].clone();				binormals[i] = binormals[i - 1].clone();				vec.crossVectors(tangents[i - 1], tangents[i]);				if (vec.length() > Number.EPSILON) {					vec.normalize();					const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors					normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta));				}				binormals[i].crossVectors(tangents[i], normals[i]);			} // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same			if (closed === true) {				let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1));				theta /= segments;				if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) {					theta = -theta;				}				for (let i = 1; i <= segments; i++) {					// twist a little...					normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i));					binormals[i].crossVectors(tangents[i], normals[i]);				}			}			return {				tangents: tangents,				normals: normals,				binormals: binormals			};		}		clone() {			return new this.constructor().copy(this);		}		copy(source) {			this.arcLengthDivisions = source.arcLengthDivisions;			return this;		}		toJSON() {			const data = {				metadata: {					version: 4.5,					type: 'Curve',					generator: 'Curve.toJSON'				}			};			data.arcLengthDivisions = this.arcLengthDivisions;			data.type = this.type;			return data;		}		fromJSON(json) {			this.arcLengthDivisions = json.arcLengthDivisions;			return this;		}	}	class EllipseCurve extends Curve {		constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) {			super();			this.type = 'EllipseCurve';			this.aX = aX;			this.aY = aY;			this.xRadius = xRadius;			this.yRadius = yRadius;			this.aStartAngle = aStartAngle;			this.aEndAngle = aEndAngle;			this.aClockwise = aClockwise;			this.aRotation = aRotation;		}		getPoint(t, optionalTarget) {			const point = optionalTarget || new Vector2();			const twoPi = Math.PI * 2;			let deltaAngle = this.aEndAngle - this.aStartAngle;			const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI			while (deltaAngle < 0) deltaAngle += twoPi;			while (deltaAngle > twoPi) deltaAngle -= twoPi;			if (deltaAngle < Number.EPSILON) {				if (samePoints) {					deltaAngle = 0;				} else {					deltaAngle = twoPi;				}			}			if (this.aClockwise === true && !samePoints) {				if (deltaAngle === twoPi) {					deltaAngle = -twoPi;				} else {					deltaAngle = deltaAngle - twoPi;				}			}			const angle = this.aStartAngle + t * deltaAngle;			let x = this.aX + this.xRadius * Math.cos(angle);			let y = this.aY + this.yRadius * Math.sin(angle);			if (this.aRotation !== 0) {				const cos = Math.cos(this.aRotation);				const sin = Math.sin(this.aRotation);				const tx = x - this.aX;				const ty = y - this.aY; // Rotate the point about the center of the ellipse.				x = tx * cos - ty * sin + this.aX;				y = tx * sin + ty * cos + this.aY;			}			return point.set(x, y);		}		copy(source) {			super.copy(source);			this.aX = source.aX;			this.aY = source.aY;			this.xRadius = source.xRadius;			this.yRadius = source.yRadius;			this.aStartAngle = source.aStartAngle;			this.aEndAngle = source.aEndAngle;			this.aClockwise = source.aClockwise;			this.aRotation = source.aRotation;			return this;		}		toJSON() {			const data = super.toJSON();			data.aX = this.aX;			data.aY = this.aY;			data.xRadius = this.xRadius;			data.yRadius = this.yRadius;			data.aStartAngle = this.aStartAngle;			data.aEndAngle = this.aEndAngle;			data.aClockwise = this.aClockwise;			data.aRotation = this.aRotation;			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.aX = json.aX;			this.aY = json.aY;			this.xRadius = json.xRadius;			this.yRadius = json.yRadius;			this.aStartAngle = json.aStartAngle;			this.aEndAngle = json.aEndAngle;			this.aClockwise = json.aClockwise;			this.aRotation = json.aRotation;			return this;		}	}	EllipseCurve.prototype.isEllipseCurve = true;	class ArcCurve extends EllipseCurve {		constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {			super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);			this.type = 'ArcCurve';		}	}	ArcCurve.prototype.isArcCurve = true;	/**	 * Centripetal CatmullRom Curve - which is useful for avoiding	 * cusps and self-intersections in non-uniform catmull rom curves.	 * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf	 *	 * curve.type accepts centripetal(default), chordal and catmullrom	 * curve.tension is used for catmullrom which defaults to 0.5	 */	/*	Based on an optimized c++ solution in	 - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/	 - http://ideone.com/NoEbVM	This CubicPoly class could be used for reusing some variables and calculations,	but for three.js curve use, it could be possible inlined and flatten into a single function call	which can be placed in CurveUtils.	*/	function CubicPoly() {		let c0 = 0,				c1 = 0,				c2 = 0,				c3 = 0;		/*		 * Compute coefficients for a cubic polynomial		 *	 p(s) = c0 + c1*s + c2*s^2 + c3*s^3		 * such that		 *	 p(0) = x0, p(1) = x1		 *	and		 *	 p'(0) = t0, p'(1) = t1.		 */		function init(x0, x1, t0, t1) {			c0 = x0;			c1 = t0;			c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;			c3 = 2 * x0 - 2 * x1 + t0 + t1;		}		return {			initCatmullRom: function (x0, x1, x2, x3, tension) {				init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));			},			initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) {				// compute tangents when parameterized in [t1,t2]				let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;				let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1]				t1 *= dt1;				t2 *= dt1;				init(x1, x2, t1, t2);			},			calc: function (t) {				const t2 = t * t;				const t3 = t2 * t;				return c0 + c1 * t + c2 * t2 + c3 * t3;			}		};	} //	const tmp = new Vector3();	const px = new CubicPoly(),				py = new CubicPoly(),				pz = new CubicPoly();	class CatmullRomCurve3 extends Curve {		constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) {			super();			this.type = 'CatmullRomCurve3';			this.points = points;			this.closed = closed;			this.curveType = curveType;			this.tension = tension;		}		getPoint(t, optionalTarget = new Vector3()) {			const point = optionalTarget;			const points = this.points;			const l = points.length;			const p = (l - (this.closed ? 0 : 1)) * t;			let intPoint = Math.floor(p);			let weight = p - intPoint;			if (this.closed) {				intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;			} else if (weight === 0 && intPoint === l - 1) {				intPoint = l - 2;				weight = 1;			}			let p0, p3; // 4 points (p1 & p2 defined below)			if (this.closed || intPoint > 0) {				p0 = points[(intPoint - 1) % l];			} else {				// extrapolate first point				tmp.subVectors(points[0], points[1]).add(points[0]);				p0 = tmp;			}			const p1 = points[intPoint % l];			const p2 = points[(intPoint + 1) % l];			if (this.closed || intPoint + 2 < l) {				p3 = points[(intPoint + 2) % l];			} else {				// extrapolate last point				tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);				p3 = tmp;			}			if (this.curveType === 'centripetal' || this.curveType === 'chordal') {				// init Centripetal / Chordal Catmull-Rom				const pow = this.curveType === 'chordal' ? 0.5 : 0.25;				let dt0 = Math.pow(p0.distanceToSquared(p1), pow);				let dt1 = Math.pow(p1.distanceToSquared(p2), pow);				let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points				if (dt1 < 1e-4) dt1 = 1.0;				if (dt0 < 1e-4) dt0 = dt1;				if (dt2 < 1e-4) dt2 = dt1;				px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);				py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);				pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);			} else if (this.curveType === 'catmullrom') {				px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension);				py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension);				pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension);			}			point.set(px.calc(weight), py.calc(weight), pz.calc(weight));			return point;		}		copy(source) {			super.copy(source);			this.points = [];			for (let i = 0, l = source.points.length; i < l; i++) {				const point = source.points[i];				this.points.push(point.clone());			}			this.closed = source.closed;			this.curveType = source.curveType;			this.tension = source.tension;			return this;		}		toJSON() {			const data = super.toJSON();			data.points = [];			for (let i = 0, l = this.points.length; i < l; i++) {				const point = this.points[i];				data.points.push(point.toArray());			}			data.closed = this.closed;			data.curveType = this.curveType;			data.tension = this.tension;			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.points = [];			for (let i = 0, l = json.points.length; i < l; i++) {				const point = json.points[i];				this.points.push(new Vector3().fromArray(point));			}			this.closed = json.closed;			this.curveType = json.curveType;			this.tension = json.tension;			return this;		}	}	CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;	/**	 * Bezier Curves formulas obtained from	 * http://en.wikipedia.org/wiki/Bézier_curve	 */	function CatmullRom(t, p0, p1, p2, p3) {		const v0 = (p2 - p0) * 0.5;		const v1 = (p3 - p1) * 0.5;		const t2 = t * t;		const t3 = t * t2;		return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;	} //	function QuadraticBezierP0(t, p) {		const k = 1 - t;		return k * k * p;	}	function QuadraticBezierP1(t, p) {		return 2 * (1 - t) * t * p;	}	function QuadraticBezierP2(t, p) {		return t * t * p;	}	function QuadraticBezier(t, p0, p1, p2) {		return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2);	} //	function CubicBezierP0(t, p) {		const k = 1 - t;		return k * k * k * p;	}	function CubicBezierP1(t, p) {		const k = 1 - t;		return 3 * k * k * t * p;	}	function CubicBezierP2(t, p) {		return 3 * (1 - t) * t * t * p;	}	function CubicBezierP3(t, p) {		return t * t * t * p;	}	function CubicBezier(t, p0, p1, p2, p3) {		return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3);	}	class CubicBezierCurve extends Curve {		constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) {			super();			this.type = 'CubicBezierCurve';			this.v0 = v0;			this.v1 = v1;			this.v2 = v2;			this.v3 = v3;		}		getPoint(t, optionalTarget = new Vector2()) {			const point = optionalTarget;			const v0 = this.v0,						v1 = this.v1,						v2 = this.v2,						v3 = this.v3;			point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y));			return point;		}		copy(source) {			super.copy(source);			this.v0.copy(source.v0);			this.v1.copy(source.v1);			this.v2.copy(source.v2);			this.v3.copy(source.v3);			return this;		}		toJSON() {			const data = super.toJSON();			data.v0 = this.v0.toArray();			data.v1 = this.v1.toArray();			data.v2 = this.v2.toArray();			data.v3 = this.v3.toArray();			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.v0.fromArray(json.v0);			this.v1.fromArray(json.v1);			this.v2.fromArray(json.v2);			this.v3.fromArray(json.v3);			return this;		}	}	CubicBezierCurve.prototype.isCubicBezierCurve = true;	class CubicBezierCurve3 extends Curve {		constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) {			super();			this.type = 'CubicBezierCurve3';			this.v0 = v0;			this.v1 = v1;			this.v2 = v2;			this.v3 = v3;		}		getPoint(t, optionalTarget = new Vector3()) {			const point = optionalTarget;			const v0 = this.v0,						v1 = this.v1,						v2 = this.v2,						v3 = this.v3;			point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z));			return point;		}		copy(source) {			super.copy(source);			this.v0.copy(source.v0);			this.v1.copy(source.v1);			this.v2.copy(source.v2);			this.v3.copy(source.v3);			return this;		}		toJSON() {			const data = super.toJSON();			data.v0 = this.v0.toArray();			data.v1 = this.v1.toArray();			data.v2 = this.v2.toArray();			data.v3 = this.v3.toArray();			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.v0.fromArray(json.v0);			this.v1.fromArray(json.v1);			this.v2.fromArray(json.v2);			this.v3.fromArray(json.v3);			return this;		}	}	CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;	class LineCurve extends Curve {		constructor(v1 = new Vector2(), v2 = new Vector2()) {			super();			this.type = 'LineCurve';			this.v1 = v1;			this.v2 = v2;		}		getPoint(t, optionalTarget = new Vector2()) {			const point = optionalTarget;			if (t === 1) {				point.copy(this.v2);			} else {				point.copy(this.v2).sub(this.v1);				point.multiplyScalar(t).add(this.v1);			}			return point;		} // Line curve is linear, so we can overwrite default getPointAt		getPointAt(u, optionalTarget) {			return this.getPoint(u, optionalTarget);		}		getTangent(t, optionalTarget) {			const tangent = optionalTarget || new Vector2();			tangent.copy(this.v2).sub(this.v1).normalize();			return tangent;		}		copy(source) {			super.copy(source);			this.v1.copy(source.v1);			this.v2.copy(source.v2);			return this;		}		toJSON() {			const data = super.toJSON();			data.v1 = this.v1.toArray();			data.v2 = this.v2.toArray();			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.v1.fromArray(json.v1);			this.v2.fromArray(json.v2);			return this;		}	}	LineCurve.prototype.isLineCurve = true;	class LineCurve3 extends Curve {		constructor(v1 = new Vector3(), v2 = new Vector3()) {			super();			this.type = 'LineCurve3';			this.isLineCurve3 = true;			this.v1 = v1;			this.v2 = v2;		}		getPoint(t, optionalTarget = new Vector3()) {			const point = optionalTarget;			if (t === 1) {				point.copy(this.v2);			} else {				point.copy(this.v2).sub(this.v1);				point.multiplyScalar(t).add(this.v1);			}			return point;		} // Line curve is linear, so we can overwrite default getPointAt		getPointAt(u, optionalTarget) {			return this.getPoint(u, optionalTarget);		}		copy(source) {			super.copy(source);			this.v1.copy(source.v1);			this.v2.copy(source.v2);			return this;		}		toJSON() {			const data = super.toJSON();			data.v1 = this.v1.toArray();			data.v2 = this.v2.toArray();			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.v1.fromArray(json.v1);			this.v2.fromArray(json.v2);			return this;		}	}	class QuadraticBezierCurve extends Curve {		constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) {			super();			this.type = 'QuadraticBezierCurve';			this.v0 = v0;			this.v1 = v1;			this.v2 = v2;		}		getPoint(t, optionalTarget = new Vector2()) {			const point = optionalTarget;			const v0 = this.v0,						v1 = this.v1,						v2 = this.v2;			point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y));			return point;		}		copy(source) {			super.copy(source);			this.v0.copy(source.v0);			this.v1.copy(source.v1);			this.v2.copy(source.v2);			return this;		}		toJSON() {			const data = super.toJSON();			data.v0 = this.v0.toArray();			data.v1 = this.v1.toArray();			data.v2 = this.v2.toArray();			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.v0.fromArray(json.v0);			this.v1.fromArray(json.v1);			this.v2.fromArray(json.v2);			return this;		}	}	QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;	class QuadraticBezierCurve3 extends Curve {		constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) {			super();			this.type = 'QuadraticBezierCurve3';			this.v0 = v0;			this.v1 = v1;			this.v2 = v2;		}		getPoint(t, optionalTarget = new Vector3()) {			const point = optionalTarget;			const v0 = this.v0,						v1 = this.v1,						v2 = this.v2;			point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z));			return point;		}		copy(source) {			super.copy(source);			this.v0.copy(source.v0);			this.v1.copy(source.v1);			this.v2.copy(source.v2);			return this;		}		toJSON() {			const data = super.toJSON();			data.v0 = this.v0.toArray();			data.v1 = this.v1.toArray();			data.v2 = this.v2.toArray();			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.v0.fromArray(json.v0);			this.v1.fromArray(json.v1);			this.v2.fromArray(json.v2);			return this;		}	}	QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;	class SplineCurve extends Curve {		constructor(points = []) {			super();			this.type = 'SplineCurve';			this.points = points;		}		getPoint(t, optionalTarget = new Vector2()) {			const point = optionalTarget;			const points = this.points;			const p = (points.length - 1) * t;			const intPoint = Math.floor(p);			const weight = p - intPoint;			const p0 = points[intPoint === 0 ? intPoint : intPoint - 1];			const p1 = points[intPoint];			const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1];			const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2];			point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y));			return point;		}		copy(source) {			super.copy(source);			this.points = [];			for (let i = 0, l = source.points.length; i < l; i++) {				const point = source.points[i];				this.points.push(point.clone());			}			return this;		}		toJSON() {			const data = super.toJSON();			data.points = [];			for (let i = 0, l = this.points.length; i < l; i++) {				const point = this.points[i];				data.points.push(point.toArray());			}			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.points = [];			for (let i = 0, l = json.points.length; i < l; i++) {				const point = json.points[i];				this.points.push(new Vector2().fromArray(point));			}			return this;		}	}	SplineCurve.prototype.isSplineCurve = true;	var Curves = /*#__PURE__*/Object.freeze({		__proto__: null,		ArcCurve: ArcCurve,		CatmullRomCurve3: CatmullRomCurve3,		CubicBezierCurve: CubicBezierCurve,		CubicBezierCurve3: CubicBezierCurve3,		EllipseCurve: EllipseCurve,		LineCurve: LineCurve,		LineCurve3: LineCurve3,		QuadraticBezierCurve: QuadraticBezierCurve,		QuadraticBezierCurve3: QuadraticBezierCurve3,		SplineCurve: SplineCurve	});	/**************************************************************	 *	Curved Path - a curve path is simply a array of connected	 *	curves, but retains the api of a curve	 **************************************************************/	class CurvePath extends Curve {		constructor() {			super();			this.type = 'CurvePath';			this.curves = [];			this.autoClose = false; // Automatically closes the path		}		add(curve) {			this.curves.push(curve);		}		closePath() {			// Add a line curve if start and end of lines are not connected			const startPoint = this.curves[0].getPoint(0);			const endPoint = this.curves[this.curves.length - 1].getPoint(1);			if (!startPoint.equals(endPoint)) {				this.curves.push(new LineCurve(endPoint, startPoint));			}		} // To get accurate point with reference to		// entire path distance at time t,		// following has to be done:		// 1. Length of each sub path have to be known		// 2. Locate and identify type of curve		// 3. Get t for the curve		// 4. Return curve.getPointAt(t')		getPoint(t, optionalTarget) {			const d = t * this.getLength();			const curveLengths = this.getCurveLengths();			let i = 0; // To think about boundaries points.			while (i < curveLengths.length) {				if (curveLengths[i] >= d) {					const diff = curveLengths[i] - d;					const curve = this.curves[i];					const segmentLength = curve.getLength();					const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;					return curve.getPointAt(u, optionalTarget);				}				i++;			}			return null; // loop where sum != 0, sum > d , sum+1 <d		} // We cannot use the default THREE.Curve getPoint() with getLength() because in		// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath		// getPoint() depends on getLength		getLength() {			const lens = this.getCurveLengths();			return lens[lens.length - 1];		} // cacheLengths must be recalculated.		updateArcLengths() {			this.needsUpdate = true;			this.cacheLengths = null;			this.getCurveLengths();		} // Compute lengths and cache them		// We cannot overwrite getLengths() because UtoT mapping uses it.		getCurveLengths() {			// We use cache values if curves and cache array are same length			if (this.cacheLengths && this.cacheLengths.length === this.curves.length) {				return this.cacheLengths;			} // Get length of sub-curve			// Push sums into cached array			const lengths = [];			let sums = 0;			for (let i = 0, l = this.curves.length; i < l; i++) {				sums += this.curves[i].getLength();				lengths.push(sums);			}			this.cacheLengths = lengths;			return lengths;		}		getSpacedPoints(divisions = 40) {			const points = [];			for (let i = 0; i <= divisions; i++) {				points.push(this.getPoint(i / divisions));			}			if (this.autoClose) {				points.push(points[0]);			}			return points;		}		getPoints(divisions = 12) {			const points = [];			let last;			for (let i = 0, curves = this.curves; i < curves.length; i++) {				const curve = curves[i];				const resolution = curve && curve.isEllipseCurve ? divisions * 2 : curve && (curve.isLineCurve || curve.isLineCurve3) ? 1 : curve && curve.isSplineCurve ? divisions * curve.points.length : divisions;				const pts = curve.getPoints(resolution);				for (let j = 0; j < pts.length; j++) {					const point = pts[j];					if (last && last.equals(point)) continue; // ensures no consecutive points are duplicates					points.push(point);					last = point;				}			}			if (this.autoClose && points.length > 1 && !points[points.length - 1].equals(points[0])) {				points.push(points[0]);			}			return points;		}		copy(source) {			super.copy(source);			this.curves = [];			for (let i = 0, l = source.curves.length; i < l; i++) {				const curve = source.curves[i];				this.curves.push(curve.clone());			}			this.autoClose = source.autoClose;			return this;		}		toJSON() {			const data = super.toJSON();			data.autoClose = this.autoClose;			data.curves = [];			for (let i = 0, l = this.curves.length; i < l; i++) {				const curve = this.curves[i];				data.curves.push(curve.toJSON());			}			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.autoClose = json.autoClose;			this.curves = [];			for (let i = 0, l = json.curves.length; i < l; i++) {				const curve = json.curves[i];				this.curves.push(new Curves[curve.type]().fromJSON(curve));			}			return this;		}	}	class Path extends CurvePath {		constructor(points) {			super();			this.type = 'Path';			this.currentPoint = new Vector2();			if (points) {				this.setFromPoints(points);			}		}		setFromPoints(points) {			this.moveTo(points[0].x, points[0].y);			for (let i = 1, l = points.length; i < l; i++) {				this.lineTo(points[i].x, points[i].y);			}			return this;		}		moveTo(x, y) {			this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying?			return this;		}		lineTo(x, y) {			const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y));			this.curves.push(curve);			this.currentPoint.set(x, y);			return this;		}		quadraticCurveTo(aCPx, aCPy, aX, aY) {			const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY));			this.curves.push(curve);			this.currentPoint.set(aX, aY);			return this;		}		bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {			const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY));			this.curves.push(curve);			this.currentPoint.set(aX, aY);			return this;		}		splineThru(pts		/*Array of Vector*/		) {			const npts = [this.currentPoint.clone()].concat(pts);			const curve = new SplineCurve(npts);			this.curves.push(curve);			this.currentPoint.copy(pts[pts.length - 1]);			return this;		}		arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {			const x0 = this.currentPoint.x;			const y0 = this.currentPoint.y;			this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise);			return this;		}		absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {			this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);			return this;		}		ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {			const x0 = this.currentPoint.x;			const y0 = this.currentPoint.y;			this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);			return this;		}		absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {			const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);			if (this.curves.length > 0) {				// if a previous curve is present, attempt to join				const firstPoint = curve.getPoint(0);				if (!firstPoint.equals(this.currentPoint)) {					this.lineTo(firstPoint.x, firstPoint.y);				}			}			this.curves.push(curve);			const lastPoint = curve.getPoint(1);			this.currentPoint.copy(lastPoint);			return this;		}		copy(source) {			super.copy(source);			this.currentPoint.copy(source.currentPoint);			return this;		}		toJSON() {			const data = super.toJSON();			data.currentPoint = this.currentPoint.toArray();			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.currentPoint.fromArray(json.currentPoint);			return this;		}	}	class Shape extends Path {		constructor(points) {			super(points);			this.uuid = generateUUID();			this.type = 'Shape';			this.holes = [];		}		getPointsHoles(divisions) {			const holesPts = [];			for (let i = 0, l = this.holes.length; i < l; i++) {				holesPts[i] = this.holes[i].getPoints(divisions);			}			return holesPts;		} // get points of shape and holes (keypoints based on segments parameter)		extractPoints(divisions) {			return {				shape: this.getPoints(divisions),				holes: this.getPointsHoles(divisions)			};		}		copy(source) {			super.copy(source);			this.holes = [];			for (let i = 0, l = source.holes.length; i < l; i++) {				const hole = source.holes[i];				this.holes.push(hole.clone());			}			return this;		}		toJSON() {			const data = super.toJSON();			data.uuid = this.uuid;			data.holes = [];			for (let i = 0, l = this.holes.length; i < l; i++) {				const hole = this.holes[i];				data.holes.push(hole.toJSON());			}			return data;		}		fromJSON(json) {			super.fromJSON(json);			this.uuid = json.uuid;			this.holes = [];			for (let i = 0, l = json.holes.length; i < l; i++) {				const hole = json.holes[i];				this.holes.push(new Path().fromJSON(hole));			}			return this;		}	}	/**	 * Port from https://github.com/mapbox/earcut (v2.2.2)	 */	const Earcut = {		triangulate: function (data, holeIndices, dim = 2) {			const hasHoles = holeIndices && holeIndices.length;			const outerLen = hasHoles ? holeIndices[0] * dim : data.length;			let outerNode = linkedList(data, 0, outerLen, dim, true);			const triangles = [];			if (!outerNode || outerNode.next === outerNode.prev) return triangles;			let minX, minY, maxX, maxY, x, y, invSize;			if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox			if (data.length > 80 * dim) {				minX = maxX = data[0];				minY = maxY = data[1];				for (let i = dim; i < outerLen; i += dim) {					x = data[i];					y = data[i + 1];					if (x < minX) minX = x;					if (y < minY) minY = y;					if (x > maxX) maxX = x;					if (y > maxY) maxY = y;				} // minX, minY and invSize are later used to transform coords into integers for z-order calculation				invSize = Math.max(maxX - minX, maxY - minY);				invSize = invSize !== 0 ? 1 / invSize : 0;			}			earcutLinked(outerNode, triangles, dim, minX, minY, invSize);			return triangles;		}	}; // create a circular doubly linked list from polygon points in the specified winding order	function linkedList(data, start, end, dim, clockwise) {		let i, last;		if (clockwise === signedArea(data, start, end, dim) > 0) {			for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);		} else {			for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);		}		if (last && equals(last, last.next)) {			removeNode(last);			last = last.next;		}		return last;	} // eliminate colinear or duplicate points	function filterPoints(start, end) {		if (!start) return start;		if (!end) end = start;		let p = start,				again;		do {			again = false;			if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {				removeNode(p);				p = end = p.prev;				if (p === p.next) break;				again = true;			} else {				p = p.next;			}		} while (again || p !== end);		return end;	} // main ear slicing loop which triangulates a polygon (given as a linked list)	function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {		if (!ear) return; // interlink polygon nodes in z-order		if (!pass && invSize) indexCurve(ear, minX, minY, invSize);		let stop = ear,				prev,				next; // iterate through ears, slicing them one by one		while (ear.prev !== ear.next) {			prev = ear.prev;			next = ear.next;			if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {				// cut off the triangle				triangles.push(prev.i / dim);				triangles.push(ear.i / dim);				triangles.push(next.i / dim);				removeNode(ear); // skipping the next vertex leads to less sliver triangles				ear = next.next;				stop = next.next;				continue;			}			ear = next; // if we looped through the whole remaining polygon and can't find any more ears			if (ear === stop) {				// try filtering points and slicing again				if (!pass) {					earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally				} else if (pass === 1) {					ear = cureLocalIntersections(filterPoints(ear), triangles, dim);					earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two				} else if (pass === 2) {					splitEarcut(ear, triangles, dim, minX, minY, invSize);				}				break;			}		}	} // check whether a polygon node forms a valid ear with adjacent nodes	function isEar(ear) {		const a = ear.prev,					b = ear,					c = ear.next;		if (area(a, b, c) >= 0) return false; // reflex, can't be an ear		// now make sure we don't have other points inside the potential ear		let p = ear.next.next;		while (p !== ear.prev) {			if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;			p = p.next;		}		return true;	}	function isEarHashed(ear, minX, minY, invSize) {		const a = ear.prev,					b = ear,					c = ear.next;		if (area(a, b, c) >= 0) return false; // reflex, can't be an ear		// triangle bbox; min & max are calculated like this for speed		const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x,					minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y,					maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x,					maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox;		const minZ = zOrder(minTX, minTY, minX, minY, invSize),					maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);		let p = ear.prevZ,				n = ear.nextZ; // look for points inside the triangle in both directions		while (p && p.z >= minZ && n && n.z <= maxZ) {			if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;			p = p.prevZ;			if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;			n = n.nextZ;		} // look for remaining points in decreasing z-order		while (p && p.z >= minZ) {			if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;			p = p.prevZ;		} // look for remaining points in increasing z-order		while (n && n.z <= maxZ) {			if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;			n = n.nextZ;		}		return true;	} // go through all polygon nodes and cure small local self-intersections	function cureLocalIntersections(start, triangles, dim) {		let p = start;		do {			const a = p.prev,						b = p.next.next;			if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {				triangles.push(a.i / dim);				triangles.push(p.i / dim);				triangles.push(b.i / dim); // remove two nodes involved				removeNode(p);				removeNode(p.next);				p = start = b;			}			p = p.next;		} while (p !== start);		return filterPoints(p);	} // try splitting polygon into two and triangulate them independently	function splitEarcut(start, triangles, dim, minX, minY, invSize) {		// look for a valid diagonal that divides the polygon into two		let a = start;		do {			let b = a.next.next;			while (b !== a.prev) {				if (a.i !== b.i && isValidDiagonal(a, b)) {					// split the polygon in two by the diagonal					let c = splitPolygon(a, b); // filter colinear points around the cuts					a = filterPoints(a, a.next);					c = filterPoints(c, c.next); // run earcut on each half					earcutLinked(a, triangles, dim, minX, minY, invSize);					earcutLinked(c, triangles, dim, minX, minY, invSize);					return;				}				b = b.next;			}			a = a.next;		} while (a !== start);	} // link every hole into the outer loop, producing a single-ring polygon without holes	function eliminateHoles(data, holeIndices, outerNode, dim) {		const queue = [];		let i, len, start, end, list;		for (i = 0, len = holeIndices.length; i < len; i++) {			start = holeIndices[i] * dim;			end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;			list = linkedList(data, start, end, dim, false);			if (list === list.next) list.steiner = true;			queue.push(getLeftmost(list));		}		queue.sort(compareX); // process holes from left to right		for (i = 0; i < queue.length; i++) {			eliminateHole(queue[i], outerNode);			outerNode = filterPoints(outerNode, outerNode.next);		}		return outerNode;	}	function compareX(a, b) {		return a.x - b.x;	} // find a bridge between vertices that connects hole with an outer ring and and link it	function eliminateHole(hole, outerNode) {		outerNode = findHoleBridge(hole, outerNode);		if (outerNode) {			const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts			filterPoints(outerNode, outerNode.next);			filterPoints(b, b.next);		}	} // David Eberly's algorithm for finding a bridge between hole and outer polygon	function findHoleBridge(hole, outerNode) {		let p = outerNode;		const hx = hole.x;		const hy = hole.y;		let qx = -Infinity,				m; // find a segment intersected by a ray from the hole's leftmost point to the left;		// segment's endpoint with lesser x will be potential connection point		do {			if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {				const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);				if (x <= hx && x > qx) {					qx = x;					if (x === hx) {						if (hy === p.y) return p;						if (hy === p.next.y) return p.next;					}					m = p.x < p.next.x ? p : p.next;				}			}			p = p.next;		} while (p !== outerNode);		if (!m) return null;		if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint		// look for points inside the triangle of hole point, segment intersection and endpoint;		// if there are no points found, we have a valid connection;		// otherwise choose the point of the minimum angle with the ray as connection point		const stop = m,					mx = m.x,					my = m.y;		let tanMin = Infinity,				tan;		p = m;		do {			if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {				tan = Math.abs(hy - p.y) / (hx - p.x); // tangential				if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) {					m = p;					tanMin = tan;				}			}			p = p.next;		} while (p !== stop);		return m;	} // whether sector in vertex m contains sector in vertex p in the same coordinates	function sectorContainsSector(m, p) {		return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;	} // interlink polygon nodes in z-order	function indexCurve(start, minX, minY, invSize) {		let p = start;		do {			if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);			p.prevZ = p.prev;			p.nextZ = p.next;			p = p.next;		} while (p !== start);		p.prevZ.nextZ = null;		p.prevZ = null;		sortLinked(p);	} // Simon Tatham's linked list merge sort algorithm	// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html	function sortLinked(list) {		let i,				p,				q,				e,				tail,				numMerges,				pSize,				qSize,				inSize = 1;		do {			p = list;			list = null;			tail = null;			numMerges = 0;			while (p) {				numMerges++;				q = p;				pSize = 0;				for (i = 0; i < inSize; i++) {					pSize++;					q = q.nextZ;					if (!q) break;				}				qSize = inSize;				while (pSize > 0 || qSize > 0 && q) {					if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {						e = p;						p = p.nextZ;						pSize--;					} else {						e = q;						q = q.nextZ;						qSize--;					}					if (tail) tail.nextZ = e;else list = e;					e.prevZ = tail;					tail = e;				}				p = q;			}			tail.nextZ = null;			inSize *= 2;		} while (numMerges > 1);		return list;	} // z-order of a point given coords and inverse of the longer side of data bbox	function zOrder(x, y, minX, minY, invSize) {		// coords are transformed into non-negative 15-bit integer range		x = 32767 * (x - minX) * invSize;		y = 32767 * (y - minY) * invSize;		x = (x | x << 8) & 0x00FF00FF;		x = (x | x << 4) & 0x0F0F0F0F;		x = (x | x << 2) & 0x33333333;		x = (x | x << 1) & 0x55555555;		y = (y | y << 8) & 0x00FF00FF;		y = (y | y << 4) & 0x0F0F0F0F;		y = (y | y << 2) & 0x33333333;		y = (y | y << 1) & 0x55555555;		return x | y << 1;	} // find the leftmost node of a polygon ring	function getLeftmost(start) {		let p = start,				leftmost = start;		do {			if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p;			p = p.next;		} while (p !== start);		return leftmost;	} // check if a point lies within a convex triangle	function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {		return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;	} // check if a diagonal between two polygon nodes is valid (lies in polygon interior)	function isValidDiagonal(a, b) {		return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && ( // dones't intersect other edges		locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && ( // locally visible		area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors		equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case	} // signed area of a triangle	function area(p, q, r) {		return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);	} // check if two points are equal	function equals(p1, p2) {		return p1.x === p2.x && p1.y === p2.y;	} // check if two segments intersect	function intersects(p1, q1, p2, q2) {		const o1 = sign(area(p1, q1, p2));		const o2 = sign(area(p1, q1, q2));		const o3 = sign(area(p2, q2, p1));		const o4 = sign(area(p2, q2, q1));		if (o1 !== o2 && o3 !== o4) return true; // general case		if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1		if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1		if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2		if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2		return false;	} // for collinear points p, q, r, check if point q lies on segment pr	function onSegment(p, q, r) {		return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);	}	function sign(num) {		return num > 0 ? 1 : num < 0 ? -1 : 0;	} // check if a polygon diagonal intersects any polygon segments	function intersectsPolygon(a, b) {		let p = a;		do {			if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true;			p = p.next;		} while (p !== a);		return false;	} // check if a polygon diagonal is locally inside the polygon	function locallyInside(a, b) {		return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;	} // check if the middle point of a polygon diagonal is inside the polygon	function middleInside(a, b) {		let p = a,				inside = false;		const px = (a.x + b.x) / 2,					py = (a.y + b.y) / 2;		do {			if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside;			p = p.next;		} while (p !== a);		return inside;	} // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;	// if one belongs to the outer ring and another to a hole, it merges it into a single ring	function splitPolygon(a, b) {		const a2 = new Node(a.i, a.x, a.y),					b2 = new Node(b.i, b.x, b.y),					an = a.next,					bp = b.prev;		a.next = b;		b.prev = a;		a2.next = an;		an.prev = a2;		b2.next = a2;		a2.prev = b2;		bp.next = b2;		b2.prev = bp;		return b2;	} // create a node and optionally link it with previous one (in a circular doubly linked list)	function insertNode(i, x, y, last) {		const p = new Node(i, x, y);		if (!last) {			p.prev = p;			p.next = p;		} else {			p.next = last.next;			p.prev = last;			last.next.prev = p;			last.next = p;		}		return p;	}	function removeNode(p) {		p.next.prev = p.prev;		p.prev.next = p.next;		if (p.prevZ) p.prevZ.nextZ = p.nextZ;		if (p.nextZ) p.nextZ.prevZ = p.prevZ;	}	function Node(i, x, y) {		// vertex index in coordinates array		this.i = i; // vertex coordinates		this.x = x;		this.y = y; // previous and next vertex nodes in a polygon ring		this.prev = null;		this.next = null; // z-order curve value		this.z = null; // previous and next nodes in z-order		this.prevZ = null;		this.nextZ = null; // indicates whether this is a steiner point		this.steiner = false;	}	function signedArea(data, start, end, dim) {		let sum = 0;		for (let i = start, j = end - dim; i < end; i += dim) {			sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);			j = i;		}		return sum;	}	class ShapeUtils {		// calculate area of the contour polygon		static area(contour) {			const n = contour.length;			let a = 0.0;			for (let p = n - 1, q = 0; q < n; p = q++) {				a += contour[p].x * contour[q].y - contour[q].x * contour[p].y;			}			return a * 0.5;		}		static isClockWise(pts) {			return ShapeUtils.area(pts) < 0;		}		static triangulateShape(contour, holes) {			const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]			const holeIndices = []; // array of hole indices			const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]			removeDupEndPts(contour);			addContour(vertices, contour); //			let holeIndex = contour.length;			holes.forEach(removeDupEndPts);			for (let i = 0; i < holes.length; i++) {				holeIndices.push(holeIndex);				holeIndex += holes[i].length;				addContour(vertices, holes[i]);			} //			const triangles = Earcut.triangulate(vertices, holeIndices); //			for (let i = 0; i < triangles.length; i += 3) {				faces.push(triangles.slice(i, i + 3));			}			return faces;		}	}	function removeDupEndPts(points) {		const l = points.length;		if (l > 2 && points[l - 1].equals(points[0])) {			points.pop();		}	}	function addContour(vertices, contour) {		for (let i = 0; i < contour.length; i++) {			vertices.push(contour[i].x);			vertices.push(contour[i].y);		}	}	/**	 * Creates extruded geometry from a path shape.	 *	 * parameters = {	 *	 *	curveSegments: <int>, // number of points on the curves	 *	steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too	 *	depth: <float>, // Depth to extrude the shape	 *	 *	bevelEnabled: <bool>, // turn on bevel	 *	bevelThickness: <float>, // how deep into the original shape bevel goes	 *	bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel	 *	bevelOffset: <float>, // how far from shape outline does bevel start	 *	bevelSegments: <int>, // number of bevel layers	 *	 *	extrudePath: <THREE.Curve> // curve to extrude shape along	 *	 *	UVGenerator: <Object> // object that provides UV generator functions	 *	 * }	 */	class ExtrudeGeometry extends BufferGeometry {		constructor(shapes = new Shape([new Vector2(0.5, 0.5), new Vector2(-0.5, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), options = {}) {			super();			this.type = 'ExtrudeGeometry';			this.parameters = {				shapes: shapes,				options: options			};			shapes = Array.isArray(shapes) ? shapes : [shapes];			const scope = this;			const verticesArray = [];			const uvArray = [];			for (let i = 0, l = shapes.length; i < l; i++) {				const shape = shapes[i];				addShape(shape);			} // build geometry			this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2));			this.computeVertexNormals(); // functions			function addShape(shape) {				const placeholder = []; // options				const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;				const steps = options.steps !== undefined ? options.steps : 1;				let depth = options.depth !== undefined ? options.depth : 1;				let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;				let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2;				let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1;				let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;				let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;				const extrudePath = options.extrudePath;				const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options				if (options.amount !== undefined) {					console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.');					depth = options.amount;				} //				let extrudePts,						extrudeByPath = false;				let splineTube, binormal, normal, position2;				if (extrudePath) {					extrudePts = extrudePath.getSpacedPoints(steps);					extrudeByPath = true;					bevelEnabled = false; // bevels not supported for path extrusion					// SETUP TNB variables					// TODO1 - have a .isClosed in spline?					splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);					binormal = new Vector3();					normal = new Vector3();					position2 = new Vector3();				} // Safeguards if bevels are not enabled				if (!bevelEnabled) {					bevelSegments = 0;					bevelThickness = 0;					bevelSize = 0;					bevelOffset = 0;				} // Variables initialization				const shapePoints = shape.extractPoints(curveSegments);				let vertices = shapePoints.shape;				const holes = shapePoints.holes;				const reverse = !ShapeUtils.isClockWise(vertices);				if (reverse) {					vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ...					for (let h = 0, hl = holes.length; h < hl; h++) {						const ahole = holes[h];						if (ShapeUtils.isClockWise(ahole)) {							holes[h] = ahole.reverse();						}					}				}				const faces = ShapeUtils.triangulateShape(vertices, holes);				/* Vertices */				const contour = vertices; // vertices has all points but contour has only points of circumference				for (let h = 0, hl = holes.length; h < hl; h++) {					const ahole = holes[h];					vertices = vertices.concat(ahole);				}				function scalePt2(pt, vec, size) {					if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist');					return vec.clone().multiplyScalar(size).add(pt);				}				const vlen = vertices.length,							flen = faces.length; // Find directions for point movement				function getBevelVec(inPt, inPrev, inNext) {					// computes for inPt the corresponding point inPt' on a new contour					//	 shifted by 1 unit (length of normalized vector) to the left					// if we walk along contour clockwise, this new contour is outside the old one					//					// inPt' is the intersection of the two lines parallel to the two					//	adjacent edges of inPt at a distance of 1 unit on the left side.					let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt					// good reading for geometry algorithms (here: line-line intersection)					// http://geomalgorithms.com/a05-_intersect-1.html					const v_prev_x = inPt.x - inPrev.x,								v_prev_y = inPt.y - inPrev.y;					const v_next_x = inNext.x - inPt.x,								v_next_y = inNext.y - inPt.y;					const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges					const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x;					if (Math.abs(collinear0) > Number.EPSILON) {						// not collinear						// length of vectors for normalizing						const v_prev_len = Math.sqrt(v_prev_lensq);						const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left						const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len;						const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len;						const ptNextShift_x = inNext.x - v_next_y / v_next_len;						const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point						const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point						v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x;						v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly						//	but prevent crazy spikes						const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y;						if (v_trans_lensq <= 2) {							return new Vector2(v_trans_x, v_trans_y);						} else {							shrink_by = Math.sqrt(v_trans_lensq / 2);						}					} else {						// handle special case of collinear edges						let direction_eq = false; // assumes: opposite						if (v_prev_x > Number.EPSILON) {							if (v_next_x > Number.EPSILON) {								direction_eq = true;							}						} else {							if (v_prev_x < -Number.EPSILON) {								if (v_next_x < -Number.EPSILON) {									direction_eq = true;								}							} else {								if (Math.sign(v_prev_y) === Math.sign(v_next_y)) {									direction_eq = true;								}							}						}						if (direction_eq) {							// console.log("Warning: lines are a straight sequence");							v_trans_x = -v_prev_y;							v_trans_y = v_prev_x;							shrink_by = Math.sqrt(v_prev_lensq);						} else {							// console.log("Warning: lines are a straight spike");							v_trans_x = v_prev_x;							v_trans_y = v_prev_y;							shrink_by = Math.sqrt(v_prev_lensq / 2);						}					}					return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by);				}				const contourMovements = [];				for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {					if (j === il) j = 0;					if (k === il) k = 0; //	(j)---(i)---(k)					// console.log('i,j,k', i, j , k)					contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]);				}				const holesMovements = [];				let oneHoleMovements,						verticesMovements = contourMovements.concat();				for (let h = 0, hl = holes.length; h < hl; h++) {					const ahole = holes[h];					oneHoleMovements = [];					for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {						if (j === il) j = 0;						if (k === il) k = 0; //	(j)---(i)---(k)						oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]);					}					holesMovements.push(oneHoleMovements);					verticesMovements = verticesMovements.concat(oneHoleMovements);				} // Loop bevelSegments, 1 for the front, 1 for the back				for (let b = 0; b < bevelSegments; b++) {					//for ( b = bevelSegments; b > 0; b -- ) {					const t = b / bevelSegments;					const z = bevelThickness * Math.cos(t * Math.PI / 2);					const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape					for (let i = 0, il = contour.length; i < il; i++) {						const vert = scalePt2(contour[i], contourMovements[i], bs);						v(vert.x, vert.y, -z);					} // expand holes					for (let h = 0, hl = holes.length; h < hl; h++) {						const ahole = holes[h];						oneHoleMovements = holesMovements[h];						for (let i = 0, il = ahole.length; i < il; i++) {							const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);							v(vert.x, vert.y, -z);						}					}				}				const bs = bevelSize + bevelOffset; // Back facing vertices				for (let i = 0; i < vlen; i++) {					const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];					if (!extrudeByPath) {						v(vert.x, vert.y, 0);					} else {						// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );						normal.copy(splineTube.normals[0]).multiplyScalar(vert.x);						binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y);						position2.copy(extrudePts[0]).add(normal).add(binormal);						v(position2.x, position2.y, position2.z);					}				} // Add stepped vertices...				// Including front facing vertices				for (let s = 1; s <= steps; s++) {					for (let i = 0; i < vlen; i++) {						const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];						if (!extrudeByPath) {							v(vert.x, vert.y, depth / steps * s);						} else {							// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );							normal.copy(splineTube.normals[s]).multiplyScalar(vert.x);							binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y);							position2.copy(extrudePts[s]).add(normal).add(binormal);							v(position2.x, position2.y, position2.z);						}					}				} // Add bevel segments planes				//for ( b = 1; b <= bevelSegments; b ++ ) {				for (let b = bevelSegments - 1; b >= 0; b--) {					const t = b / bevelSegments;					const z = bevelThickness * Math.cos(t * Math.PI / 2);					const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape					for (let i = 0, il = contour.length; i < il; i++) {						const vert = scalePt2(contour[i], contourMovements[i], bs);						v(vert.x, vert.y, depth + z);					} // expand holes					for (let h = 0, hl = holes.length; h < hl; h++) {						const ahole = holes[h];						oneHoleMovements = holesMovements[h];						for (let i = 0, il = ahole.length; i < il; i++) {							const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);							if (!extrudeByPath) {								v(vert.x, vert.y, depth + z);							} else {								v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z);							}						}					}				}				/* Faces */				// Top and bottom faces				buildLidFaces(); // Sides faces				buildSideFaces(); /////	Internal functions				function buildLidFaces() {					const start = verticesArray.length / 3;					if (bevelEnabled) {						let layer = 0; // steps + 1						let offset = vlen * layer; // Bottom faces						for (let i = 0; i < flen; i++) {							const face = faces[i];							f3(face[2] + offset, face[1] + offset, face[0] + offset);						}						layer = steps + bevelSegments * 2;						offset = vlen * layer; // Top faces						for (let i = 0; i < flen; i++) {							const face = faces[i];							f3(face[0] + offset, face[1] + offset, face[2] + offset);						}					} else {						// Bottom faces						for (let i = 0; i < flen; i++) {							const face = faces[i];							f3(face[2], face[1], face[0]);						} // Top faces						for (let i = 0; i < flen; i++) {							const face = faces[i];							f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps);						}					}					scope.addGroup(start, verticesArray.length / 3 - start, 0);				} // Create faces for the z-sides of the shape				function buildSideFaces() {					const start = verticesArray.length / 3;					let layeroffset = 0;					sidewalls(contour, layeroffset);					layeroffset += contour.length;					for (let h = 0, hl = holes.length; h < hl; h++) {						const ahole = holes[h];						sidewalls(ahole, layeroffset); //, true						layeroffset += ahole.length;					}					scope.addGroup(start, verticesArray.length / 3 - start, 1);				}				function sidewalls(contour, layeroffset) {					let i = contour.length;					while (--i >= 0) {						const j = i;						let k = i - 1;						if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length);						for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) {							const slen1 = vlen * s;							const slen2 = vlen * (s + 1);							const a = layeroffset + j + slen1,										b = layeroffset + k + slen1,										c = layeroffset + k + slen2,										d = layeroffset + j + slen2;							f4(a, b, c, d);						}					}				}				function v(x, y, z) {					placeholder.push(x);					placeholder.push(y);					placeholder.push(z);				}				function f3(a, b, c) {					addVertex(a);					addVertex(b);					addVertex(c);					const nextIndex = verticesArray.length / 3;					const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1);					addUV(uvs[0]);					addUV(uvs[1]);					addUV(uvs[2]);				}				function f4(a, b, c, d) {					addVertex(a);					addVertex(b);					addVertex(d);					addVertex(b);					addVertex(c);					addVertex(d);					const nextIndex = verticesArray.length / 3;					const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1);					addUV(uvs[0]);					addUV(uvs[1]);					addUV(uvs[3]);					addUV(uvs[1]);					addUV(uvs[2]);					addUV(uvs[3]);				}				function addVertex(index) {					verticesArray.push(placeholder[index * 3 + 0]);					verticesArray.push(placeholder[index * 3 + 1]);					verticesArray.push(placeholder[index * 3 + 2]);				}				function addUV(vector2) {					uvArray.push(vector2.x);					uvArray.push(vector2.y);				}			}		}		toJSON() {			const data = super.toJSON();			const shapes = this.parameters.shapes;			const options = this.parameters.options;			return toJSON$1(shapes, options, data);		}		static fromJSON(data, shapes) {			const geometryShapes = [];			for (let j = 0, jl = data.shapes.length; j < jl; j++) {				const shape = shapes[data.shapes[j]];				geometryShapes.push(shape);			}			const extrudePath = data.options.extrudePath;			if (extrudePath !== undefined) {				data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath);			}			return new ExtrudeGeometry(geometryShapes, data.options);		}	}	const WorldUVGenerator = {		generateTopUV: function (geometry, vertices, indexA, indexB, indexC) {			const a_x = vertices[indexA * 3];			const a_y = vertices[indexA * 3 + 1];			const b_x = vertices[indexB * 3];			const b_y = vertices[indexB * 3 + 1];			const c_x = vertices[indexC * 3];			const c_y = vertices[indexC * 3 + 1];			return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)];		},		generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) {			const a_x = vertices[indexA * 3];			const a_y = vertices[indexA * 3 + 1];			const a_z = vertices[indexA * 3 + 2];			const b_x = vertices[indexB * 3];			const b_y = vertices[indexB * 3 + 1];			const b_z = vertices[indexB * 3 + 2];			const c_x = vertices[indexC * 3];			const c_y = vertices[indexC * 3 + 1];			const c_z = vertices[indexC * 3 + 2];			const d_x = vertices[indexD * 3];			const d_y = vertices[indexD * 3 + 1];			const d_z = vertices[indexD * 3 + 2];			if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) {				return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)];			} else {				return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)];			}		}	};	function toJSON$1(shapes, options, data) {		data.shapes = [];		if (Array.isArray(shapes)) {			for (let i = 0, l = shapes.length; i < l; i++) {				const shape = shapes[i];				data.shapes.push(shape.uuid);			}		} else {			data.shapes.push(shapes.uuid);		}		if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON();		return data;	}	class IcosahedronGeometry extends PolyhedronGeometry {		constructor(radius = 1, detail = 0) {			const t = (1 + Math.sqrt(5)) / 2;			const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1];			const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1];			super(vertices, indices, radius, detail);			this.type = 'IcosahedronGeometry';			this.parameters = {				radius: radius,				detail: detail			};		}		static fromJSON(data) {			return new IcosahedronGeometry(data.radius, data.detail);		}	}	class LatheGeometry extends BufferGeometry {		constructor(points = [new Vector2(0, 0.5), new Vector2(0.5, 0), new Vector2(0, -0.5)], segments = 12, phiStart = 0, phiLength = Math.PI * 2) {			super();			this.type = 'LatheGeometry';			this.parameters = {				points: points,				segments: segments,				phiStart: phiStart,				phiLength: phiLength			};			segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ]			phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers			const indices = [];			const vertices = [];			const uvs = []; // helper variables			const inverseSegments = 1.0 / segments;			const vertex = new Vector3();			const uv = new Vector2(); // generate vertices and uvs			for (let i = 0; i <= segments; i++) {				const phi = phiStart + i * inverseSegments * phiLength;				const sin = Math.sin(phi);				const cos = Math.cos(phi);				for (let j = 0; j <= points.length - 1; j++) {					// vertex					vertex.x = points[j].x * sin;					vertex.y = points[j].y;					vertex.z = points[j].x * cos;					vertices.push(vertex.x, vertex.y, vertex.z); // uv					uv.x = i / segments;					uv.y = j / (points.length - 1);					uvs.push(uv.x, uv.y);				}			} // indices			for (let i = 0; i < segments; i++) {				for (let j = 0; j < points.length - 1; j++) {					const base = j + i * points.length;					const a = base;					const b = base + points.length;					const c = base + points.length + 1;					const d = base + 1; // faces					indices.push(a, b, d);					indices.push(b, c, d);				}			} // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals			this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam.			// because the corresponding vertices are identical (but still have different UVs).			if (phiLength === Math.PI * 2) {				const normals = this.attributes.normal.array;				const n1 = new Vector3();				const n2 = new Vector3();				const n = new Vector3(); // this is the buffer offset for the last line of vertices				const base = segments * points.length * 3;				for (let i = 0, j = 0; i < points.length; i++, j += 3) {					// select the normal of the vertex in the first line					n1.x = normals[j + 0];					n1.y = normals[j + 1];					n1.z = normals[j + 2]; // select the normal of the vertex in the last line					n2.x = normals[base + j + 0];					n2.y = normals[base + j + 1];					n2.z = normals[base + j + 2]; // average normals					n.addVectors(n1, n2).normalize(); // assign the new values to both normals					normals[j + 0] = normals[base + j + 0] = n.x;					normals[j + 1] = normals[base + j + 1] = n.y;					normals[j + 2] = normals[base + j + 2] = n.z;				}			}		}		static fromJSON(data) {			return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength);		}	}	class OctahedronGeometry extends PolyhedronGeometry {		constructor(radius = 1, detail = 0) {			const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1];			const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2];			super(vertices, indices, radius, detail);			this.type = 'OctahedronGeometry';			this.parameters = {				radius: radius,				detail: detail			};		}		static fromJSON(data) {			return new OctahedronGeometry(data.radius, data.detail);		}	}	class RingGeometry extends BufferGeometry {		constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) {			super();			this.type = 'RingGeometry';			this.parameters = {				innerRadius: innerRadius,				outerRadius: outerRadius,				thetaSegments: thetaSegments,				phiSegments: phiSegments,				thetaStart: thetaStart,				thetaLength: thetaLength			};			thetaSegments = Math.max(3, thetaSegments);			phiSegments = Math.max(1, phiSegments); // buffers			const indices = [];			const vertices = [];			const normals = [];			const uvs = []; // some helper variables			let radius = innerRadius;			const radiusStep = (outerRadius - innerRadius) / phiSegments;			const vertex = new Vector3();			const uv = new Vector2(); // generate vertices, normals and uvs			for (let j = 0; j <= phiSegments; j++) {				for (let i = 0; i <= thetaSegments; i++) {					// values are generate from the inside of the ring to the outside					const segment = thetaStart + i / thetaSegments * thetaLength; // vertex					vertex.x = radius * Math.cos(segment);					vertex.y = radius * Math.sin(segment);					vertices.push(vertex.x, vertex.y, vertex.z); // normal					normals.push(0, 0, 1); // uv					uv.x = (vertex.x / outerRadius + 1) / 2;					uv.y = (vertex.y / outerRadius + 1) / 2;					uvs.push(uv.x, uv.y);				} // increase the radius for next row of vertices				radius += radiusStep;			} // indices			for (let j = 0; j < phiSegments; j++) {				const thetaSegmentLevel = j * (thetaSegments + 1);				for (let i = 0; i < thetaSegments; i++) {					const segment = i + thetaSegmentLevel;					const a = segment;					const b = segment + thetaSegments + 1;					const c = segment + thetaSegments + 2;					const d = segment + 1; // faces					indices.push(a, b, d);					indices.push(b, c, d);				}			} // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));		}		static fromJSON(data) {			return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength);		}	}	class ShapeGeometry extends BufferGeometry {		constructor(shapes = new Shape([new Vector2(0, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), curveSegments = 12) {			super();			this.type = 'ShapeGeometry';			this.parameters = {				shapes: shapes,				curveSegments: curveSegments			}; // buffers			const indices = [];			const vertices = [];			const normals = [];			const uvs = []; // helper variables			let groupStart = 0;			let groupCount = 0; // allow single and array values for "shapes" parameter			if (Array.isArray(shapes) === false) {				addShape(shapes);			} else {				for (let i = 0; i < shapes.length; i++) {					addShape(shapes[i]);					this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support					groupStart += groupCount;					groupCount = 0;				}			} // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions			function addShape(shape) {				const indexOffset = vertices.length / 3;				const points = shape.extractPoints(curveSegments);				let shapeVertices = points.shape;				const shapeHoles = points.holes; // check direction of vertices				if (ShapeUtils.isClockWise(shapeVertices) === false) {					shapeVertices = shapeVertices.reverse();				}				for (let i = 0, l = shapeHoles.length; i < l; i++) {					const shapeHole = shapeHoles[i];					if (ShapeUtils.isClockWise(shapeHole) === true) {						shapeHoles[i] = shapeHole.reverse();					}				}				const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array				for (let i = 0, l = shapeHoles.length; i < l; i++) {					const shapeHole = shapeHoles[i];					shapeVertices = shapeVertices.concat(shapeHole);				} // vertices, normals, uvs				for (let i = 0, l = shapeVertices.length; i < l; i++) {					const vertex = shapeVertices[i];					vertices.push(vertex.x, vertex.y, 0);					normals.push(0, 0, 1);					uvs.push(vertex.x, vertex.y); // world uvs				} // incides				for (let i = 0, l = faces.length; i < l; i++) {					const face = faces[i];					const a = face[0] + indexOffset;					const b = face[1] + indexOffset;					const c = face[2] + indexOffset;					indices.push(a, b, c);					groupCount += 3;				}			}		}		toJSON() {			const data = super.toJSON();			const shapes = this.parameters.shapes;			return toJSON(shapes, data);		}		static fromJSON(data, shapes) {			const geometryShapes = [];			for (let j = 0, jl = data.shapes.length; j < jl; j++) {				const shape = shapes[data.shapes[j]];				geometryShapes.push(shape);			}			return new ShapeGeometry(geometryShapes, data.curveSegments);		}	}	function toJSON(shapes, data) {		data.shapes = [];		if (Array.isArray(shapes)) {			for (let i = 0, l = shapes.length; i < l; i++) {				const shape = shapes[i];				data.shapes.push(shape.uuid);			}		} else {			data.shapes.push(shapes.uuid);		}		return data;	}	class SphereGeometry extends BufferGeometry {		constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) {			super();			this.type = 'SphereGeometry';			this.parameters = {				radius: radius,				widthSegments: widthSegments,				heightSegments: heightSegments,				phiStart: phiStart,				phiLength: phiLength,				thetaStart: thetaStart,				thetaLength: thetaLength			};			widthSegments = Math.max(3, Math.floor(widthSegments));			heightSegments = Math.max(2, Math.floor(heightSegments));			const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI);			let index = 0;			const grid = [];			const vertex = new Vector3();			const normal = new Vector3(); // buffers			const indices = [];			const vertices = [];			const normals = [];			const uvs = []; // generate vertices, normals and uvs			for (let iy = 0; iy <= heightSegments; iy++) {				const verticesRow = [];				const v = iy / heightSegments; // special case for the poles				let uOffset = 0;				if (iy == 0 && thetaStart == 0) {					uOffset = 0.5 / widthSegments;				} else if (iy == heightSegments && thetaEnd == Math.PI) {					uOffset = -0.5 / widthSegments;				}				for (let ix = 0; ix <= widthSegments; ix++) {					const u = ix / widthSegments; // vertex					vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);					vertex.y = radius * Math.cos(thetaStart + v * thetaLength);					vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);					vertices.push(vertex.x, vertex.y, vertex.z); // normal					normal.copy(vertex).normalize();					normals.push(normal.x, normal.y, normal.z); // uv					uvs.push(u + uOffset, 1 - v);					verticesRow.push(index++);				}				grid.push(verticesRow);			} // indices			for (let iy = 0; iy < heightSegments; iy++) {				for (let ix = 0; ix < widthSegments; ix++) {					const a = grid[iy][ix + 1];					const b = grid[iy][ix];					const c = grid[iy + 1][ix];					const d = grid[iy + 1][ix + 1];					if (iy !== 0 || thetaStart > 0) indices.push(a, b, d);					if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d);				}			} // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));		}		static fromJSON(data) {			return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength);		}	}	class TetrahedronGeometry extends PolyhedronGeometry {		constructor(radius = 1, detail = 0) {			const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1];			const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1];			super(vertices, indices, radius, detail);			this.type = 'TetrahedronGeometry';			this.parameters = {				radius: radius,				detail: detail			};		}		static fromJSON(data) {			return new TetrahedronGeometry(data.radius, data.detail);		}	}	class TorusGeometry extends BufferGeometry {		constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) {			super();			this.type = 'TorusGeometry';			this.parameters = {				radius: radius,				tube: tube,				radialSegments: radialSegments,				tubularSegments: tubularSegments,				arc: arc			};			radialSegments = Math.floor(radialSegments);			tubularSegments = Math.floor(tubularSegments); // buffers			const indices = [];			const vertices = [];			const normals = [];			const uvs = []; // helper variables			const center = new Vector3();			const vertex = new Vector3();			const normal = new Vector3(); // generate vertices, normals and uvs			for (let j = 0; j <= radialSegments; j++) {				for (let i = 0; i <= tubularSegments; i++) {					const u = i / tubularSegments * arc;					const v = j / radialSegments * Math.PI * 2; // vertex					vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u);					vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u);					vertex.z = tube * Math.sin(v);					vertices.push(vertex.x, vertex.y, vertex.z); // normal					center.x = radius * Math.cos(u);					center.y = radius * Math.sin(u);					normal.subVectors(vertex, center).normalize();					normals.push(normal.x, normal.y, normal.z); // uv					uvs.push(i / tubularSegments);					uvs.push(j / radialSegments);				}			} // generate indices			for (let j = 1; j <= radialSegments; j++) {				for (let i = 1; i <= tubularSegments; i++) {					// indices					const a = (tubularSegments + 1) * j + i - 1;					const b = (tubularSegments + 1) * (j - 1) + i - 1;					const c = (tubularSegments + 1) * (j - 1) + i;					const d = (tubularSegments + 1) * j + i; // faces					indices.push(a, b, d);					indices.push(b, c, d);				}			} // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));		}		static fromJSON(data) {			return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc);		}	}	class TorusKnotGeometry extends BufferGeometry {		constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) {			super();			this.type = 'TorusKnotGeometry';			this.parameters = {				radius: radius,				tube: tube,				tubularSegments: tubularSegments,				radialSegments: radialSegments,				p: p,				q: q			};			tubularSegments = Math.floor(tubularSegments);			radialSegments = Math.floor(radialSegments); // buffers			const indices = [];			const vertices = [];			const normals = [];			const uvs = []; // helper variables			const vertex = new Vector3();			const normal = new Vector3();			const P1 = new Vector3();			const P2 = new Vector3();			const B = new Vector3();			const T = new Vector3();			const N = new Vector3(); // generate vertices, normals and uvs			for (let i = 0; i <= tubularSegments; ++i) {				// the radian "u" is used to calculate the position on the torus curve of the current tubular segement				const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.				// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions				calculatePositionOnCurve(u, p, q, radius, P1);				calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis				T.subVectors(P2, P1);				N.addVectors(P2, P1);				B.crossVectors(T, N);				N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it				B.normalize();				N.normalize();				for (let j = 0; j <= radialSegments; ++j) {					// now calculate the vertices. they are nothing more than an extrusion of the torus curve.					// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.					const v = j / radialSegments * Math.PI * 2;					const cx = -tube * Math.cos(v);					const cy = tube * Math.sin(v); // now calculate the final vertex position.					// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve					vertex.x = P1.x + (cx * N.x + cy * B.x);					vertex.y = P1.y + (cx * N.y + cy * B.y);					vertex.z = P1.z + (cx * N.z + cy * B.z);					vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)					normal.subVectors(vertex, P1).normalize();					normals.push(normal.x, normal.y, normal.z); // uv					uvs.push(i / tubularSegments);					uvs.push(j / radialSegments);				}			} // generate indices			for (let j = 1; j <= tubularSegments; j++) {				for (let i = 1; i <= radialSegments; i++) {					// indices					const a = (radialSegments + 1) * (j - 1) + (i - 1);					const b = (radialSegments + 1) * j + (i - 1);					const c = (radialSegments + 1) * j + i;					const d = (radialSegments + 1) * (j - 1) + i; // faces					indices.push(a, b, d);					indices.push(b, c, d);				}			} // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve			function calculatePositionOnCurve(u, p, q, radius, position) {				const cu = Math.cos(u);				const su = Math.sin(u);				const quOverP = q / p * u;				const cs = Math.cos(quOverP);				position.x = radius * (2 + cs) * 0.5 * cu;				position.y = radius * (2 + cs) * su * 0.5;				position.z = radius * Math.sin(quOverP) * 0.5;			}		}		static fromJSON(data) {			return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q);		}	}	class TubeGeometry extends BufferGeometry {		constructor(path = new QuadraticBezierCurve3(new Vector3(-1, -1, 0), new Vector3(-1, 1, 0), new Vector3(1, 1, 0)), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) {			super();			this.type = 'TubeGeometry';			this.parameters = {				path: path,				tubularSegments: tubularSegments,				radius: radius,				radialSegments: radialSegments,				closed: closed			};			const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals			this.tangents = frames.tangents;			this.normals = frames.normals;			this.binormals = frames.binormals; // helper variables			const vertex = new Vector3();			const normal = new Vector3();			const uv = new Vector2();			let P = new Vector3(); // buffer			const vertices = [];			const normals = [];			const uvs = [];			const indices = []; // create buffer data			generateBufferData(); // build geometry			this.setIndex(indices);			this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			this.setAttribute('normal', new Float32BufferAttribute(normals, 3));			this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions			function generateBufferData() {				for (let i = 0; i < tubularSegments; i++) {					generateSegment(i);				} // if the geometry is not closed, generate the last row of vertices and normals				// at the regular position on the given path				//				// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)				generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function.				// this makes it easy compute correct values for closed geometries				generateUVs(); // finally create faces				generateIndices();			}			function generateSegment(i) {				// we use getPointAt to sample evenly distributed points from the given path				P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal				const N = frames.normals[i];				const B = frames.binormals[i]; // generate normals and vertices for the current segment				for (let j = 0; j <= radialSegments; j++) {					const v = j / radialSegments * Math.PI * 2;					const sin = Math.sin(v);					const cos = -Math.cos(v); // normal					normal.x = cos * N.x + sin * B.x;					normal.y = cos * N.y + sin * B.y;					normal.z = cos * N.z + sin * B.z;					normal.normalize();					normals.push(normal.x, normal.y, normal.z); // vertex					vertex.x = P.x + radius * normal.x;					vertex.y = P.y + radius * normal.y;					vertex.z = P.z + radius * normal.z;					vertices.push(vertex.x, vertex.y, vertex.z);				}			}			function generateIndices() {				for (let j = 1; j <= tubularSegments; j++) {					for (let i = 1; i <= radialSegments; i++) {						const a = (radialSegments + 1) * (j - 1) + (i - 1);						const b = (radialSegments + 1) * j + (i - 1);						const c = (radialSegments + 1) * j + i;						const d = (radialSegments + 1) * (j - 1) + i; // faces						indices.push(a, b, d);						indices.push(b, c, d);					}				}			}			function generateUVs() {				for (let i = 0; i <= tubularSegments; i++) {					for (let j = 0; j <= radialSegments; j++) {						uv.x = i / tubularSegments;						uv.y = j / radialSegments;						uvs.push(uv.x, uv.y);					}				}			}		}		toJSON() {			const data = super.toJSON();			data.path = this.parameters.path.toJSON();			return data;		}		static fromJSON(data) {			// This only works for built-in curves (e.g. CatmullRomCurve3).			// User defined curves or instances of CurvePath will not be deserialized.			return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed);		}	}	class WireframeGeometry extends BufferGeometry {		constructor(geometry = null) {			super();			this.type = 'WireframeGeometry';			this.parameters = {				geometry: geometry			};			if (geometry !== null) {				// buffer				const vertices = [];				const edges = new Set(); // helper variables				const start = new Vector3();				const end = new Vector3();				if (geometry.index !== null) {					// indexed BufferGeometry					const position = geometry.attributes.position;					const indices = geometry.index;					let groups = geometry.groups;					if (groups.length === 0) {						groups = [{							start: 0,							count: indices.count,							materialIndex: 0						}];					} // create a data structure that contains all eges without duplicates					for (let o = 0, ol = groups.length; o < ol; ++o) {						const group = groups[o];						const groupStart = group.start;						const groupCount = group.count;						for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) {							for (let j = 0; j < 3; j++) {								const index1 = indices.getX(i + j);								const index2 = indices.getX(i + (j + 1) % 3);								start.fromBufferAttribute(position, index1);								end.fromBufferAttribute(position, index2);								if (isUniqueEdge(start, end, edges) === true) {									vertices.push(start.x, start.y, start.z);									vertices.push(end.x, end.y, end.z);								}							}						}					}				} else {					// non-indexed BufferGeometry					const position = geometry.attributes.position;					for (let i = 0, l = position.count / 3; i < l; i++) {						for (let j = 0; j < 3; j++) {							// three edges per triangle, an edge is represented as (index1, index2)							// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)							const index1 = 3 * i + j;							const index2 = 3 * i + (j + 1) % 3;							start.fromBufferAttribute(position, index1);							end.fromBufferAttribute(position, index2);							if (isUniqueEdge(start, end, edges) === true) {								vertices.push(start.x, start.y, start.z);								vertices.push(end.x, end.y, end.z);							}						}					}				} // build geometry				this.setAttribute('position', new Float32BufferAttribute(vertices, 3));			}		}	}	function isUniqueEdge(start, end, edges) {		const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`;		const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge		if (edges.has(hash1) === true || edges.has(hash2) === true) {			return false;		} else {			edges.add(hash1, hash2);			return true;		}	}	var Geometries = /*#__PURE__*/Object.freeze({		__proto__: null,		BoxGeometry: BoxGeometry,		BoxBufferGeometry: BoxGeometry,		CircleGeometry: CircleGeometry,		CircleBufferGeometry: CircleGeometry,		ConeGeometry: ConeGeometry,		ConeBufferGeometry: ConeGeometry,		CylinderGeometry: CylinderGeometry,		CylinderBufferGeometry: CylinderGeometry,		DodecahedronGeometry: DodecahedronGeometry,		DodecahedronBufferGeometry: DodecahedronGeometry,		EdgesGeometry: EdgesGeometry,		ExtrudeGeometry: ExtrudeGeometry,		ExtrudeBufferGeometry: ExtrudeGeometry,		IcosahedronGeometry: IcosahedronGeometry,		IcosahedronBufferGeometry: IcosahedronGeometry,		LatheGeometry: LatheGeometry,		LatheBufferGeometry: LatheGeometry,		OctahedronGeometry: OctahedronGeometry,		OctahedronBufferGeometry: OctahedronGeometry,		PlaneGeometry: PlaneGeometry,		PlaneBufferGeometry: PlaneGeometry,		PolyhedronGeometry: PolyhedronGeometry,		PolyhedronBufferGeometry: PolyhedronGeometry,		RingGeometry: RingGeometry,		RingBufferGeometry: RingGeometry,		ShapeGeometry: ShapeGeometry,		ShapeBufferGeometry: ShapeGeometry,		SphereGeometry: SphereGeometry,		SphereBufferGeometry: SphereGeometry,		TetrahedronGeometry: TetrahedronGeometry,		TetrahedronBufferGeometry: TetrahedronGeometry,		TorusGeometry: TorusGeometry,		TorusBufferGeometry: TorusGeometry,		TorusKnotGeometry: TorusKnotGeometry,		TorusKnotBufferGeometry: TorusKnotGeometry,		TubeGeometry: TubeGeometry,		TubeBufferGeometry: TubeGeometry,		WireframeGeometry: WireframeGeometry	});	/**	 * parameters = {	 *	color: <THREE.Color>	 * }	 */	class ShadowMaterial extends Material {		constructor(parameters) {			super();			this.type = 'ShadowMaterial';			this.color = new Color(0x000000);			this.transparent = true;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			return this;		}	}	ShadowMaterial.prototype.isShadowMaterial = true;	/**	 * parameters = {	 *	color: <hex>,	 *	roughness: <float>,	 *	metalness: <float>,	 *	opacity: <float>,	 *	 *	map: new THREE.Texture( <Image> ),	 *	 *	lightMap: new THREE.Texture( <Image> ),	 *	lightMapIntensity: <float>	 *	 *	aoMap: new THREE.Texture( <Image> ),	 *	aoMapIntensity: <float>	 *	 *	emissive: <hex>,	 *	emissiveIntensity: <float>	 *	emissiveMap: new THREE.Texture( <Image> ),	 *	 *	bumpMap: new THREE.Texture( <Image> ),	 *	bumpScale: <float>,	 *	 *	normalMap: new THREE.Texture( <Image> ),	 *	normalMapType: THREE.TangentSpaceNormalMap,	 *	normalScale: <Vector2>,	 *	 *	displacementMap: new THREE.Texture( <Image> ),	 *	displacementScale: <float>,	 *	displacementBias: <float>,	 *	 *	roughnessMap: new THREE.Texture( <Image> ),	 *	 *	metalnessMap: new THREE.Texture( <Image> ),	 *	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),	 *	envMapIntensity: <float>	 *	 *	refractionRatio: <float>,	 *	 *	wireframe: <boolean>,	 *	wireframeLinewidth: <float>,	 *	 *	flatShading: <bool>	 * }	 */	class MeshStandardMaterial extends Material {		constructor(parameters) {			super();			this.defines = {				'STANDARD': ''			};			this.type = 'MeshStandardMaterial';			this.color = new Color(0xffffff); // diffuse			this.roughness = 1.0;			this.metalness = 0.0;			this.map = null;			this.lightMap = null;			this.lightMapIntensity = 1.0;			this.aoMap = null;			this.aoMapIntensity = 1.0;			this.emissive = new Color(0x000000);			this.emissiveIntensity = 1.0;			this.emissiveMap = null;			this.bumpMap = null;			this.bumpScale = 1;			this.normalMap = null;			this.normalMapType = TangentSpaceNormalMap;			this.normalScale = new Vector2(1, 1);			this.displacementMap = null;			this.displacementScale = 1;			this.displacementBias = 0;			this.roughnessMap = null;			this.metalnessMap = null;			this.alphaMap = null;			this.envMap = null;			this.envMapIntensity = 1.0;			this.refractionRatio = 0.98;			this.wireframe = false;			this.wireframeLinewidth = 1;			this.wireframeLinecap = 'round';			this.wireframeLinejoin = 'round';			this.flatShading = false;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.defines = {				'STANDARD': ''			};			this.color.copy(source.color);			this.roughness = source.roughness;			this.metalness = source.metalness;			this.map = source.map;			this.lightMap = source.lightMap;			this.lightMapIntensity = source.lightMapIntensity;			this.aoMap = source.aoMap;			this.aoMapIntensity = source.aoMapIntensity;			this.emissive.copy(source.emissive);			this.emissiveMap = source.emissiveMap;			this.emissiveIntensity = source.emissiveIntensity;			this.bumpMap = source.bumpMap;			this.bumpScale = source.bumpScale;			this.normalMap = source.normalMap;			this.normalMapType = source.normalMapType;			this.normalScale.copy(source.normalScale);			this.displacementMap = source.displacementMap;			this.displacementScale = source.displacementScale;			this.displacementBias = source.displacementBias;			this.roughnessMap = source.roughnessMap;			this.metalnessMap = source.metalnessMap;			this.alphaMap = source.alphaMap;			this.envMap = source.envMap;			this.envMapIntensity = source.envMapIntensity;			this.refractionRatio = source.refractionRatio;			this.wireframe = source.wireframe;			this.wireframeLinewidth = source.wireframeLinewidth;			this.wireframeLinecap = source.wireframeLinecap;			this.wireframeLinejoin = source.wireframeLinejoin;			this.flatShading = source.flatShading;			return this;		}	}	MeshStandardMaterial.prototype.isMeshStandardMaterial = true;	/**	 * parameters = {	 *	clearcoat: <float>,	 *	clearcoatMap: new THREE.Texture( <Image> ),	 *	clearcoatRoughness: <float>,	 *	clearcoatRoughnessMap: new THREE.Texture( <Image> ),	 *	clearcoatNormalScale: <Vector2>,	 *	clearcoatNormalMap: new THREE.Texture( <Image> ),	 *	 *	ior: <float>,	 *	reflectivity: <float>,	 *	 *	sheen: <float>,	 *	sheenColor: <Color>,	 *	sheenColorMap: new THREE.Texture( <Image> ),	 *	sheenRoughness: <float>,	 *	sheenRoughnessMap: new THREE.Texture( <Image> ),	 *	 *	transmission: <float>,	 *	transmissionMap: new THREE.Texture( <Image> ),	 *	 *	thickness: <float>,	 *	thicknessMap: new THREE.Texture( <Image> ),	 *	attenuationDistance: <float>,	 *	attenuationColor: <Color>,	 *	 *	specularIntensity: <float>,	 *	specularIntensityMap: new THREE.Texture( <Image> ),	 *	specularColor: <Color>,	 *	specularColorMap: new THREE.Texture( <Image> )	 * }	 */	class MeshPhysicalMaterial extends MeshStandardMaterial {		constructor(parameters) {			super();			this.defines = {				'STANDARD': '',				'PHYSICAL': ''			};			this.type = 'MeshPhysicalMaterial';			this.clearcoatMap = null;			this.clearcoatRoughness = 0.0;			this.clearcoatRoughnessMap = null;			this.clearcoatNormalScale = new Vector2(1, 1);			this.clearcoatNormalMap = null;			this.ior = 1.5;			Object.defineProperty(this, 'reflectivity', {				get: function () {					return clamp(2.5 * (this.ior - 1) / (this.ior + 1), 0, 1);				},				set: function (reflectivity) {					this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity);				}			});			this.sheenColor = new Color(0x000000);			this.sheenColorMap = null;			this.sheenRoughness = 1.0;			this.sheenRoughnessMap = null;			this.transmissionMap = null;			this.thickness = 0;			this.thicknessMap = null;			this.attenuationDistance = 0.0;			this.attenuationColor = new Color(1, 1, 1);			this.specularIntensity = 1.0;			this.specularIntensityMap = null;			this.specularColor = new Color(1, 1, 1);			this.specularColorMap = null;			this._sheen = 0.0;			this._clearcoat = 0;			this._transmission = 0;			this.setValues(parameters);		}		get sheen() {			return this._sheen;		}		set sheen(value) {			if (this._sheen > 0 !== value > 0) {				this.version++;			}			this._sheen = value;		}		get clearcoat() {			return this._clearcoat;		}		set clearcoat(value) {			if (this._clearcoat > 0 !== value > 0) {				this.version++;			}			this._clearcoat = value;		}		get transmission() {			return this._transmission;		}		set transmission(value) {			if (this._transmission > 0 !== value > 0) {				this.version++;			}			this._transmission = value;		}		copy(source) {			super.copy(source);			this.defines = {				'STANDARD': '',				'PHYSICAL': ''			};			this.clearcoat = source.clearcoat;			this.clearcoatMap = source.clearcoatMap;			this.clearcoatRoughness = source.clearcoatRoughness;			this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;			this.clearcoatNormalMap = source.clearcoatNormalMap;			this.clearcoatNormalScale.copy(source.clearcoatNormalScale);			this.ior = source.ior;			this.sheen = source.sheen;			this.sheenColor.copy(source.sheenColor);			this.sheenColorMap = source.sheenColorMap;			this.sheenRoughness = source.sheenRoughness;			this.sheenRoughnessMap = source.sheenRoughnessMap;			this.transmission = source.transmission;			this.transmissionMap = source.transmissionMap;			this.thickness = source.thickness;			this.thicknessMap = source.thicknessMap;			this.attenuationDistance = source.attenuationDistance;			this.attenuationColor.copy(source.attenuationColor);			this.specularIntensity = source.specularIntensity;			this.specularIntensityMap = source.specularIntensityMap;			this.specularColor.copy(source.specularColor);			this.specularColorMap = source.specularColorMap;			return this;		}	}	MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;	/**	 * parameters = {	 *	color: <hex>,	 *	specular: <hex>,	 *	shininess: <float>,	 *	opacity: <float>,	 *	 *	map: new THREE.Texture( <Image> ),	 *	 *	lightMap: new THREE.Texture( <Image> ),	 *	lightMapIntensity: <float>	 *	 *	aoMap: new THREE.Texture( <Image> ),	 *	aoMapIntensity: <float>	 *	 *	emissive: <hex>,	 *	emissiveIntensity: <float>	 *	emissiveMap: new THREE.Texture( <Image> ),	 *	 *	bumpMap: new THREE.Texture( <Image> ),	 *	bumpScale: <float>,	 *	 *	normalMap: new THREE.Texture( <Image> ),	 *	normalMapType: THREE.TangentSpaceNormalMap,	 *	normalScale: <Vector2>,	 *	 *	displacementMap: new THREE.Texture( <Image> ),	 *	displacementScale: <float>,	 *	displacementBias: <float>,	 *	 *	specularMap: new THREE.Texture( <Image> ),	 *	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),	 *	combine: THREE.MultiplyOperation,	 *	reflectivity: <float>,	 *	refractionRatio: <float>,	 *	 *	wireframe: <boolean>,	 *	wireframeLinewidth: <float>,	 *	 *	flatShading: <bool>	 * }	 */	class MeshPhongMaterial extends Material {		constructor(parameters) {			super();			this.type = 'MeshPhongMaterial';			this.color = new Color(0xffffff); // diffuse			this.specular = new Color(0x111111);			this.shininess = 30;			this.map = null;			this.lightMap = null;			this.lightMapIntensity = 1.0;			this.aoMap = null;			this.aoMapIntensity = 1.0;			this.emissive = new Color(0x000000);			this.emissiveIntensity = 1.0;			this.emissiveMap = null;			this.bumpMap = null;			this.bumpScale = 1;			this.normalMap = null;			this.normalMapType = TangentSpaceNormalMap;			this.normalScale = new Vector2(1, 1);			this.displacementMap = null;			this.displacementScale = 1;			this.displacementBias = 0;			this.specularMap = null;			this.alphaMap = null;			this.envMap = null;			this.combine = MultiplyOperation;			this.reflectivity = 1;			this.refractionRatio = 0.98;			this.wireframe = false;			this.wireframeLinewidth = 1;			this.wireframeLinecap = 'round';			this.wireframeLinejoin = 'round';			this.flatShading = false;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			this.specular.copy(source.specular);			this.shininess = source.shininess;			this.map = source.map;			this.lightMap = source.lightMap;			this.lightMapIntensity = source.lightMapIntensity;			this.aoMap = source.aoMap;			this.aoMapIntensity = source.aoMapIntensity;			this.emissive.copy(source.emissive);			this.emissiveMap = source.emissiveMap;			this.emissiveIntensity = source.emissiveIntensity;			this.bumpMap = source.bumpMap;			this.bumpScale = source.bumpScale;			this.normalMap = source.normalMap;			this.normalMapType = source.normalMapType;			this.normalScale.copy(source.normalScale);			this.displacementMap = source.displacementMap;			this.displacementScale = source.displacementScale;			this.displacementBias = source.displacementBias;			this.specularMap = source.specularMap;			this.alphaMap = source.alphaMap;			this.envMap = source.envMap;			this.combine = source.combine;			this.reflectivity = source.reflectivity;			this.refractionRatio = source.refractionRatio;			this.wireframe = source.wireframe;			this.wireframeLinewidth = source.wireframeLinewidth;			this.wireframeLinecap = source.wireframeLinecap;			this.wireframeLinejoin = source.wireframeLinejoin;			this.flatShading = source.flatShading;			return this;		}	}	MeshPhongMaterial.prototype.isMeshPhongMaterial = true;	/**	 * parameters = {	 *	color: <hex>,	 *	 *	map: new THREE.Texture( <Image> ),	 *	gradientMap: new THREE.Texture( <Image> ),	 *	 *	lightMap: new THREE.Texture( <Image> ),	 *	lightMapIntensity: <float>	 *	 *	aoMap: new THREE.Texture( <Image> ),	 *	aoMapIntensity: <float>	 *	 *	emissive: <hex>,	 *	emissiveIntensity: <float>	 *	emissiveMap: new THREE.Texture( <Image> ),	 *	 *	bumpMap: new THREE.Texture( <Image> ),	 *	bumpScale: <float>,	 *	 *	normalMap: new THREE.Texture( <Image> ),	 *	normalMapType: THREE.TangentSpaceNormalMap,	 *	normalScale: <Vector2>,	 *	 *	displacementMap: new THREE.Texture( <Image> ),	 *	displacementScale: <float>,	 *	displacementBias: <float>,	 *	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	wireframe: <boolean>,	 *	wireframeLinewidth: <float>,	 *	 * }	 */	class MeshToonMaterial extends Material {		constructor(parameters) {			super();			this.defines = {				'TOON': ''			};			this.type = 'MeshToonMaterial';			this.color = new Color(0xffffff);			this.map = null;			this.gradientMap = null;			this.lightMap = null;			this.lightMapIntensity = 1.0;			this.aoMap = null;			this.aoMapIntensity = 1.0;			this.emissive = new Color(0x000000);			this.emissiveIntensity = 1.0;			this.emissiveMap = null;			this.bumpMap = null;			this.bumpScale = 1;			this.normalMap = null;			this.normalMapType = TangentSpaceNormalMap;			this.normalScale = new Vector2(1, 1);			this.displacementMap = null;			this.displacementScale = 1;			this.displacementBias = 0;			this.alphaMap = null;			this.wireframe = false;			this.wireframeLinewidth = 1;			this.wireframeLinecap = 'round';			this.wireframeLinejoin = 'round';			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			this.map = source.map;			this.gradientMap = source.gradientMap;			this.lightMap = source.lightMap;			this.lightMapIntensity = source.lightMapIntensity;			this.aoMap = source.aoMap;			this.aoMapIntensity = source.aoMapIntensity;			this.emissive.copy(source.emissive);			this.emissiveMap = source.emissiveMap;			this.emissiveIntensity = source.emissiveIntensity;			this.bumpMap = source.bumpMap;			this.bumpScale = source.bumpScale;			this.normalMap = source.normalMap;			this.normalMapType = source.normalMapType;			this.normalScale.copy(source.normalScale);			this.displacementMap = source.displacementMap;			this.displacementScale = source.displacementScale;			this.displacementBias = source.displacementBias;			this.alphaMap = source.alphaMap;			this.wireframe = source.wireframe;			this.wireframeLinewidth = source.wireframeLinewidth;			this.wireframeLinecap = source.wireframeLinecap;			this.wireframeLinejoin = source.wireframeLinejoin;			return this;		}	}	MeshToonMaterial.prototype.isMeshToonMaterial = true;	/**	 * parameters = {	 *	opacity: <float>,	 *	 *	bumpMap: new THREE.Texture( <Image> ),	 *	bumpScale: <float>,	 *	 *	normalMap: new THREE.Texture( <Image> ),	 *	normalMapType: THREE.TangentSpaceNormalMap,	 *	normalScale: <Vector2>,	 *	 *	displacementMap: new THREE.Texture( <Image> ),	 *	displacementScale: <float>,	 *	displacementBias: <float>,	 *	 *	wireframe: <boolean>,	 *	wireframeLinewidth: <float>	 *	 *	flatShading: <bool>	 * }	 */	class MeshNormalMaterial extends Material {		constructor(parameters) {			super();			this.type = 'MeshNormalMaterial';			this.bumpMap = null;			this.bumpScale = 1;			this.normalMap = null;			this.normalMapType = TangentSpaceNormalMap;			this.normalScale = new Vector2(1, 1);			this.displacementMap = null;			this.displacementScale = 1;			this.displacementBias = 0;			this.wireframe = false;			this.wireframeLinewidth = 1;			this.fog = false;			this.flatShading = false;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.bumpMap = source.bumpMap;			this.bumpScale = source.bumpScale;			this.normalMap = source.normalMap;			this.normalMapType = source.normalMapType;			this.normalScale.copy(source.normalScale);			this.displacementMap = source.displacementMap;			this.displacementScale = source.displacementScale;			this.displacementBias = source.displacementBias;			this.wireframe = source.wireframe;			this.wireframeLinewidth = source.wireframeLinewidth;			this.flatShading = source.flatShading;			return this;		}	}	MeshNormalMaterial.prototype.isMeshNormalMaterial = true;	/**	 * parameters = {	 *	color: <hex>,	 *	opacity: <float>,	 *	 *	map: new THREE.Texture( <Image> ),	 *	 *	lightMap: new THREE.Texture( <Image> ),	 *	lightMapIntensity: <float>	 *	 *	aoMap: new THREE.Texture( <Image> ),	 *	aoMapIntensity: <float>	 *	 *	emissive: <hex>,	 *	emissiveIntensity: <float>	 *	emissiveMap: new THREE.Texture( <Image> ),	 *	 *	specularMap: new THREE.Texture( <Image> ),	 *	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),	 *	combine: THREE.Multiply,	 *	reflectivity: <float>,	 *	refractionRatio: <float>,	 *	 *	wireframe: <boolean>,	 *	wireframeLinewidth: <float>,	 *	 * }	 */	class MeshLambertMaterial extends Material {		constructor(parameters) {			super();			this.type = 'MeshLambertMaterial';			this.color = new Color(0xffffff); // diffuse			this.map = null;			this.lightMap = null;			this.lightMapIntensity = 1.0;			this.aoMap = null;			this.aoMapIntensity = 1.0;			this.emissive = new Color(0x000000);			this.emissiveIntensity = 1.0;			this.emissiveMap = null;			this.specularMap = null;			this.alphaMap = null;			this.envMap = null;			this.combine = MultiplyOperation;			this.reflectivity = 1;			this.refractionRatio = 0.98;			this.wireframe = false;			this.wireframeLinewidth = 1;			this.wireframeLinecap = 'round';			this.wireframeLinejoin = 'round';			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			this.map = source.map;			this.lightMap = source.lightMap;			this.lightMapIntensity = source.lightMapIntensity;			this.aoMap = source.aoMap;			this.aoMapIntensity = source.aoMapIntensity;			this.emissive.copy(source.emissive);			this.emissiveMap = source.emissiveMap;			this.emissiveIntensity = source.emissiveIntensity;			this.specularMap = source.specularMap;			this.alphaMap = source.alphaMap;			this.envMap = source.envMap;			this.combine = source.combine;			this.reflectivity = source.reflectivity;			this.refractionRatio = source.refractionRatio;			this.wireframe = source.wireframe;			this.wireframeLinewidth = source.wireframeLinewidth;			this.wireframeLinecap = source.wireframeLinecap;			this.wireframeLinejoin = source.wireframeLinejoin;			return this;		}	}	MeshLambertMaterial.prototype.isMeshLambertMaterial = true;	/**	 * parameters = {	 *	color: <hex>,	 *	opacity: <float>,	 *	 *	matcap: new THREE.Texture( <Image> ),	 *	 *	map: new THREE.Texture( <Image> ),	 *	 *	bumpMap: new THREE.Texture( <Image> ),	 *	bumpScale: <float>,	 *	 *	normalMap: new THREE.Texture( <Image> ),	 *	normalMapType: THREE.TangentSpaceNormalMap,	 *	normalScale: <Vector2>,	 *	 *	displacementMap: new THREE.Texture( <Image> ),	 *	displacementScale: <float>,	 *	displacementBias: <float>,	 *	 *	alphaMap: new THREE.Texture( <Image> ),	 *	 *	flatShading: <bool>	 * }	 */	class MeshMatcapMaterial extends Material {		constructor(parameters) {			super();			this.defines = {				'MATCAP': ''			};			this.type = 'MeshMatcapMaterial';			this.color = new Color(0xffffff); // diffuse			this.matcap = null;			this.map = null;			this.bumpMap = null;			this.bumpScale = 1;			this.normalMap = null;			this.normalMapType = TangentSpaceNormalMap;			this.normalScale = new Vector2(1, 1);			this.displacementMap = null;			this.displacementScale = 1;			this.displacementBias = 0;			this.alphaMap = null;			this.flatShading = false;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.defines = {				'MATCAP': ''			};			this.color.copy(source.color);			this.matcap = source.matcap;			this.map = source.map;			this.bumpMap = source.bumpMap;			this.bumpScale = source.bumpScale;			this.normalMap = source.normalMap;			this.normalMapType = source.normalMapType;			this.normalScale.copy(source.normalScale);			this.displacementMap = source.displacementMap;			this.displacementScale = source.displacementScale;			this.displacementBias = source.displacementBias;			this.alphaMap = source.alphaMap;			this.flatShading = source.flatShading;			return this;		}	}	MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;	/**	 * parameters = {	 *	color: <hex>,	 *	opacity: <float>,	 *	 *	linewidth: <float>,	 *	 *	scale: <float>,	 *	dashSize: <float>,	 *	gapSize: <float>	 * }	 */	class LineDashedMaterial extends LineBasicMaterial {		constructor(parameters) {			super();			this.type = 'LineDashedMaterial';			this.scale = 1;			this.dashSize = 3;			this.gapSize = 1;			this.setValues(parameters);		}		copy(source) {			super.copy(source);			this.scale = source.scale;			this.dashSize = source.dashSize;			this.gapSize = source.gapSize;			return this;		}	}	LineDashedMaterial.prototype.isLineDashedMaterial = true;	var Materials = /*#__PURE__*/Object.freeze({		__proto__: null,		ShadowMaterial: ShadowMaterial,		SpriteMaterial: SpriteMaterial,		RawShaderMaterial: RawShaderMaterial,		ShaderMaterial: ShaderMaterial,		PointsMaterial: PointsMaterial,		MeshPhysicalMaterial: MeshPhysicalMaterial,		MeshStandardMaterial: MeshStandardMaterial,		MeshPhongMaterial: MeshPhongMaterial,		MeshToonMaterial: MeshToonMaterial,		MeshNormalMaterial: MeshNormalMaterial,		MeshLambertMaterial: MeshLambertMaterial,		MeshDepthMaterial: MeshDepthMaterial,		MeshDistanceMaterial: MeshDistanceMaterial,		MeshBasicMaterial: MeshBasicMaterial,		MeshMatcapMaterial: MeshMatcapMaterial,		LineDashedMaterial: LineDashedMaterial,		LineBasicMaterial: LineBasicMaterial,		Material: Material	});	const AnimationUtils = {		// same as Array.prototype.slice, but also works on typed arrays		arraySlice: function (array, from, to) {			if (AnimationUtils.isTypedArray(array)) {				// in ios9 array.subarray(from, undefined) will return empty array				// but array.subarray(from) or array.subarray(from, len) is correct				return new array.constructor(array.subarray(from, to !== undefined ? to : array.length));			}			return array.slice(from, to);		},		// converts an array to a specific type		convertArray: function (array, type, forceClone) {			if (!array || // let 'undefined' and 'null' pass			!forceClone && array.constructor === type) return array;			if (typeof type.BYTES_PER_ELEMENT === 'number') {				return new type(array); // create typed array			}			return Array.prototype.slice.call(array); // create Array		},		isTypedArray: function (object) {			return ArrayBuffer.isView(object) && !(object instanceof DataView);		},		// returns an array by which times and values can be sorted		getKeyframeOrder: function (times) {			function compareTime(i, j) {				return times[i] - times[j];			}			const n = times.length;			const result = new Array(n);			for (let i = 0; i !== n; ++i) result[i] = i;			result.sort(compareTime);			return result;		},		// uses the array previously returned by 'getKeyframeOrder' to sort data		sortedArray: function (values, stride, order) {			const nValues = values.length;			const result = new values.constructor(nValues);			for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) {				const srcOffset = order[i] * stride;				for (let j = 0; j !== stride; ++j) {					result[dstOffset++] = values[srcOffset + j];				}			}			return result;		},		// function for parsing AOS keyframe formats		flattenJSON: function (jsonKeys, times, values, valuePropertyName) {			let i = 1,					key = jsonKeys[0];			while (key !== undefined && key[valuePropertyName] === undefined) {				key = jsonKeys[i++];			}			if (key === undefined) return; // no data			let value = key[valuePropertyName];			if (value === undefined) return; // no data			if (Array.isArray(value)) {				do {					value = key[valuePropertyName];					if (value !== undefined) {						times.push(key.time);						values.push.apply(values, value); // push all elements					}					key = jsonKeys[i++];				} while (key !== undefined);			} else if (value.toArray !== undefined) {				// ...assume THREE.Math-ish				do {					value = key[valuePropertyName];					if (value !== undefined) {						times.push(key.time);						value.toArray(values, values.length);					}					key = jsonKeys[i++];				} while (key !== undefined);			} else {				// otherwise push as-is				do {					value = key[valuePropertyName];					if (value !== undefined) {						times.push(key.time);						values.push(value);					}					key = jsonKeys[i++];				} while (key !== undefined);			}		},		subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) {			const clip = sourceClip.clone();			clip.name = name;			const tracks = [];			for (let i = 0; i < clip.tracks.length; ++i) {				const track = clip.tracks[i];				const valueSize = track.getValueSize();				const times = [];				const values = [];				for (let j = 0; j < track.times.length; ++j) {					const frame = track.times[j] * fps;					if (frame < startFrame || frame >= endFrame) continue;					times.push(track.times[j]);					for (let k = 0; k < valueSize; ++k) {						values.push(track.values[j * valueSize + k]);					}				}				if (times.length === 0) continue;				track.times = AnimationUtils.convertArray(times, track.times.constructor);				track.values = AnimationUtils.convertArray(values, track.values.constructor);				tracks.push(track);			}			clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip			let minStartTime = Infinity;			for (let i = 0; i < clip.tracks.length; ++i) {				if (minStartTime > clip.tracks[i].times[0]) {					minStartTime = clip.tracks[i].times[0];				}			} // shift all tracks such that clip begins at t=0			for (let i = 0; i < clip.tracks.length; ++i) {				clip.tracks[i].shift(-1 * minStartTime);			}			clip.resetDuration();			return clip;		},		makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) {			if (fps <= 0) fps = 30;			const numTracks = referenceClip.tracks.length;			const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame			for (let i = 0; i < numTracks; ++i) {				const referenceTrack = referenceClip.tracks[i];				const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric				if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track				const targetTrack = targetClip.tracks.find(function (track) {					return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType;				});				if (targetTrack === undefined) continue;				let referenceOffset = 0;				const referenceValueSize = referenceTrack.getValueSize();				if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {					referenceOffset = referenceValueSize / 3;				}				let targetOffset = 0;				const targetValueSize = targetTrack.getValueSize();				if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {					targetOffset = targetValueSize / 3;				}				const lastIndex = referenceTrack.times.length - 1;				let referenceValue; // Find the value to subtract out of the track				if (referenceTime <= referenceTrack.times[0]) {					// Reference frame is earlier than the first keyframe, so just use the first keyframe					const startIndex = referenceOffset;					const endIndex = referenceValueSize - referenceOffset;					referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);				} else if (referenceTime >= referenceTrack.times[lastIndex]) {					// Reference frame is after the last keyframe, so just use the last keyframe					const startIndex = lastIndex * referenceValueSize + referenceOffset;					const endIndex = startIndex + referenceValueSize - referenceOffset;					referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);				} else {					// Interpolate to the reference value					const interpolant = referenceTrack.createInterpolant();					const startIndex = referenceOffset;					const endIndex = referenceValueSize - referenceOffset;					interpolant.evaluate(referenceTime);					referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex);				} // Conjugate the quaternion				if (referenceTrackType === 'quaternion') {					const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate();					referenceQuat.toArray(referenceValue);				} // Subtract the reference value from all of the track values				const numTimes = targetTrack.times.length;				for (let j = 0; j < numTimes; ++j) {					const valueStart = j * targetValueSize + targetOffset;					if (referenceTrackType === 'quaternion') {						// Multiply the conjugate for quaternion track types						Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart);					} else {						const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types						for (let k = 0; k < valueEnd; ++k) {							targetTrack.values[valueStart + k] -= referenceValue[k];						}					}				}			}			targetClip.blendMode = AdditiveAnimationBlendMode;			return targetClip;		}	};	/**	 * Abstract base class of interpolants over parametric samples.	 *	 * The parameter domain is one dimensional, typically the time or a path	 * along a curve defined by the data.	 *	 * The sample values can have any dimensionality and derived classes may	 * apply special interpretations to the data.	 *	 * This class provides the interval seek in a Template Method, deferring	 * the actual interpolation to derived classes.	 *	 * Time complexity is O(1) for linear access crossing at most two points	 * and O(log N) for random access, where N is the number of positions.	 *	 * References:	 *	 * 		http://www.oodesign.com/template-method-pattern.html	 *	 */	class Interpolant {		constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {			this.parameterPositions = parameterPositions;			this._cachedIndex = 0;			this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize);			this.sampleValues = sampleValues;			this.valueSize = sampleSize;			this.settings = null;			this.DefaultSettings_ = {};		}		evaluate(t) {			const pp = this.parameterPositions;			let i1 = this._cachedIndex,					t1 = pp[i1],					t0 = pp[i1 - 1];			validate_interval: {				seek: {					let right;					linear_scan: {						//- See http://jsperf.com/comparison-to-undefined/3						//- slower code:						//-						//- 				if ( t >= t1 || t1 === undefined ) {						forward_scan: if (!(t < t1)) {							for (let giveUpAt = i1 + 2;;) {								if (t1 === undefined) {									if (t < t0) break forward_scan; // after end									i1 = pp.length;									this._cachedIndex = i1;									return this.afterEnd_(i1 - 1, t, t0);								}								if (i1 === giveUpAt) break; // this loop								t0 = t1;								t1 = pp[++i1];								if (t < t1) {									// we have arrived at the sought interval									break seek;								}							} // prepare binary search on the right side of the index							right = pp.length;							break linear_scan;						} //- slower code:						//-					if ( t < t0 || t0 === undefined ) {						if (!(t >= t0)) {							// looping?							const t1global = pp[1];							if (t < t1global) {								i1 = 2; // + 1, using the scan for the details								t0 = t1global;							} // linear reverse scan							for (let giveUpAt = i1 - 2;;) {								if (t0 === undefined) {									// before start									this._cachedIndex = 0;									return this.beforeStart_(0, t, t1);								}								if (i1 === giveUpAt) break; // this loop								t1 = t0;								t0 = pp[--i1 - 1];								if (t >= t0) {									// we have arrived at the sought interval									break seek;								}							} // prepare binary search on the left side of the index							right = i1;							i1 = 0;							break linear_scan;						} // the interval is valid						break validate_interval;					} // linear scan					// binary search					while (i1 < right) {						const mid = i1 + right >>> 1;						if (t < pp[mid]) {							right = mid;						} else {							i1 = mid + 1;						}					}					t1 = pp[i1];					t0 = pp[i1 - 1]; // check boundary cases, again					if (t0 === undefined) {						this._cachedIndex = 0;						return this.beforeStart_(0, t, t1);					}					if (t1 === undefined) {						i1 = pp.length;						this._cachedIndex = i1;						return this.afterEnd_(i1 - 1, t0, t);					}				} // seek				this._cachedIndex = i1;				this.intervalChanged_(i1, t0, t1);			} // validate_interval			return this.interpolate_(i1, t0, t, t1);		}		getSettings_() {			return this.settings || this.DefaultSettings_;		}		copySampleValue_(index) {			// copies a sample value to the result buffer			const result = this.resultBuffer,						values = this.sampleValues,						stride = this.valueSize,						offset = index * stride;			for (let i = 0; i !== stride; ++i) {				result[i] = values[offset + i];			}			return result;		} // Template methods for derived classes:		interpolate_() {			throw new Error('call to abstract method'); // implementations shall return this.resultBuffer		}		intervalChanged_() {// empty		}	} // ALIAS DEFINITIONS	Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_;	Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_;	/**	 * Fast and simple cubic spline interpolant.	 *	 * It was derived from a Hermitian construction setting the first derivative	 * at each sample position to the linear slope between neighboring positions	 * over their parameter interval.	 */	class CubicInterpolant extends Interpolant {		constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {			super(parameterPositions, sampleValues, sampleSize, resultBuffer);			this._weightPrev = -0;			this._offsetPrev = -0;			this._weightNext = -0;			this._offsetNext = -0;			this.DefaultSettings_ = {				endingStart: ZeroCurvatureEnding,				endingEnd: ZeroCurvatureEnding			};		}		intervalChanged_(i1, t0, t1) {			const pp = this.parameterPositions;			let iPrev = i1 - 2,					iNext = i1 + 1,					tPrev = pp[iPrev],					tNext = pp[iNext];			if (tPrev === undefined) {				switch (this.getSettings_().endingStart) {					case ZeroSlopeEnding:						// f'(t0) = 0						iPrev = i1;						tPrev = 2 * t0 - t1;						break;					case WrapAroundEnding:						// use the other end of the curve						iPrev = pp.length - 2;						tPrev = t0 + pp[iPrev] - pp[iPrev + 1];						break;					default:						// ZeroCurvatureEnding						// f''(t0) = 0 a.k.a. Natural Spline						iPrev = i1;						tPrev = t1;				}			}			if (tNext === undefined) {				switch (this.getSettings_().endingEnd) {					case ZeroSlopeEnding:						// f'(tN) = 0						iNext = i1;						tNext = 2 * t1 - t0;						break;					case WrapAroundEnding:						// use the other end of the curve						iNext = 1;						tNext = t1 + pp[1] - pp[0];						break;					default:						// ZeroCurvatureEnding						// f''(tN) = 0, a.k.a. Natural Spline						iNext = i1 - 1;						tNext = t0;				}			}			const halfDt = (t1 - t0) * 0.5,						stride = this.valueSize;			this._weightPrev = halfDt / (t0 - tPrev);			this._weightNext = halfDt / (tNext - t1);			this._offsetPrev = iPrev * stride;			this._offsetNext = iNext * stride;		}		interpolate_(i1, t0, t, t1) {			const result = this.resultBuffer,						values = this.sampleValues,						stride = this.valueSize,						o1 = i1 * stride,						o0 = o1 - stride,						oP = this._offsetPrev,						oN = this._offsetNext,						wP = this._weightPrev,						wN = this._weightNext,						p = (t - t0) / (t1 - t0),						pp = p * p,						ppp = pp * p; // evaluate polynomials			const sP = -wP * ppp + 2 * wP * pp - wP * p;			const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1;			const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p;			const sN = wN * ppp - wN * pp; // combine data linearly			for (let i = 0; i !== stride; ++i) {				result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i];			}			return result;		}	}	class LinearInterpolant extends Interpolant {		constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {			super(parameterPositions, sampleValues, sampleSize, resultBuffer);		}		interpolate_(i1, t0, t, t1) {			const result = this.resultBuffer,						values = this.sampleValues,						stride = this.valueSize,						offset1 = i1 * stride,						offset0 = offset1 - stride,						weight1 = (t - t0) / (t1 - t0),						weight0 = 1 - weight1;			for (let i = 0; i !== stride; ++i) {				result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1;			}			return result;		}	}	/**	 *	 * Interpolant that evaluates to the sample value at the position preceeding	 * the parameter.	 */	class DiscreteInterpolant extends Interpolant {		constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {			super(parameterPositions, sampleValues, sampleSize, resultBuffer);		}		interpolate_(i1		/*, t0, t, t1 */		) {			return this.copySampleValue_(i1 - 1);		}	}	class KeyframeTrack {		constructor(name, times, values, interpolation) {			if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined');			if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name);			this.name = name;			this.times = AnimationUtils.convertArray(times, this.TimeBufferType);			this.values = AnimationUtils.convertArray(values, this.ValueBufferType);			this.setInterpolation(interpolation || this.DefaultInterpolation);		} // Serialization (in static context, because of constructor invocation		// and automatic invocation of .toJSON):		static toJSON(track) {			const trackType = track.constructor;			let json; // derived classes can define a static toJSON method			if (trackType.toJSON !== this.toJSON) {				json = trackType.toJSON(track);			} else {				// by default, we assume the data can be serialized as-is				json = {					'name': track.name,					'times': AnimationUtils.convertArray(track.times, Array),					'values': AnimationUtils.convertArray(track.values, Array)				};				const interpolation = track.getInterpolation();				if (interpolation !== track.DefaultInterpolation) {					json.interpolation = interpolation;				}			}			json.type = track.ValueTypeName; // mandatory			return json;		}		InterpolantFactoryMethodDiscrete(result) {			return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result);		}		InterpolantFactoryMethodLinear(result) {			return new LinearInterpolant(this.times, this.values, this.getValueSize(), result);		}		InterpolantFactoryMethodSmooth(result) {			return new CubicInterpolant(this.times, this.values, this.getValueSize(), result);		}		setInterpolation(interpolation) {			let factoryMethod;			switch (interpolation) {				case InterpolateDiscrete:					factoryMethod = this.InterpolantFactoryMethodDiscrete;					break;				case InterpolateLinear:					factoryMethod = this.InterpolantFactoryMethodLinear;					break;				case InterpolateSmooth:					factoryMethod = this.InterpolantFactoryMethodSmooth;					break;			}			if (factoryMethod === undefined) {				const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name;				if (this.createInterpolant === undefined) {					// fall back to default, unless the default itself is messed up					if (interpolation !== this.DefaultInterpolation) {						this.setInterpolation(this.DefaultInterpolation);					} else {						throw new Error(message); // fatal, in this case					}				}				console.warn('THREE.KeyframeTrack:', message);				return this;			}			this.createInterpolant = factoryMethod;			return this;		}		getInterpolation() {			switch (this.createInterpolant) {				case this.InterpolantFactoryMethodDiscrete:					return InterpolateDiscrete;				case this.InterpolantFactoryMethodLinear:					return InterpolateLinear;				case this.InterpolantFactoryMethodSmooth:					return InterpolateSmooth;			}		}		getValueSize() {			return this.values.length / this.times.length;		} // move all keyframes either forwards or backwards in time		shift(timeOffset) {			if (timeOffset !== 0.0) {				const times = this.times;				for (let i = 0, n = times.length; i !== n; ++i) {					times[i] += timeOffset;				}			}			return this;		} // scale all keyframe times by a factor (useful for frame <-> seconds conversions)		scale(timeScale) {			if (timeScale !== 1.0) {				const times = this.times;				for (let i = 0, n = times.length; i !== n; ++i) {					times[i] *= timeScale;				}			}			return this;		} // removes keyframes before and after animation without changing any values within the range [startTime, endTime].		// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values		trim(startTime, endTime) {			const times = this.times,						nKeys = times.length;			let from = 0,					to = nKeys - 1;			while (from !== nKeys && times[from] < startTime) {				++from;			}			while (to !== -1 && times[to] > endTime) {				--to;			}			++to; // inclusive -> exclusive bound			if (from !== 0 || to !== nKeys) {				// empty tracks are forbidden, so keep at least one keyframe				if (from >= to) {					to = Math.max(to, 1);					from = to - 1;				}				const stride = this.getValueSize();				this.times = AnimationUtils.arraySlice(times, from, to);				this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride);			}			return this;		} // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable		validate() {			let valid = true;			const valueSize = this.getValueSize();			if (valueSize - Math.floor(valueSize) !== 0) {				console.error('THREE.KeyframeTrack: Invalid value size in track.', this);				valid = false;			}			const times = this.times,						values = this.values,						nKeys = times.length;			if (nKeys === 0) {				console.error('THREE.KeyframeTrack: Track is empty.', this);				valid = false;			}			let prevTime = null;			for (let i = 0; i !== nKeys; i++) {				const currTime = times[i];				if (typeof currTime === 'number' && isNaN(currTime)) {					console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime);					valid = false;					break;				}				if (prevTime !== null && prevTime > currTime) {					console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime);					valid = false;					break;				}				prevTime = currTime;			}			if (values !== undefined) {				if (AnimationUtils.isTypedArray(values)) {					for (let i = 0, n = values.length; i !== n; ++i) {						const value = values[i];						if (isNaN(value)) {							console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value);							valid = false;							break;						}					}				}			}			return valid;		} // removes equivalent sequential keys as common in morph target sequences		// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)		optimize() {			// times or values may be shared with other tracks, so overwriting is unsafe			const times = AnimationUtils.arraySlice(this.times),						values = AnimationUtils.arraySlice(this.values),						stride = this.getValueSize(),						smoothInterpolation = this.getInterpolation() === InterpolateSmooth,						lastIndex = times.length - 1;			let writeIndex = 1;			for (let i = 1; i < lastIndex; ++i) {				let keep = false;				const time = times[i];				const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time				if (time !== timeNext && (i !== 1 || time !== times[0])) {					if (!smoothInterpolation) {						// remove unnecessary keyframes same as their neighbors						const offset = i * stride,									offsetP = offset - stride,									offsetN = offset + stride;						for (let j = 0; j !== stride; ++j) {							const value = values[offset + j];							if (value !== values[offsetP + j] || value !== values[offsetN + j]) {								keep = true;								break;							}						}					} else {						keep = true;					}				} // in-place compaction				if (keep) {					if (i !== writeIndex) {						times[writeIndex] = times[i];						const readOffset = i * stride,									writeOffset = writeIndex * stride;						for (let j = 0; j !== stride; ++j) {							values[writeOffset + j] = values[readOffset + j];						}					}					++writeIndex;				}			} // flush last keyframe (compaction looks ahead)			if (lastIndex > 0) {				times[writeIndex] = times[lastIndex];				for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) {					values[writeOffset + j] = values[readOffset + j];				}				++writeIndex;			}			if (writeIndex !== times.length) {				this.times = AnimationUtils.arraySlice(times, 0, writeIndex);				this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride);			} else {				this.times = times;				this.values = values;			}			return this;		}		clone() {			const times = AnimationUtils.arraySlice(this.times, 0);			const values = AnimationUtils.arraySlice(this.values, 0);			const TypedKeyframeTrack = this.constructor;			const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly.			track.createInterpolant = this.createInterpolant;			return track;		}	}	KeyframeTrack.prototype.TimeBufferType = Float32Array;	KeyframeTrack.prototype.ValueBufferType = Float32Array;	KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;	/**	 * A Track of Boolean keyframe values.	 */	class BooleanKeyframeTrack extends KeyframeTrack {}	BooleanKeyframeTrack.prototype.ValueTypeName = 'bool';	BooleanKeyframeTrack.prototype.ValueBufferType = Array;	BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;	BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;	BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed	/**	 * A Track of keyframe values that represent color.	 */	class ColorKeyframeTrack extends KeyframeTrack {}	ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited	/**	 * A Track of numeric keyframe values.	 */	class NumberKeyframeTrack extends KeyframeTrack {}	NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited	/**	 * Spherical linear unit quaternion interpolant.	 */	class QuaternionLinearInterpolant extends Interpolant {		constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {			super(parameterPositions, sampleValues, sampleSize, resultBuffer);		}		interpolate_(i1, t0, t, t1) {			const result = this.resultBuffer,						values = this.sampleValues,						stride = this.valueSize,						alpha = (t - t0) / (t1 - t0);			let offset = i1 * stride;			for (let end = offset + stride; offset !== end; offset += 4) {				Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha);			}			return result;		}	}	/**	 * A Track of quaternion keyframe values.	 */	class QuaternionKeyframeTrack extends KeyframeTrack {		InterpolantFactoryMethodLinear(result) {			return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result);		}	}	QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited	QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;	QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;	/**	 * A Track that interpolates Strings	 */	class StringKeyframeTrack extends KeyframeTrack {}	StringKeyframeTrack.prototype.ValueTypeName = 'string';	StringKeyframeTrack.prototype.ValueBufferType = Array;	StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;	StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;	StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;	/**	 * A Track of vectored keyframe values.	 */	class VectorKeyframeTrack extends KeyframeTrack {}	VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited	class AnimationClip {		constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) {			this.name = name;			this.tracks = tracks;			this.duration = duration;			this.blendMode = blendMode;			this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks			if (this.duration < 0) {				this.resetDuration();			}		}		static parse(json) {			const tracks = [],						jsonTracks = json.tracks,						frameTime = 1.0 / (json.fps || 1.0);			for (let i = 0, n = jsonTracks.length; i !== n; ++i) {				tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime));			}			const clip = new this(json.name, json.duration, tracks, json.blendMode);			clip.uuid = json.uuid;			return clip;		}		static toJSON(clip) {			const tracks = [],						clipTracks = clip.tracks;			const json = {				'name': clip.name,				'duration': clip.duration,				'tracks': tracks,				'uuid': clip.uuid,				'blendMode': clip.blendMode			};			for (let i = 0, n = clipTracks.length; i !== n; ++i) {				tracks.push(KeyframeTrack.toJSON(clipTracks[i]));			}			return json;		}		static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) {			const numMorphTargets = morphTargetSequence.length;			const tracks = [];			for (let i = 0; i < numMorphTargets; i++) {				let times = [];				let values = [];				times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets);				values.push(0, 1, 0);				const order = AnimationUtils.getKeyframeOrder(times);				times = AnimationUtils.sortedArray(times, 1, order);				values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the				// last frame as well for perfect loop.				if (!noLoop && times[0] === 0) {					times.push(numMorphTargets);					values.push(values[0]);				}				tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps));			}			return new this(name, -1, tracks);		}		static findByName(objectOrClipArray, name) {			let clipArray = objectOrClipArray;			if (!Array.isArray(objectOrClipArray)) {				const o = objectOrClipArray;				clipArray = o.geometry && o.geometry.animations || o.animations;			}			for (let i = 0; i < clipArray.length; i++) {				if (clipArray[i].name === name) {					return clipArray[i];				}			}			return null;		}		static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) {			const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences			// such flamingo_flyA_003, flamingo_run1_003, crdeath0059			const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based			// patterns like Walk_001, Walk_002, Run_001, Run_002			for (let i = 0, il = morphTargets.length; i < il; i++) {				const morphTarget = morphTargets[i];				const parts = morphTarget.name.match(pattern);				if (parts && parts.length > 1) {					const name = parts[1];					let animationMorphTargets = animationToMorphTargets[name];					if (!animationMorphTargets) {						animationToMorphTargets[name] = animationMorphTargets = [];					}					animationMorphTargets.push(morphTarget);				}			}			const clips = [];			for (const name in animationToMorphTargets) {				clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop));			}			return clips;		} // parse the animation.hierarchy format		static parseAnimation(animation, bones) {			if (!animation) {				console.error('THREE.AnimationClip: No animation in JSONLoader data.');				return null;			}			const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) {				// only return track if there are actually keys.				if (animationKeys.length !== 0) {					const times = [];					const values = [];					AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again					if (times.length !== 0) {						destTracks.push(new trackType(trackName, times, values));					}				}			};			const tracks = [];			const clipName = animation.name || 'default';			const fps = animation.fps || 30;			const blendMode = animation.blendMode; // automatic length determination in AnimationClip.			let duration = animation.length || -1;			const hierarchyTracks = animation.hierarchy || [];			for (let h = 0; h < hierarchyTracks.length; h++) {				const animationKeys = hierarchyTracks[h].keys; // skip empty tracks				if (!animationKeys || animationKeys.length === 0) continue; // process morph targets				if (animationKeys[0].morphTargets) {					// figure out all morph targets used in this track					const morphTargetNames = {};					let k;					for (k = 0; k < animationKeys.length; k++) {						if (animationKeys[k].morphTargets) {							for (let m = 0; m < animationKeys[k].morphTargets.length; m++) {								morphTargetNames[animationKeys[k].morphTargets[m]] = -1;							}						}					} // create a track for each morph target with all zero					// morphTargetInfluences except for the keys in which					// the morphTarget is named.					for (const morphTargetName in morphTargetNames) {						const times = [];						const values = [];						for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) {							const animationKey = animationKeys[k];							times.push(animationKey.time);							values.push(animationKey.morphTarget === morphTargetName ? 1 : 0);						}						tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values));					}					duration = morphTargetNames.length * (fps || 1.0);				} else {					// ...assume skeletal animation					const boneName = '.bones[' + bones[h].name + ']';					addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks);					addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks);					addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks);				}			}			if (tracks.length === 0) {				return null;			}			const clip = new this(clipName, duration, tracks, blendMode);			return clip;		}		resetDuration() {			const tracks = this.tracks;			let duration = 0;			for (let i = 0, n = tracks.length; i !== n; ++i) {				const track = this.tracks[i];				duration = Math.max(duration, track.times[track.times.length - 1]);			}			this.duration = duration;			return this;		}		trim() {			for (let i = 0; i < this.tracks.length; i++) {				this.tracks[i].trim(0, this.duration);			}			return this;		}		validate() {			let valid = true;			for (let i = 0; i < this.tracks.length; i++) {				valid = valid && this.tracks[i].validate();			}			return valid;		}		optimize() {			for (let i = 0; i < this.tracks.length; i++) {				this.tracks[i].optimize();			}			return this;		}		clone() {			const tracks = [];			for (let i = 0; i < this.tracks.length; i++) {				tracks.push(this.tracks[i].clone());			}			return new this.constructor(this.name, this.duration, tracks, this.blendMode);		}		toJSON() {			return this.constructor.toJSON(this);		}	}	function getTrackTypeForValueTypeName(typeName) {		switch (typeName.toLowerCase()) {			case 'scalar':			case 'double':			case 'float':			case 'number':			case 'integer':				return NumberKeyframeTrack;			case 'vector':			case 'vector2':			case 'vector3':			case 'vector4':				return VectorKeyframeTrack;			case 'color':				return ColorKeyframeTrack;			case 'quaternion':				return QuaternionKeyframeTrack;			case 'bool':			case 'boolean':				return BooleanKeyframeTrack;			case 'string':				return StringKeyframeTrack;		}		throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName);	}	function parseKeyframeTrack(json) {		if (json.type === undefined) {			throw new Error('THREE.KeyframeTrack: track type undefined, can not parse');		}		const trackType = getTrackTypeForValueTypeName(json.type);		if (json.times === undefined) {			const times = [],						values = [];			AnimationUtils.flattenJSON(json.keys, times, values, 'value');			json.times = times;			json.values = values;		} // derived classes can define a static parse method		if (trackType.parse !== undefined) {			return trackType.parse(json);		} else {			// by default, we assume a constructor compatible with the base			return new trackType(json.name, json.times, json.values, json.interpolation);		}	}	const Cache = {		enabled: false,		files: {},		add: function (key, file) {			if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key );			this.files[key] = file;		},		get: function (key) {			if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key );			return this.files[key];		},		remove: function (key) {			delete this.files[key];		},		clear: function () {			this.files = {};		}	};	class LoadingManager {		constructor(onLoad, onProgress, onError) {			const scope = this;			let isLoading = false;			let itemsLoaded = 0;			let itemsTotal = 0;			let urlModifier = undefined;			const handlers = []; // Refer to #5689 for the reason why we don't set .onStart			// in the constructor			this.onStart = undefined;			this.onLoad = onLoad;			this.onProgress = onProgress;			this.onError = onError;			this.itemStart = function (url) {				itemsTotal++;				if (isLoading === false) {					if (scope.onStart !== undefined) {						scope.onStart(url, itemsLoaded, itemsTotal);					}				}				isLoading = true;			};			this.itemEnd = function (url) {				itemsLoaded++;				if (scope.onProgress !== undefined) {					scope.onProgress(url, itemsLoaded, itemsTotal);				}				if (itemsLoaded === itemsTotal) {					isLoading = false;					if (scope.onLoad !== undefined) {						scope.onLoad();					}				}			};			this.itemError = function (url) {				if (scope.onError !== undefined) {					scope.onError(url);				}			};			this.resolveURL = function (url) {				if (urlModifier) {					return urlModifier(url);				}				return url;			};			this.setURLModifier = function (transform) {				urlModifier = transform;				return this;			};			this.addHandler = function (regex, loader) {				handlers.push(regex, loader);				return this;			};			this.removeHandler = function (regex) {				const index = handlers.indexOf(regex);				if (index !== -1) {					handlers.splice(index, 2);				}				return this;			};			this.getHandler = function (file) {				for (let i = 0, l = handlers.length; i < l; i += 2) {					const regex = handlers[i];					const loader = handlers[i + 1];					if (regex.global) regex.lastIndex = 0; // see #17920					if (regex.test(file)) {						return loader;					}				}				return null;			};		}	}	const DefaultLoadingManager = new LoadingManager();	class Loader {		constructor(manager) {			this.manager = manager !== undefined ? manager : DefaultLoadingManager;			this.crossOrigin = 'anonymous';			this.withCredentials = false;			this.path = '';			this.resourcePath = '';			this.requestHeader = {};		}		load() {}		loadAsync(url, onProgress) {			const scope = this;			return new Promise(function (resolve, reject) {				scope.load(url, resolve, onProgress, reject);			});		}		parse() {}		setCrossOrigin(crossOrigin) {			this.crossOrigin = crossOrigin;			return this;		}		setWithCredentials(value) {			this.withCredentials = value;			return this;		}		setPath(path) {			this.path = path;			return this;		}		setResourcePath(resourcePath) {			this.resourcePath = resourcePath;			return this;		}		setRequestHeader(requestHeader) {			this.requestHeader = requestHeader;			return this;		}	}	const loading = {};	class FileLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			if (url === undefined) url = '';			if (this.path !== undefined) url = this.path + url;			url = this.manager.resolveURL(url);			const cached = Cache.get(url);			if (cached !== undefined) {				this.manager.itemStart(url);				setTimeout(() => {					if (onLoad) onLoad(cached);					this.manager.itemEnd(url);				}, 0);				return cached;			} // Check if request is duplicate			if (loading[url] !== undefined) {				loading[url].push({					onLoad: onLoad,					onProgress: onProgress,					onError: onError				});				return;			} // Initialise array for duplicate requests			loading[url] = [];			loading[url].push({				onLoad: onLoad,				onProgress: onProgress,				onError: onError			}); // create request			const req = new Request(url, {				headers: new Headers(this.requestHeader),				credentials: this.withCredentials ? 'include' : 'same-origin' // An abort controller could be added within a future PR			}); // start the fetch			fetch(req).then(response => {				if (response.status === 200 || response.status === 0) {					// Some browsers return HTTP Status 0 when using non-http protocol					// e.g. 'file://' or 'data://'. Handle as success.					if (response.status === 0) {						console.warn('THREE.FileLoader: HTTP Status 0 received.');					}					const callbacks = loading[url];					const reader = response.body.getReader();					const contentLength = response.headers.get('Content-Length');					const total = contentLength ? parseInt(contentLength) : 0;					const lengthComputable = total !== 0;					let loaded = 0; // periodically read data into the new stream tracking while download progress					return new ReadableStream({						start(controller) {							readData();							function readData() {								reader.read().then(({									done,									value								}) => {									if (done) {										controller.close();									} else {										loaded += value.byteLength;										const event = new ProgressEvent('progress', {											lengthComputable,											loaded,											total										});										for (let i = 0, il = callbacks.length; i < il; i++) {											const callback = callbacks[i];											if (callback.onProgress) callback.onProgress(event);										}										controller.enqueue(value);										readData();									}								});							}						}					});				} else {					throw Error(`fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`);				}			}).then(stream => {				const response = new Response(stream);				switch (this.responseType) {					case 'arraybuffer':						return response.arrayBuffer();					case 'blob':						return response.blob();					case 'document':						return response.text().then(text => {							const parser = new DOMParser();							return parser.parseFromString(text, this.mimeType);						});					case 'json':						return response.json();					default:						return response.text();				}			}).then(data => {				// Add to cache only on HTTP success, so that we do not cache				// error response bodies as proper responses to requests.				Cache.add(url, data);				const callbacks = loading[url];				delete loading[url];				for (let i = 0, il = callbacks.length; i < il; i++) {					const callback = callbacks[i];					if (callback.onLoad) callback.onLoad(data);				}				this.manager.itemEnd(url);			}).catch(err => {				// Abort errors and other errors are handled the same				const callbacks = loading[url];				delete loading[url];				for (let i = 0, il = callbacks.length; i < il; i++) {					const callback = callbacks[i];					if (callback.onError) callback.onError(err);				}				this.manager.itemError(url);				this.manager.itemEnd(url);			});			this.manager.itemStart(url);		}		setResponseType(value) {			this.responseType = value;			return this;		}		setMimeType(value) {			this.mimeType = value;			return this;		}	}	class AnimationLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			const scope = this;			const loader = new FileLoader(this.manager);			loader.setPath(this.path);			loader.setRequestHeader(this.requestHeader);			loader.setWithCredentials(this.withCredentials);			loader.load(url, function (text) {				try {					onLoad(scope.parse(JSON.parse(text)));				} catch (e) {					if (onError) {						onError(e);					} else {						console.error(e);					}					scope.manager.itemError(url);				}			}, onProgress, onError);		}		parse(json) {			const animations = [];			for (let i = 0; i < json.length; i++) {				const clip = AnimationClip.parse(json[i]);				animations.push(clip);			}			return animations;		}	}	/**	 * Abstract Base class to block based textures loader (dds, pvr, ...)	 *	 * Sub classes have to implement the parse() method which will be used in load().	 */	class CompressedTextureLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			const scope = this;			const images = [];			const texture = new CompressedTexture();			const loader = new FileLoader(this.manager);			loader.setPath(this.path);			loader.setResponseType('arraybuffer');			loader.setRequestHeader(this.requestHeader);			loader.setWithCredentials(scope.withCredentials);			let loaded = 0;			function loadTexture(i) {				loader.load(url[i], function (buffer) {					const texDatas = scope.parse(buffer, true);					images[i] = {						width: texDatas.width,						height: texDatas.height,						format: texDatas.format,						mipmaps: texDatas.mipmaps					};					loaded += 1;					if (loaded === 6) {						if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter;						texture.image = images;						texture.format = texDatas.format;						texture.needsUpdate = true;						if (onLoad) onLoad(texture);					}				}, onProgress, onError);			}			if (Array.isArray(url)) {				for (let i = 0, il = url.length; i < il; ++i) {					loadTexture(i);				}			} else {				// compressed cubemap texture stored in a single DDS file				loader.load(url, function (buffer) {					const texDatas = scope.parse(buffer, true);					if (texDatas.isCubemap) {						const faces = texDatas.mipmaps.length / texDatas.mipmapCount;						for (let f = 0; f < faces; f++) {							images[f] = {								mipmaps: []							};							for (let i = 0; i < texDatas.mipmapCount; i++) {								images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]);								images[f].format = texDatas.format;								images[f].width = texDatas.width;								images[f].height = texDatas.height;							}						}						texture.image = images;					} else {						texture.image.width = texDatas.width;						texture.image.height = texDatas.height;						texture.mipmaps = texDatas.mipmaps;					}					if (texDatas.mipmapCount === 1) {						texture.minFilter = LinearFilter;					}					texture.format = texDatas.format;					texture.needsUpdate = true;					if (onLoad) onLoad(texture);				}, onProgress, onError);			}			return texture;		}	}	class ImageLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			if (this.path !== undefined) url = this.path + url;			url = this.manager.resolveURL(url);			const scope = this;			const cached = Cache.get(url);			if (cached !== undefined) {				scope.manager.itemStart(url);				setTimeout(function () {					if (onLoad) onLoad(cached);					scope.manager.itemEnd(url);				}, 0);				return cached;			}			const image = createElementNS('img');			function onImageLoad() {				removeEventListeners();				Cache.add(url, this);				if (onLoad) onLoad(this);				scope.manager.itemEnd(url);			}			function onImageError(event) {				removeEventListeners();				if (onError) onError(event);				scope.manager.itemError(url);				scope.manager.itemEnd(url);			}			function removeEventListeners() {				image.removeEventListener('load', onImageLoad, false);				image.removeEventListener('error', onImageError, false);			}			image.addEventListener('load', onImageLoad, false);			image.addEventListener('error', onImageError, false);			if (url.substr(0, 5) !== 'data:') {				if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin;			}			scope.manager.itemStart(url);			image.src = url;			return image;		}	}	class CubeTextureLoader extends Loader {		constructor(manager) {			super(manager);		}		load(urls, onLoad, onProgress, onError) {			const texture = new CubeTexture();			const loader = new ImageLoader(this.manager);			loader.setCrossOrigin(this.crossOrigin);			loader.setPath(this.path);			let loaded = 0;			function loadTexture(i) {				loader.load(urls[i], function (image) {					texture.images[i] = image;					loaded++;					if (loaded === 6) {						texture.needsUpdate = true;						if (onLoad) onLoad(texture);					}				}, undefined, onError);			}			for (let i = 0; i < urls.length; ++i) {				loadTexture(i);			}			return texture;		}	}	/**	 * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)	 *	 * Sub classes have to implement the parse() method which will be used in load().	 */	class DataTextureLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			const scope = this;			const texture = new DataTexture();			const loader = new FileLoader(this.manager);			loader.setResponseType('arraybuffer');			loader.setRequestHeader(this.requestHeader);			loader.setPath(this.path);			loader.setWithCredentials(scope.withCredentials);			loader.load(url, function (buffer) {				const texData = scope.parse(buffer);				if (!texData) return;				if (texData.image !== undefined) {					texture.image = texData.image;				} else if (texData.data !== undefined) {					texture.image.width = texData.width;					texture.image.height = texData.height;					texture.image.data = texData.data;				}				texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;				texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;				texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;				texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;				texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;				if (texData.encoding !== undefined) {					texture.encoding = texData.encoding;				}				if (texData.flipY !== undefined) {					texture.flipY = texData.flipY;				}				if (texData.format !== undefined) {					texture.format = texData.format;				}				if (texData.type !== undefined) {					texture.type = texData.type;				}				if (texData.mipmaps !== undefined) {					texture.mipmaps = texData.mipmaps;					texture.minFilter = LinearMipmapLinearFilter; // presumably...				}				if (texData.mipmapCount === 1) {					texture.minFilter = LinearFilter;				}				if (texData.generateMipmaps !== undefined) {					texture.generateMipmaps = texData.generateMipmaps;				}				texture.needsUpdate = true;				if (onLoad) onLoad(texture, texData);			}, onProgress, onError);			return texture;		}	}	class TextureLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			const texture = new Texture();			const loader = new ImageLoader(this.manager);			loader.setCrossOrigin(this.crossOrigin);			loader.setPath(this.path);			loader.load(url, function (image) {				texture.image = image;				texture.needsUpdate = true;				if (onLoad !== undefined) {					onLoad(texture);				}			}, onProgress, onError);			return texture;		}	}	class Light extends Object3D {		constructor(color, intensity = 1) {			super();			this.type = 'Light';			this.color = new Color(color);			this.intensity = intensity;		}		dispose() {// Empty here in base class; some subclasses override.		}		copy(source) {			super.copy(source);			this.color.copy(source.color);			this.intensity = source.intensity;			return this;		}		toJSON(meta) {			const data = super.toJSON(meta);			data.object.color = this.color.getHex();			data.object.intensity = this.intensity;			if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex();			if (this.distance !== undefined) data.object.distance = this.distance;			if (this.angle !== undefined) data.object.angle = this.angle;			if (this.decay !== undefined) data.object.decay = this.decay;			if (this.penumbra !== undefined) data.object.penumbra = this.penumbra;			if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON();			return data;		}	}	Light.prototype.isLight = true;	class HemisphereLight extends Light {		constructor(skyColor, groundColor, intensity) {			super(skyColor, intensity);			this.type = 'HemisphereLight';			this.position.copy(Object3D.DefaultUp);			this.updateMatrix();			this.groundColor = new Color(groundColor);		}		copy(source) {			Light.prototype.copy.call(this, source);			this.groundColor.copy(source.groundColor);			return this;		}	}	HemisphereLight.prototype.isHemisphereLight = true;	const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4();	const _lightPositionWorld$1 = /*@__PURE__*/new Vector3();	const _lookTarget$1 = /*@__PURE__*/new Vector3();	class LightShadow {		constructor(camera) {			this.camera = camera;			this.bias = 0;			this.normalBias = 0;			this.radius = 1;			this.blurSamples = 8;			this.mapSize = new Vector2(512, 512);			this.map = null;			this.mapPass = null;			this.matrix = new Matrix4();			this.autoUpdate = true;			this.needsUpdate = false;			this._frustum = new Frustum();			this._frameExtents = new Vector2(1, 1);			this._viewportCount = 1;			this._viewports = [new Vector4(0, 0, 1, 1)];		}		getViewportCount() {			return this._viewportCount;		}		getFrustum() {			return this._frustum;		}		updateMatrices(light) {			const shadowCamera = this.camera;			const shadowMatrix = this.matrix;			_lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld);			shadowCamera.position.copy(_lightPositionWorld$1);			_lookTarget$1.setFromMatrixPosition(light.target.matrixWorld);			shadowCamera.lookAt(_lookTarget$1);			shadowCamera.updateMatrixWorld();			_projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse);			this._frustum.setFromProjectionMatrix(_projScreenMatrix$1);			shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0);			shadowMatrix.multiply(shadowCamera.projectionMatrix);			shadowMatrix.multiply(shadowCamera.matrixWorldInverse);		}		getViewport(viewportIndex) {			return this._viewports[viewportIndex];		}		getFrameExtents() {			return this._frameExtents;		}		dispose() {			if (this.map) {				this.map.dispose();			}			if (this.mapPass) {				this.mapPass.dispose();			}		}		copy(source) {			this.camera = source.camera.clone();			this.bias = source.bias;			this.radius = source.radius;			this.mapSize.copy(source.mapSize);			return this;		}		clone() {			return new this.constructor().copy(this);		}		toJSON() {			const object = {};			if (this.bias !== 0) object.bias = this.bias;			if (this.normalBias !== 0) object.normalBias = this.normalBias;			if (this.radius !== 1) object.radius = this.radius;			if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray();			object.camera = this.camera.toJSON(false).object;			delete object.camera.matrix;			return object;		}	}	class SpotLightShadow extends LightShadow {		constructor() {			super(new PerspectiveCamera(50, 1, 0.5, 500));			this.focus = 1;		}		updateMatrices(light) {			const camera = this.camera;			const fov = RAD2DEG * 2 * light.angle * this.focus;			const aspect = this.mapSize.width / this.mapSize.height;			const far = light.distance || camera.far;			if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) {				camera.fov = fov;				camera.aspect = aspect;				camera.far = far;				camera.updateProjectionMatrix();			}			super.updateMatrices(light);		}		copy(source) {			super.copy(source);			this.focus = source.focus;			return this;		}	}	SpotLightShadow.prototype.isSpotLightShadow = true;	class SpotLight extends Light {		constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) {			super(color, intensity);			this.type = 'SpotLight';			this.position.copy(Object3D.DefaultUp);			this.updateMatrix();			this.target = new Object3D();			this.distance = distance;			this.angle = angle;			this.penumbra = penumbra;			this.decay = decay; // for physically correct lights, should be 2.			this.shadow = new SpotLightShadow();		}		get power() {			// compute the light's luminous power (in lumens) from its intensity (in candela)			// by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd)			return this.intensity * Math.PI;		}		set power(power) {			// set the light's intensity (in candela) from the desired luminous power (in lumens)			this.intensity = power / Math.PI;		}		dispose() {			this.shadow.dispose();		}		copy(source) {			super.copy(source);			this.distance = source.distance;			this.angle = source.angle;			this.penumbra = source.penumbra;			this.decay = source.decay;			this.target = source.target.clone();			this.shadow = source.shadow.clone();			return this;		}	}	SpotLight.prototype.isSpotLight = true;	const _projScreenMatrix = /*@__PURE__*/new Matrix4();	const _lightPositionWorld = /*@__PURE__*/new Vector3();	const _lookTarget = /*@__PURE__*/new Vector3();	class PointLightShadow extends LightShadow {		constructor() {			super(new PerspectiveCamera(90, 1, 0.5, 500));			this._frameExtents = new Vector2(4, 2);			this._viewportCount = 6;			this._viewports = [// These viewports map a cube-map onto a 2D texture with the			// following orientation:			//			//	xzXZ			//	 y Y			//			// X - Positive x direction			// x - Negative x direction			// Y - Positive y direction			// y - Negative y direction			// Z - Positive z direction			// z - Negative z direction			// positive X			new Vector4(2, 1, 1, 1), // negative X			new Vector4(0, 1, 1, 1), // positive Z			new Vector4(3, 1, 1, 1), // negative Z			new Vector4(1, 1, 1, 1), // positive Y			new Vector4(3, 0, 1, 1), // negative Y			new Vector4(1, 0, 1, 1)];			this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)];			this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)];		}		updateMatrices(light, viewportIndex = 0) {			const camera = this.camera;			const shadowMatrix = this.matrix;			const far = light.distance || camera.far;			if (far !== camera.far) {				camera.far = far;				camera.updateProjectionMatrix();			}			_lightPositionWorld.setFromMatrixPosition(light.matrixWorld);			camera.position.copy(_lightPositionWorld);			_lookTarget.copy(camera.position);			_lookTarget.add(this._cubeDirections[viewportIndex]);			camera.up.copy(this._cubeUps[viewportIndex]);			camera.lookAt(_lookTarget);			camera.updateMatrixWorld();			shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z);			_projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);			this._frustum.setFromProjectionMatrix(_projScreenMatrix);		}	}	PointLightShadow.prototype.isPointLightShadow = true;	class PointLight extends Light {		constructor(color, intensity, distance = 0, decay = 1) {			super(color, intensity);			this.type = 'PointLight';			this.distance = distance;			this.decay = decay; // for physically correct lights, should be 2.			this.shadow = new PointLightShadow();		}		get power() {			// compute the light's luminous power (in lumens) from its intensity (in candela)			// for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd)			return this.intensity * 4 * Math.PI;		}		set power(power) {			// set the light's intensity (in candela) from the desired luminous power (in lumens)			this.intensity = power / (4 * Math.PI);		}		dispose() {			this.shadow.dispose();		}		copy(source) {			super.copy(source);			this.distance = source.distance;			this.decay = source.decay;			this.shadow = source.shadow.clone();			return this;		}	}	PointLight.prototype.isPointLight = true;	class DirectionalLightShadow extends LightShadow {		constructor() {			super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500));		}	}	DirectionalLightShadow.prototype.isDirectionalLightShadow = true;	class DirectionalLight extends Light {		constructor(color, intensity) {			super(color, intensity);			this.type = 'DirectionalLight';			this.position.copy(Object3D.DefaultUp);			this.updateMatrix();			this.target = new Object3D();			this.shadow = new DirectionalLightShadow();		}		dispose() {			this.shadow.dispose();		}		copy(source) {			super.copy(source);			this.target = source.target.clone();			this.shadow = source.shadow.clone();			return this;		}	}	DirectionalLight.prototype.isDirectionalLight = true;	class AmbientLight extends Light {		constructor(color, intensity) {			super(color, intensity);			this.type = 'AmbientLight';		}	}	AmbientLight.prototype.isAmbientLight = true;	class RectAreaLight extends Light {		constructor(color, intensity, width = 10, height = 10) {			super(color, intensity);			this.type = 'RectAreaLight';			this.width = width;			this.height = height;		}		get power() {			// compute the light's luminous power (in lumens) from its intensity (in nits)			return this.intensity * this.width * this.height * Math.PI;		}		set power(power) {			// set the light's intensity (in nits) from the desired luminous power (in lumens)			this.intensity = power / (this.width * this.height * Math.PI);		}		copy(source) {			super.copy(source);			this.width = source.width;			this.height = source.height;			return this;		}		toJSON(meta) {			const data = super.toJSON(meta);			data.object.width = this.width;			data.object.height = this.height;			return data;		}	}	RectAreaLight.prototype.isRectAreaLight = true;	/**	 * Primary reference:	 *	 https://graphics.stanford.edu/papers/envmap/envmap.pdf	 *	 * Secondary reference:	 *	 https://www.ppsloan.org/publications/StupidSH36.pdf	 */	// 3-band SH defined by 9 coefficients	class SphericalHarmonics3 {		constructor() {			this.coefficients = [];			for (let i = 0; i < 9; i++) {				this.coefficients.push(new Vector3());			}		}		set(coefficients) {			for (let i = 0; i < 9; i++) {				this.coefficients[i].copy(coefficients[i]);			}			return this;		}		zero() {			for (let i = 0; i < 9; i++) {				this.coefficients[i].set(0, 0, 0);			}			return this;		} // get the radiance in the direction of the normal		// target is a Vector3		getAt(normal, target) {			// normal is assumed to be unit length			const x = normal.x,						y = normal.y,						z = normal.z;			const coeff = this.coefficients; // band 0			target.copy(coeff[0]).multiplyScalar(0.282095); // band 1			target.addScaledVector(coeff[1], 0.488603 * y);			target.addScaledVector(coeff[2], 0.488603 * z);			target.addScaledVector(coeff[3], 0.488603 * x); // band 2			target.addScaledVector(coeff[4], 1.092548 * (x * y));			target.addScaledVector(coeff[5], 1.092548 * (y * z));			target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0));			target.addScaledVector(coeff[7], 1.092548 * (x * z));			target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y));			return target;		} // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal		// target is a Vector3		// https://graphics.stanford.edu/papers/envmap/envmap.pdf		getIrradianceAt(normal, target) {			// normal is assumed to be unit length			const x = normal.x,						y = normal.y,						z = normal.z;			const coeff = this.coefficients; // band 0			target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095			// band 1			target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603			target.addScaledVector(coeff[2], 2.0 * 0.511664 * z);			target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2			target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548			target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z);			target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3			target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z);			target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274			return target;		}		add(sh) {			for (let i = 0; i < 9; i++) {				this.coefficients[i].add(sh.coefficients[i]);			}			return this;		}		addScaledSH(sh, s) {			for (let i = 0; i < 9; i++) {				this.coefficients[i].addScaledVector(sh.coefficients[i], s);			}			return this;		}		scale(s) {			for (let i = 0; i < 9; i++) {				this.coefficients[i].multiplyScalar(s);			}			return this;		}		lerp(sh, alpha) {			for (let i = 0; i < 9; i++) {				this.coefficients[i].lerp(sh.coefficients[i], alpha);			}			return this;		}		equals(sh) {			for (let i = 0; i < 9; i++) {				if (!this.coefficients[i].equals(sh.coefficients[i])) {					return false;				}			}			return true;		}		copy(sh) {			return this.set(sh.coefficients);		}		clone() {			return new this.constructor().copy(this);		}		fromArray(array, offset = 0) {			const coefficients = this.coefficients;			for (let i = 0; i < 9; i++) {				coefficients[i].fromArray(array, offset + i * 3);			}			return this;		}		toArray(array = [], offset = 0) {			const coefficients = this.coefficients;			for (let i = 0; i < 9; i++) {				coefficients[i].toArray(array, offset + i * 3);			}			return array;		} // evaluate the basis functions		// shBasis is an Array[ 9 ]		static getBasisAt(normal, shBasis) {			// normal is assumed to be unit length			const x = normal.x,						y = normal.y,						z = normal.z; // band 0			shBasis[0] = 0.282095; // band 1			shBasis[1] = 0.488603 * y;			shBasis[2] = 0.488603 * z;			shBasis[3] = 0.488603 * x; // band 2			shBasis[4] = 1.092548 * x * y;			shBasis[5] = 1.092548 * y * z;			shBasis[6] = 0.315392 * (3 * z * z - 1);			shBasis[7] = 1.092548 * x * z;			shBasis[8] = 0.546274 * (x * x - y * y);		}	}	SphericalHarmonics3.prototype.isSphericalHarmonics3 = true;	class LightProbe extends Light {		constructor(sh = new SphericalHarmonics3(), intensity = 1) {			super(undefined, intensity);			this.sh = sh;		}		copy(source) {			super.copy(source);			this.sh.copy(source.sh);			return this;		}		fromJSON(json) {			this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();			this.sh.fromArray(json.sh);			return this;		}		toJSON(meta) {			const data = super.toJSON(meta);			data.object.sh = this.sh.toArray();			return data;		}	}	LightProbe.prototype.isLightProbe = true;	class MaterialLoader extends Loader {		constructor(manager) {			super(manager);			this.textures = {};		}		load(url, onLoad, onProgress, onError) {			const scope = this;			const loader = new FileLoader(scope.manager);			loader.setPath(scope.path);			loader.setRequestHeader(scope.requestHeader);			loader.setWithCredentials(scope.withCredentials);			loader.load(url, function (text) {				try {					onLoad(scope.parse(JSON.parse(text)));				} catch (e) {					if (onError) {						onError(e);					} else {						console.error(e);					}					scope.manager.itemError(url);				}			}, onProgress, onError);		}		parse(json) {			const textures = this.textures;			function getTexture(name) {				if (textures[name] === undefined) {					console.warn('THREE.MaterialLoader: Undefined texture', name);				}				return textures[name];			}			const material = new Materials[json.type]();			if (json.uuid !== undefined) material.uuid = json.uuid;			if (json.name !== undefined) material.name = json.name;			if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color);			if (json.roughness !== undefined) material.roughness = json.roughness;			if (json.metalness !== undefined) material.metalness = json.metalness;			if (json.sheen !== undefined) material.sheen = json.sheen;			if (json.sheenColor !== undefined) material.sheenColor = new Color().setHex(json.sheenColor);			if (json.sheenRoughness !== undefined) material.sheenRoughness = json.sheenRoughness;			if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive);			if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular);			if (json.specularIntensity !== undefined) material.specularIntensity = json.specularIntensity;			if (json.specularColor !== undefined && material.specularColor !== undefined) material.specularColor.setHex(json.specularColor);			if (json.shininess !== undefined) material.shininess = json.shininess;			if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat;			if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness;			if (json.transmission !== undefined) material.transmission = json.transmission;			if (json.thickness !== undefined) material.thickness = json.thickness;			if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance;			if (json.attenuationColor !== undefined && material.attenuationColor !== undefined) material.attenuationColor.setHex(json.attenuationColor);			if (json.fog !== undefined) material.fog = json.fog;			if (json.flatShading !== undefined) material.flatShading = json.flatShading;			if (json.blending !== undefined) material.blending = json.blending;			if (json.combine !== undefined) material.combine = json.combine;			if (json.side !== undefined) material.side = json.side;			if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide;			if (json.opacity !== undefined) material.opacity = json.opacity;			if (json.format !== undefined) material.format = json.format;			if (json.transparent !== undefined) material.transparent = json.transparent;			if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest;			if (json.depthTest !== undefined) material.depthTest = json.depthTest;			if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite;			if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite;			if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite;			if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask;			if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc;			if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef;			if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask;			if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail;			if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail;			if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass;			if (json.wireframe !== undefined) material.wireframe = json.wireframe;			if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth;			if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap;			if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin;			if (json.rotation !== undefined) material.rotation = json.rotation;			if (json.linewidth !== 1) material.linewidth = json.linewidth;			if (json.dashSize !== undefined) material.dashSize = json.dashSize;			if (json.gapSize !== undefined) material.gapSize = json.gapSize;			if (json.scale !== undefined) material.scale = json.scale;			if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset;			if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor;			if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits;			if (json.dithering !== undefined) material.dithering = json.dithering;			if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage;			if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha;			if (json.visible !== undefined) material.visible = json.visible;			if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped;			if (json.userData !== undefined) material.userData = json.userData;			if (json.vertexColors !== undefined) {				if (typeof json.vertexColors === 'number') {					material.vertexColors = json.vertexColors > 0 ? true : false;				} else {					material.vertexColors = json.vertexColors;				}			} // Shader Material			if (json.uniforms !== undefined) {				for (const name in json.uniforms) {					const uniform = json.uniforms[name];					material.uniforms[name] = {};					switch (uniform.type) {						case 't':							material.uniforms[name].value = getTexture(uniform.value);							break;						case 'c':							material.uniforms[name].value = new Color().setHex(uniform.value);							break;						case 'v2':							material.uniforms[name].value = new Vector2().fromArray(uniform.value);							break;						case 'v3':							material.uniforms[name].value = new Vector3().fromArray(uniform.value);							break;						case 'v4':							material.uniforms[name].value = new Vector4().fromArray(uniform.value);							break;						case 'm3':							material.uniforms[name].value = new Matrix3().fromArray(uniform.value);							break;						case 'm4':							material.uniforms[name].value = new Matrix4().fromArray(uniform.value);							break;						default:							material.uniforms[name].value = uniform.value;					}				}			}			if (json.defines !== undefined) material.defines = json.defines;			if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader;			if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader;			if (json.extensions !== undefined) {				for (const key in json.extensions) {					material.extensions[key] = json.extensions[key];				}			} // Deprecated			if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading			// for PointsMaterial			if (json.size !== undefined) material.size = json.size;			if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps			if (json.map !== undefined) material.map = getTexture(json.map);			if (json.matcap !== undefined) material.matcap = getTexture(json.matcap);			if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap);			if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap);			if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale;			if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap);			if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType;			if (json.normalScale !== undefined) {				let normalScale = json.normalScale;				if (Array.isArray(normalScale) === false) {					// Blender exporter used to export a scalar. See #7459					normalScale = [normalScale, normalScale];				}				material.normalScale = new Vector2().fromArray(normalScale);			}			if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap);			if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale;			if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias;			if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap);			if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap);			if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap);			if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity;			if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap);			if (json.specularIntensityMap !== undefined) material.specularIntensityMap = getTexture(json.specularIntensityMap);			if (json.specularColorMap !== undefined) material.specularColorMap = getTexture(json.specularColorMap);			if (json.envMap !== undefined) material.envMap = getTexture(json.envMap);			if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity;			if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity;			if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio;			if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap);			if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity;			if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap);			if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity;			if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap);			if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap);			if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap);			if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap);			if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale);			if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap);			if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap);			if (json.sheenColorMap !== undefined) material.sheenColorMap = getTexture(json.sheenColorMap);			if (json.sheenRoughnessMap !== undefined) material.sheenRoughnessMap = getTexture(json.sheenRoughnessMap);			return material;		}		setTextures(value) {			this.textures = value;			return this;		}	}	class LoaderUtils {		static decodeText(array) {			if (typeof TextDecoder !== 'undefined') {				return new TextDecoder().decode(array);			} // Avoid the String.fromCharCode.apply(null, array) shortcut, which			// throws a "maximum call stack size exceeded" error for large arrays.			let s = '';			for (let i = 0, il = array.length; i < il; i++) {				// Implicitly assumes little-endian.				s += String.fromCharCode(array[i]);			}			try {				// merges multi-byte utf-8 characters.				return decodeURIComponent(escape(s));			} catch (e) {				// see #16358				return s;			}		}		static extractUrlBase(url) {			const index = url.lastIndexOf('/');			if (index === -1) return './';			return url.substr(0, index + 1);		}		static resolveURL(url, path) {			// Invalid URL			if (typeof url !== 'string' || url === '') return ''; // Host Relative URL			if (/^https?:\/\//i.test(path) && /^\//.test(url)) {				path = path.replace(/(^https?:\/\/[^\/]+).*/i, '$1');			} // Absolute URL http://,https://,//			if (/^(https?:)?\/\//i.test(url)) return url; // Data URI			if (/^data:.*,.*$/i.test(url)) return url; // Blob URL			if (/^blob:.*$/i.test(url)) return url; // Relative URL			return path + url;		}	}	class InstancedBufferGeometry extends BufferGeometry {		constructor() {			super();			this.type = 'InstancedBufferGeometry';			this.instanceCount = Infinity;		}		copy(source) {			super.copy(source);			this.instanceCount = source.instanceCount;			return this;		}		clone() {			return new this.constructor().copy(this);		}		toJSON() {			const data = super.toJSON(this);			data.instanceCount = this.instanceCount;			data.isInstancedBufferGeometry = true;			return data;		}	}	InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true;	class BufferGeometryLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			const scope = this;			const loader = new FileLoader(scope.manager);			loader.setPath(scope.path);			loader.setRequestHeader(scope.requestHeader);			loader.setWithCredentials(scope.withCredentials);			loader.load(url, function (text) {				try {					onLoad(scope.parse(JSON.parse(text)));				} catch (e) {					if (onError) {						onError(e);					} else {						console.error(e);					}					scope.manager.itemError(url);				}			}, onProgress, onError);		}		parse(json) {			const interleavedBufferMap = {};			const arrayBufferMap = {};			function getInterleavedBuffer(json, uuid) {				if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid];				const interleavedBuffers = json.interleavedBuffers;				const interleavedBuffer = interleavedBuffers[uuid];				const buffer = getArrayBuffer(json, interleavedBuffer.buffer);				const array = getTypedArray(interleavedBuffer.type, buffer);				const ib = new InterleavedBuffer(array, interleavedBuffer.stride);				ib.uuid = interleavedBuffer.uuid;				interleavedBufferMap[uuid] = ib;				return ib;			}			function getArrayBuffer(json, uuid) {				if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid];				const arrayBuffers = json.arrayBuffers;				const arrayBuffer = arrayBuffers[uuid];				const ab = new Uint32Array(arrayBuffer).buffer;				arrayBufferMap[uuid] = ab;				return ab;			}			const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();			const index = json.data.index;			if (index !== undefined) {				const typedArray = getTypedArray(index.type, index.array);				geometry.setIndex(new BufferAttribute(typedArray, 1));			}			const attributes = json.data.attributes;			for (const key in attributes) {				const attribute = attributes[key];				let bufferAttribute;				if (attribute.isInterleavedBufferAttribute) {					const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);					bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);				} else {					const typedArray = getTypedArray(attribute.type, attribute.array);					const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;					bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized);				}				if (attribute.name !== undefined) bufferAttribute.name = attribute.name;				if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage);				if (attribute.updateRange !== undefined) {					bufferAttribute.updateRange.offset = attribute.updateRange.offset;					bufferAttribute.updateRange.count = attribute.updateRange.count;				}				geometry.setAttribute(key, bufferAttribute);			}			const morphAttributes = json.data.morphAttributes;			if (morphAttributes) {				for (const key in morphAttributes) {					const attributeArray = morphAttributes[key];					const array = [];					for (let i = 0, il = attributeArray.length; i < il; i++) {						const attribute = attributeArray[i];						let bufferAttribute;						if (attribute.isInterleavedBufferAttribute) {							const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);							bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);						} else {							const typedArray = getTypedArray(attribute.type, attribute.array);							bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized);						}						if (attribute.name !== undefined) bufferAttribute.name = attribute.name;						array.push(bufferAttribute);					}					geometry.morphAttributes[key] = array;				}			}			const morphTargetsRelative = json.data.morphTargetsRelative;			if (morphTargetsRelative) {				geometry.morphTargetsRelative = true;			}			const groups = json.data.groups || json.data.drawcalls || json.data.offsets;			if (groups !== undefined) {				for (let i = 0, n = groups.length; i !== n; ++i) {					const group = groups[i];					geometry.addGroup(group.start, group.count, group.materialIndex);				}			}			const boundingSphere = json.data.boundingSphere;			if (boundingSphere !== undefined) {				const center = new Vector3();				if (boundingSphere.center !== undefined) {					center.fromArray(boundingSphere.center);				}				geometry.boundingSphere = new Sphere(center, boundingSphere.radius);			}			if (json.name) geometry.name = json.name;			if (json.userData) geometry.userData = json.userData;			return geometry;		}	}	class ObjectLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			const scope = this;			const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;			this.resourcePath = this.resourcePath || path;			const loader = new FileLoader(this.manager);			loader.setPath(this.path);			loader.setRequestHeader(this.requestHeader);			loader.setWithCredentials(this.withCredentials);			loader.load(url, function (text) {				let json = null;				try {					json = JSON.parse(text);				} catch (error) {					if (onError !== undefined) onError(error);					console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message);					return;				}				const metadata = json.metadata;				if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {					console.error('THREE.ObjectLoader: Can\'t load ' + url);					return;				}				scope.parse(json, onLoad);			}, onProgress, onError);		}		async loadAsync(url, onProgress) {			const scope = this;			const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;			this.resourcePath = this.resourcePath || path;			const loader = new FileLoader(this.manager);			loader.setPath(this.path);			loader.setRequestHeader(this.requestHeader);			loader.setWithCredentials(this.withCredentials);			const text = await loader.loadAsync(url, onProgress);			const json = JSON.parse(text);			const metadata = json.metadata;			if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {				throw new Error('THREE.ObjectLoader: Can\'t load ' + url);			}			return await scope.parseAsync(json);		}		parse(json, onLoad) {			const animations = this.parseAnimations(json.animations);			const shapes = this.parseShapes(json.shapes);			const geometries = this.parseGeometries(json.geometries, shapes);			const images = this.parseImages(json.images, function () {				if (onLoad !== undefined) onLoad(object);			});			const textures = this.parseTextures(json.textures, images);			const materials = this.parseMaterials(json.materials, textures);			const object = this.parseObject(json.object, geometries, materials, textures, animations);			const skeletons = this.parseSkeletons(json.skeletons, object);			this.bindSkeletons(object, skeletons); //			if (onLoad !== undefined) {				let hasImages = false;				for (const uuid in images) {					if (images[uuid] instanceof HTMLImageElement) {						hasImages = true;						break;					}				}				if (hasImages === false) onLoad(object);			}			return object;		}		async parseAsync(json) {			const animations = this.parseAnimations(json.animations);			const shapes = this.parseShapes(json.shapes);			const geometries = this.parseGeometries(json.geometries, shapes);			const images = await this.parseImagesAsync(json.images);			const textures = this.parseTextures(json.textures, images);			const materials = this.parseMaterials(json.materials, textures);			const object = this.parseObject(json.object, geometries, materials, textures, animations);			const skeletons = this.parseSkeletons(json.skeletons, object);			this.bindSkeletons(object, skeletons);			return object;		}		parseShapes(json) {			const shapes = {};			if (json !== undefined) {				for (let i = 0, l = json.length; i < l; i++) {					const shape = new Shape().fromJSON(json[i]);					shapes[shape.uuid] = shape;				}			}			return shapes;		}		parseSkeletons(json, object) {			const skeletons = {};			const bones = {}; // generate bone lookup table			object.traverse(function (child) {				if (child.isBone) bones[child.uuid] = child;			}); // create skeletons			if (json !== undefined) {				for (let i = 0, l = json.length; i < l; i++) {					const skeleton = new Skeleton().fromJSON(json[i], bones);					skeletons[skeleton.uuid] = skeleton;				}			}			return skeletons;		}		parseGeometries(json, shapes) {			const geometries = {};			if (json !== undefined) {				const bufferGeometryLoader = new BufferGeometryLoader();				for (let i = 0, l = json.length; i < l; i++) {					let geometry;					const data = json[i];					switch (data.type) {						case 'BufferGeometry':						case 'InstancedBufferGeometry':							geometry = bufferGeometryLoader.parse(data);							break;						case 'Geometry':							console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.');							break;						default:							if (data.type in Geometries) {								geometry = Geometries[data.type].fromJSON(data, shapes);							} else {								console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`);							}					}					geometry.uuid = data.uuid;					if (data.name !== undefined) geometry.name = data.name;					if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData;					geometries[data.uuid] = geometry;				}			}			return geometries;		}		parseMaterials(json, textures) {			const cache = {}; // MultiMaterial			const materials = {};			if (json !== undefined) {				const loader = new MaterialLoader();				loader.setTextures(textures);				for (let i = 0, l = json.length; i < l; i++) {					const data = json[i];					if (data.type === 'MultiMaterial') {						// Deprecated						const array = [];						for (let j = 0; j < data.materials.length; j++) {							const material = data.materials[j];							if (cache[material.uuid] === undefined) {								cache[material.uuid] = loader.parse(material);							}							array.push(cache[material.uuid]);						}						materials[data.uuid] = array;					} else {						if (cache[data.uuid] === undefined) {							cache[data.uuid] = loader.parse(data);						}						materials[data.uuid] = cache[data.uuid];					}				}			}			return materials;		}		parseAnimations(json) {			const animations = {};			if (json !== undefined) {				for (let i = 0; i < json.length; i++) {					const data = json[i];					const clip = AnimationClip.parse(data);					animations[clip.uuid] = clip;				}			}			return animations;		}		parseImages(json, onLoad) {			const scope = this;			const images = {};			let loader;			function loadImage(url) {				scope.manager.itemStart(url);				return loader.load(url, function () {					scope.manager.itemEnd(url);				}, undefined, function () {					scope.manager.itemError(url);					scope.manager.itemEnd(url);				});			}			function deserializeImage(image) {				if (typeof image === 'string') {					const url = image;					const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;					return loadImage(path);				} else {					if (image.data) {						return {							data: getTypedArray(image.type, image.data),							width: image.width,							height: image.height						};					} else {						return null;					}				}			}			if (json !== undefined && json.length > 0) {				const manager = new LoadingManager(onLoad);				loader = new ImageLoader(manager);				loader.setCrossOrigin(this.crossOrigin);				for (let i = 0, il = json.length; i < il; i++) {					const image = json[i];					const url = image.url;					if (Array.isArray(url)) {						// load array of images e.g CubeTexture						images[image.uuid] = [];						for (let j = 0, jl = url.length; j < jl; j++) {							const currentUrl = url[j];							const deserializedImage = deserializeImage(currentUrl);							if (deserializedImage !== null) {								if (deserializedImage instanceof HTMLImageElement) {									images[image.uuid].push(deserializedImage);								} else {									// special case: handle array of data textures for cube textures									images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));								}							}						}					} else {						// load single image						const deserializedImage = deserializeImage(image.url);						if (deserializedImage !== null) {							images[image.uuid] = deserializedImage;						}					}				}			}			return images;		}		async parseImagesAsync(json) {			const scope = this;			const images = {};			let loader;			async function deserializeImage(image) {				if (typeof image === 'string') {					const url = image;					const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;					return await loader.loadAsync(path);				} else {					if (image.data) {						return {							data: getTypedArray(image.type, image.data),							width: image.width,							height: image.height						};					} else {						return null;					}				}			}			if (json !== undefined && json.length > 0) {				loader = new ImageLoader(this.manager);				loader.setCrossOrigin(this.crossOrigin);				for (let i = 0, il = json.length; i < il; i++) {					const image = json[i];					const url = image.url;					if (Array.isArray(url)) {						// load array of images e.g CubeTexture						images[image.uuid] = [];						for (let j = 0, jl = url.length; j < jl; j++) {							const currentUrl = url[j];							const deserializedImage = await deserializeImage(currentUrl);							if (deserializedImage !== null) {								if (deserializedImage instanceof HTMLImageElement) {									images[image.uuid].push(deserializedImage);								} else {									// special case: handle array of data textures for cube textures									images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));								}							}						}					} else {						// load single image						const deserializedImage = await deserializeImage(image.url);						if (deserializedImage !== null) {							images[image.uuid] = deserializedImage;						}					}				}			}			return images;		}		parseTextures(json, images) {			function parseConstant(value, type) {				if (typeof value === 'number') return value;				console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value);				return type[value];			}			const textures = {};			if (json !== undefined) {				for (let i = 0, l = json.length; i < l; i++) {					const data = json[i];					if (data.image === undefined) {						console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid);					}					if (images[data.image] === undefined) {						console.warn('THREE.ObjectLoader: Undefined image', data.image);					}					let texture;					const image = images[data.image];					if (Array.isArray(image)) {						texture = new CubeTexture(image);						if (image.length === 6) texture.needsUpdate = true;					} else {						if (image && image.data) {							texture = new DataTexture(image.data, image.width, image.height);						} else {							texture = new Texture(image);						}						if (image) texture.needsUpdate = true; // textures can have undefined image data					}					texture.uuid = data.uuid;					if (data.name !== undefined) texture.name = data.name;					if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING);					if (data.offset !== undefined) texture.offset.fromArray(data.offset);					if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat);					if (data.center !== undefined) texture.center.fromArray(data.center);					if (data.rotation !== undefined) texture.rotation = data.rotation;					if (data.wrap !== undefined) {						texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING);						texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING);					}					if (data.format !== undefined) texture.format = data.format;					if (data.type !== undefined) texture.type = data.type;					if (data.encoding !== undefined) texture.encoding = data.encoding;					if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER);					if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER);					if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy;					if (data.flipY !== undefined) texture.flipY = data.flipY;					if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha;					if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment;					if (data.userData !== undefined) texture.userData = data.userData;					textures[data.uuid] = texture;				}			}			return textures;		}		parseObject(data, geometries, materials, textures, animations) {			let object;			function getGeometry(name) {				if (geometries[name] === undefined) {					console.warn('THREE.ObjectLoader: Undefined geometry', name);				}				return geometries[name];			}			function getMaterial(name) {				if (name === undefined) return undefined;				if (Array.isArray(name)) {					const array = [];					for (let i = 0, l = name.length; i < l; i++) {						const uuid = name[i];						if (materials[uuid] === undefined) {							console.warn('THREE.ObjectLoader: Undefined material', uuid);						}						array.push(materials[uuid]);					}					return array;				}				if (materials[name] === undefined) {					console.warn('THREE.ObjectLoader: Undefined material', name);				}				return materials[name];			}			function getTexture(uuid) {				if (textures[uuid] === undefined) {					console.warn('THREE.ObjectLoader: Undefined texture', uuid);				}				return textures[uuid];			}			let geometry, material;			switch (data.type) {				case 'Scene':					object = new Scene();					if (data.background !== undefined) {						if (Number.isInteger(data.background)) {							object.background = new Color(data.background);						} else {							object.background = getTexture(data.background);						}					}					if (data.environment !== undefined) {						object.environment = getTexture(data.environment);					}					if (data.fog !== undefined) {						if (data.fog.type === 'Fog') {							object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far);						} else if (data.fog.type === 'FogExp2') {							object.fog = new FogExp2(data.fog.color, data.fog.density);						}					}					break;				case 'PerspectiveCamera':					object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far);					if (data.focus !== undefined) object.focus = data.focus;					if (data.zoom !== undefined) object.zoom = data.zoom;					if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge;					if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset;					if (data.view !== undefined) object.view = Object.assign({}, data.view);					break;				case 'OrthographicCamera':					object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far);					if (data.zoom !== undefined) object.zoom = data.zoom;					if (data.view !== undefined) object.view = Object.assign({}, data.view);					break;				case 'AmbientLight':					object = new AmbientLight(data.color, data.intensity);					break;				case 'DirectionalLight':					object = new DirectionalLight(data.color, data.intensity);					break;				case 'PointLight':					object = new PointLight(data.color, data.intensity, data.distance, data.decay);					break;				case 'RectAreaLight':					object = new RectAreaLight(data.color, data.intensity, data.width, data.height);					break;				case 'SpotLight':					object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay);					break;				case 'HemisphereLight':					object = new HemisphereLight(data.color, data.groundColor, data.intensity);					break;				case 'LightProbe':					object = new LightProbe().fromJSON(data);					break;				case 'SkinnedMesh':					geometry = getGeometry(data.geometry);					material = getMaterial(data.material);					object = new SkinnedMesh(geometry, material);					if (data.bindMode !== undefined) object.bindMode = data.bindMode;					if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix);					if (data.skeleton !== undefined) object.skeleton = data.skeleton;					break;				case 'Mesh':					geometry = getGeometry(data.geometry);					material = getMaterial(data.material);					object = new Mesh(geometry, material);					break;				case 'InstancedMesh':					geometry = getGeometry(data.geometry);					material = getMaterial(data.material);					const count = data.count;					const instanceMatrix = data.instanceMatrix;					const instanceColor = data.instanceColor;					object = new InstancedMesh(geometry, material, count);					object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16);					if (instanceColor !== undefined) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize);					break;				case 'LOD':					object = new LOD();					break;				case 'Line':					object = new Line(getGeometry(data.geometry), getMaterial(data.material));					break;				case 'LineLoop':					object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material));					break;				case 'LineSegments':					object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material));					break;				case 'PointCloud':				case 'Points':					object = new Points(getGeometry(data.geometry), getMaterial(data.material));					break;				case 'Sprite':					object = new Sprite(getMaterial(data.material));					break;				case 'Group':					object = new Group();					break;				case 'Bone':					object = new Bone();					break;				default:					object = new Object3D();			}			object.uuid = data.uuid;			if (data.name !== undefined) object.name = data.name;			if (data.matrix !== undefined) {				object.matrix.fromArray(data.matrix);				if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate;				if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale);			} else {				if (data.position !== undefined) object.position.fromArray(data.position);				if (data.rotation !== undefined) object.rotation.fromArray(data.rotation);				if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion);				if (data.scale !== undefined) object.scale.fromArray(data.scale);			}			if (data.castShadow !== undefined) object.castShadow = data.castShadow;			if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow;			if (data.shadow) {				if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias;				if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias;				if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius;				if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize);				if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera);			}			if (data.visible !== undefined) object.visible = data.visible;			if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled;			if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder;			if (data.userData !== undefined) object.userData = data.userData;			if (data.layers !== undefined) object.layers.mask = data.layers;			if (data.children !== undefined) {				const children = data.children;				for (let i = 0; i < children.length; i++) {					object.add(this.parseObject(children[i], geometries, materials, textures, animations));				}			}			if (data.animations !== undefined) {				const objectAnimations = data.animations;				for (let i = 0; i < objectAnimations.length; i++) {					const uuid = objectAnimations[i];					object.animations.push(animations[uuid]);				}			}			if (data.type === 'LOD') {				if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate;				const levels = data.levels;				for (let l = 0; l < levels.length; l++) {					const level = levels[l];					const child = object.getObjectByProperty('uuid', level.object);					if (child !== undefined) {						object.addLevel(child, level.distance);					}				}			}			return object;		}		bindSkeletons(object, skeletons) {			if (Object.keys(skeletons).length === 0) return;			object.traverse(function (child) {				if (child.isSkinnedMesh === true && child.skeleton !== undefined) {					const skeleton = skeletons[child.skeleton];					if (skeleton === undefined) {						console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton);					} else {						child.bind(skeleton, child.bindMatrix);					}				}			});		}		/* DEPRECATED */		setTexturePath(value) {			console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().');			return this.setResourcePath(value);		}	}	const TEXTURE_MAPPING = {		UVMapping: UVMapping,		CubeReflectionMapping: CubeReflectionMapping,		CubeRefractionMapping: CubeRefractionMapping,		EquirectangularReflectionMapping: EquirectangularReflectionMapping,		EquirectangularRefractionMapping: EquirectangularRefractionMapping,		CubeUVReflectionMapping: CubeUVReflectionMapping,		CubeUVRefractionMapping: CubeUVRefractionMapping	};	const TEXTURE_WRAPPING = {		RepeatWrapping: RepeatWrapping,		ClampToEdgeWrapping: ClampToEdgeWrapping,		MirroredRepeatWrapping: MirroredRepeatWrapping	};	const TEXTURE_FILTER = {		NearestFilter: NearestFilter,		NearestMipmapNearestFilter: NearestMipmapNearestFilter,		NearestMipmapLinearFilter: NearestMipmapLinearFilter,		LinearFilter: LinearFilter,		LinearMipmapNearestFilter: LinearMipmapNearestFilter,		LinearMipmapLinearFilter: LinearMipmapLinearFilter	};	class ImageBitmapLoader extends Loader {		constructor(manager) {			super(manager);			if (typeof createImageBitmap === 'undefined') {				console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.');			}			if (typeof fetch === 'undefined') {				console.warn('THREE.ImageBitmapLoader: fetch() not supported.');			}			this.options = {				premultiplyAlpha: 'none'			};		}		setOptions(options) {			this.options = options;			return this;		}		load(url, onLoad, onProgress, onError) {			if (url === undefined) url = '';			if (this.path !== undefined) url = this.path + url;			url = this.manager.resolveURL(url);			const scope = this;			const cached = Cache.get(url);			if (cached !== undefined) {				scope.manager.itemStart(url);				setTimeout(function () {					if (onLoad) onLoad(cached);					scope.manager.itemEnd(url);				}, 0);				return cached;			}			const fetchOptions = {};			fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include';			fetchOptions.headers = this.requestHeader;			fetch(url, fetchOptions).then(function (res) {				return res.blob();			}).then(function (blob) {				return createImageBitmap(blob, Object.assign(scope.options, {					colorSpaceConversion: 'none'				}));			}).then(function (imageBitmap) {				Cache.add(url, imageBitmap);				if (onLoad) onLoad(imageBitmap);				scope.manager.itemEnd(url);			}).catch(function (e) {				if (onError) onError(e);				scope.manager.itemError(url);				scope.manager.itemEnd(url);			});			scope.manager.itemStart(url);		}	}	ImageBitmapLoader.prototype.isImageBitmapLoader = true;	let _context;	const AudioContext = {		getContext: function () {			if (_context === undefined) {				_context = new (window.AudioContext || window.webkitAudioContext)();			}			return _context;		},		setContext: function (value) {			_context = value;		}	};	class AudioLoader extends Loader {		constructor(manager) {			super(manager);		}		load(url, onLoad, onProgress, onError) {			const scope = this;			const loader = new FileLoader(this.manager);			loader.setResponseType('arraybuffer');			loader.setPath(this.path);			loader.setRequestHeader(this.requestHeader);			loader.setWithCredentials(this.withCredentials);			loader.load(url, function (buffer) {				try {					// Create a copy of the buffer. The `decodeAudioData` method					// detaches the buffer when complete, preventing reuse.					const bufferCopy = buffer.slice(0);					const context = AudioContext.getContext();					context.decodeAudioData(bufferCopy, function (audioBuffer) {						onLoad(audioBuffer);					});				} catch (e) {					if (onError) {						onError(e);					} else {						console.error(e);					}					scope.manager.itemError(url);				}			}, onProgress, onError);		}	}	class HemisphereLightProbe extends LightProbe {		constructor(skyColor, groundColor, intensity = 1) {			super(undefined, intensity);			const color1 = new Color().set(skyColor);			const color2 = new Color().set(groundColor);			const sky = new Vector3(color1.r, color1.g, color1.b);			const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );			const c0 = Math.sqrt(Math.PI);			const c1 = c0 * Math.sqrt(0.75);			this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0);			this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1);		}	}	HemisphereLightProbe.prototype.isHemisphereLightProbe = true;	class AmbientLightProbe extends LightProbe {		constructor(color, intensity = 1) {			super(undefined, intensity);			const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );			this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI));		}	}	AmbientLightProbe.prototype.isAmbientLightProbe = true;	const _eyeRight = /*@__PURE__*/new Matrix4();	const _eyeLeft = /*@__PURE__*/new Matrix4();	const _projectionMatrix = /*@__PURE__*/new Matrix4();	class StereoCamera {		constructor() {			this.type = 'StereoCamera';			this.aspect = 1;			this.eyeSep = 0.064;			this.cameraL = new PerspectiveCamera();			this.cameraL.layers.enable(1);			this.cameraL.matrixAutoUpdate = false;			this.cameraR = new PerspectiveCamera();			this.cameraR.layers.enable(2);			this.cameraR.matrixAutoUpdate = false;			this._cache = {				focus: null,				fov: null,				aspect: null,				near: null,				far: null,				zoom: null,				eyeSep: null			};		}		update(camera) {			const cache = this._cache;			const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;			if (needsUpdate) {				cache.focus = camera.focus;				cache.fov = camera.fov;				cache.aspect = camera.aspect * this.aspect;				cache.near = camera.near;				cache.far = camera.far;				cache.zoom = camera.zoom;				cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on				// http://paulbourke.net/stereographics/stereorender/				_projectionMatrix.copy(camera.projectionMatrix);				const eyeSepHalf = cache.eyeSep / 2;				const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;				const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom;				let xmin, xmax; // translate xOffset				_eyeLeft.elements[12] = -eyeSepHalf;				_eyeRight.elements[12] = eyeSepHalf; // for left eye				xmin = -ymax * cache.aspect + eyeSepOnProjection;				xmax = ymax * cache.aspect + eyeSepOnProjection;				_projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);				_projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);				this.cameraL.projectionMatrix.copy(_projectionMatrix); // for right eye				xmin = -ymax * cache.aspect - eyeSepOnProjection;				xmax = ymax * cache.aspect - eyeSepOnProjection;				_projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);				_projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);				this.cameraR.projectionMatrix.copy(_projectionMatrix);			}			this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft);			this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight);		}	}	class Clock {		constructor(autoStart = true) {			this.autoStart = autoStart;			this.startTime = 0;			this.oldTime = 0;			this.elapsedTime = 0;			this.running = false;		}		start() {			this.startTime = now();			this.oldTime = this.startTime;			this.elapsedTime = 0;			this.running = true;		}		stop() {			this.getElapsedTime();			this.running = false;			this.autoStart = false;		}		getElapsedTime() {			this.getDelta();			return this.elapsedTime;		}		getDelta() {			let diff = 0;			if (this.autoStart && !this.running) {				this.start();				return 0;			}			if (this.running) {				const newTime = now();				diff = (newTime - this.oldTime) / 1000;				this.oldTime = newTime;				this.elapsedTime += diff;			}			return diff;		}	}	function now() {		return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732	}	const _position$1 = /*@__PURE__*/new Vector3();	const _quaternion$1 = /*@__PURE__*/new Quaternion();	const _scale$1 = /*@__PURE__*/new Vector3();	const _orientation$1 = /*@__PURE__*/new Vector3();	class AudioListener extends Object3D {		constructor() {			super();			this.type = 'AudioListener';			this.context = AudioContext.getContext();			this.gain = this.context.createGain();			this.gain.connect(this.context.destination);			this.filter = null;			this.timeDelta = 0; // private			this._clock = new Clock();		}		getInput() {			return this.gain;		}		removeFilter() {			if (this.filter !== null) {				this.gain.disconnect(this.filter);				this.filter.disconnect(this.context.destination);				this.gain.connect(this.context.destination);				this.filter = null;			}			return this;		}		getFilter() {			return this.filter;		}		setFilter(value) {			if (this.filter !== null) {				this.gain.disconnect(this.filter);				this.filter.disconnect(this.context.destination);			} else {				this.gain.disconnect(this.context.destination);			}			this.filter = value;			this.gain.connect(this.filter);			this.filter.connect(this.context.destination);			return this;		}		getMasterVolume() {			return this.gain.gain.value;		}		setMasterVolume(value) {			this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);			return this;		}		updateMatrixWorld(force) {			super.updateMatrixWorld(force);			const listener = this.context.listener;			const up = this.up;			this.timeDelta = this._clock.getDelta();			this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1);			_orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1);			if (listener.positionX) {				// code path for Chrome (see #14393)				const endTime = this.context.currentTime + this.timeDelta;				listener.positionX.linearRampToValueAtTime(_position$1.x, endTime);				listener.positionY.linearRampToValueAtTime(_position$1.y, endTime);				listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime);				listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime);				listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime);				listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime);				listener.upX.linearRampToValueAtTime(up.x, endTime);				listener.upY.linearRampToValueAtTime(up.y, endTime);				listener.upZ.linearRampToValueAtTime(up.z, endTime);			} else {				listener.setPosition(_position$1.x, _position$1.y, _position$1.z);				listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z);			}		}	}	class Audio extends Object3D {		constructor(listener) {			super();			this.type = 'Audio';			this.listener = listener;			this.context = listener.context;			this.gain = this.context.createGain();			this.gain.connect(listener.getInput());			this.autoplay = false;			this.buffer = null;			this.detune = 0;			this.loop = false;			this.loopStart = 0;			this.loopEnd = 0;			this.offset = 0;			this.duration = undefined;			this.playbackRate = 1;			this.isPlaying = false;			this.hasPlaybackControl = true;			this.source = null;			this.sourceType = 'empty';			this._startedAt = 0;			this._progress = 0;			this._connected = false;			this.filters = [];		}		getOutput() {			return this.gain;		}		setNodeSource(audioNode) {			this.hasPlaybackControl = false;			this.sourceType = 'audioNode';			this.source = audioNode;			this.connect();			return this;		}		setMediaElementSource(mediaElement) {			this.hasPlaybackControl = false;			this.sourceType = 'mediaNode';			this.source = this.context.createMediaElementSource(mediaElement);			this.connect();			return this;		}		setMediaStreamSource(mediaStream) {			this.hasPlaybackControl = false;			this.sourceType = 'mediaStreamNode';			this.source = this.context.createMediaStreamSource(mediaStream);			this.connect();			return this;		}		setBuffer(audioBuffer) {			this.buffer = audioBuffer;			this.sourceType = 'buffer';			if (this.autoplay) this.play();			return this;		}		play(delay = 0) {			if (this.isPlaying === true) {				console.warn('THREE.Audio: Audio is already playing.');				return;			}			if (this.hasPlaybackControl === false) {				console.warn('THREE.Audio: this Audio has no playback control.');				return;			}			this._startedAt = this.context.currentTime + delay;			const source = this.context.createBufferSource();			source.buffer = this.buffer;			source.loop = this.loop;			source.loopStart = this.loopStart;			source.loopEnd = this.loopEnd;			source.onended = this.onEnded.bind(this);			source.start(this._startedAt, this._progress + this.offset, this.duration);			this.isPlaying = true;			this.source = source;			this.setDetune(this.detune);			this.setPlaybackRate(this.playbackRate);			return this.connect();		}		pause() {			if (this.hasPlaybackControl === false) {				console.warn('THREE.Audio: this Audio has no playback control.');				return;			}			if (this.isPlaying === true) {				// update current progress				this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate;				if (this.loop === true) {					// ensure _progress does not exceed duration with looped audios					this._progress = this._progress % (this.duration || this.buffer.duration);				}				this.source.stop();				this.source.onended = null;				this.isPlaying = false;			}			return this;		}		stop() {			if (this.hasPlaybackControl === false) {				console.warn('THREE.Audio: this Audio has no playback control.');				return;			}			this._progress = 0;			this.source.stop();			this.source.onended = null;			this.isPlaying = false;			return this;		}		connect() {			if (this.filters.length > 0) {				this.source.connect(this.filters[0]);				for (let i = 1, l = this.filters.length; i < l; i++) {					this.filters[i - 1].connect(this.filters[i]);				}				this.filters[this.filters.length - 1].connect(this.getOutput());			} else {				this.source.connect(this.getOutput());			}			this._connected = true;			return this;		}		disconnect() {			if (this.filters.length > 0) {				this.source.disconnect(this.filters[0]);				for (let i = 1, l = this.filters.length; i < l; i++) {					this.filters[i - 1].disconnect(this.filters[i]);				}				this.filters[this.filters.length - 1].disconnect(this.getOutput());			} else {				this.source.disconnect(this.getOutput());			}			this._connected = false;			return this;		}		getFilters() {			return this.filters;		}		setFilters(value) {			if (!value) value = [];			if (this._connected === true) {				this.disconnect();				this.filters = value.slice();				this.connect();			} else {				this.filters = value.slice();			}			return this;		}		setDetune(value) {			this.detune = value;			if (this.source.detune === undefined) return; // only set detune when available			if (this.isPlaying === true) {				this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01);			}			return this;		}		getDetune() {			return this.detune;		}		getFilter() {			return this.getFilters()[0];		}		setFilter(filter) {			return this.setFilters(filter ? [filter] : []);		}		setPlaybackRate(value) {			if (this.hasPlaybackControl === false) {				console.warn('THREE.Audio: this Audio has no playback control.');				return;			}			this.playbackRate = value;			if (this.isPlaying === true) {				this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01);			}			return this;		}		getPlaybackRate() {			return this.playbackRate;		}		onEnded() {			this.isPlaying = false;		}		getLoop() {			if (this.hasPlaybackControl === false) {				console.warn('THREE.Audio: this Audio has no playback control.');				return false;			}			return this.loop;		}		setLoop(value) {			if (this.hasPlaybackControl === false) {				console.warn('THREE.Audio: this Audio has no playback control.');				return;			}			this.loop = value;			if (this.isPlaying === true) {				this.source.loop = this.loop;			}			return this;		}		setLoopStart(value) {			this.loopStart = value;			return this;		}		setLoopEnd(value) {			this.loopEnd = value;			return this;		}		getVolume() {			return this.gain.gain.value;		}		setVolume(value) {			this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);			return this;		}	}	const _position = /*@__PURE__*/new Vector3();	const _quaternion = /*@__PURE__*/new Quaternion();	const _scale = /*@__PURE__*/new Vector3();	const _orientation = /*@__PURE__*/new Vector3();	class PositionalAudio extends Audio {		constructor(listener) {			super(listener);			this.panner = this.context.createPanner();			this.panner.panningModel = 'HRTF';			this.panner.connect(this.gain);		}		getOutput() {			return this.panner;		}		getRefDistance() {			return this.panner.refDistance;		}		setRefDistance(value) {			this.panner.refDistance = value;			return this;		}		getRolloffFactor() {			return this.panner.rolloffFactor;		}		setRolloffFactor(value) {			this.panner.rolloffFactor = value;			return this;		}		getDistanceModel() {			return this.panner.distanceModel;		}		setDistanceModel(value) {			this.panner.distanceModel = value;			return this;		}		getMaxDistance() {			return this.panner.maxDistance;		}		setMaxDistance(value) {			this.panner.maxDistance = value;			return this;		}		setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) {			this.panner.coneInnerAngle = coneInnerAngle;			this.panner.coneOuterAngle = coneOuterAngle;			this.panner.coneOuterGain = coneOuterGain;			return this;		}		updateMatrixWorld(force) {			super.updateMatrixWorld(force);			if (this.hasPlaybackControl === true && this.isPlaying === false) return;			this.matrixWorld.decompose(_position, _quaternion, _scale);			_orientation.set(0, 0, 1).applyQuaternion(_quaternion);			const panner = this.panner;			if (panner.positionX) {				// code path for Chrome and Firefox (see #14393)				const endTime = this.context.currentTime + this.listener.timeDelta;				panner.positionX.linearRampToValueAtTime(_position.x, endTime);				panner.positionY.linearRampToValueAtTime(_position.y, endTime);				panner.positionZ.linearRampToValueAtTime(_position.z, endTime);				panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime);				panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime);				panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime);			} else {				panner.setPosition(_position.x, _position.y, _position.z);				panner.setOrientation(_orientation.x, _orientation.y, _orientation.z);			}		}	}	class AudioAnalyser {		constructor(audio, fftSize = 2048) {			this.analyser = audio.context.createAnalyser();			this.analyser.fftSize = fftSize;			this.data = new Uint8Array(this.analyser.frequencyBinCount);			audio.getOutput().connect(this.analyser);		}		getFrequencyData() {			this.analyser.getByteFrequencyData(this.data);			return this.data;		}		getAverageFrequency() {			let value = 0;			const data = this.getFrequencyData();			for (let i = 0; i < data.length; i++) {				value += data[i];			}			return value / data.length;		}	}	class PropertyMixer {		constructor(binding, typeName, valueSize) {			this.binding = binding;			this.valueSize = valueSize;			let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]			//			// interpolators can use .buffer as their .result			// the data then goes to 'incoming'			//			// 'accu0' and 'accu1' are used frame-interleaved for			// the cumulative result and are compared to detect			// changes			//			// 'orig' stores the original state of the property			//			// 'add' is used for additive cumulative results			//			// 'work' is optional and is only present for quaternion types. It is used			// to store intermediate quaternion multiplication results			switch (typeName) {				case 'quaternion':					mixFunction = this._slerp;					mixFunctionAdditive = this._slerpAdditive;					setIdentity = this._setAdditiveIdentityQuaternion;					this.buffer = new Float64Array(valueSize * 6);					this._workIndex = 5;					break;				case 'string':				case 'bool':					mixFunction = this._select; // Use the regular mix function and for additive on these types,					// additive is not relevant for non-numeric types					mixFunctionAdditive = this._select;					setIdentity = this._setAdditiveIdentityOther;					this.buffer = new Array(valueSize * 5);					break;				default:					mixFunction = this._lerp;					mixFunctionAdditive = this._lerpAdditive;					setIdentity = this._setAdditiveIdentityNumeric;					this.buffer = new Float64Array(valueSize * 5);			}			this._mixBufferRegion = mixFunction;			this._mixBufferRegionAdditive = mixFunctionAdditive;			this._setIdentity = setIdentity;			this._origIndex = 3;			this._addIndex = 4;			this.cumulativeWeight = 0;			this.cumulativeWeightAdditive = 0;			this.useCount = 0;			this.referenceCount = 0;		} // accumulate data in the 'incoming' region into 'accu<i>'		accumulate(accuIndex, weight) {			// note: happily accumulating nothing when weight = 0, the caller knows			// the weight and shouldn't have made the call in the first place			const buffer = this.buffer,						stride = this.valueSize,						offset = accuIndex * stride + stride;			let currentWeight = this.cumulativeWeight;			if (currentWeight === 0) {				// accuN := incoming * weight				for (let i = 0; i !== stride; ++i) {					buffer[offset + i] = buffer[i];				}				currentWeight = weight;			} else {				// accuN := accuN + incoming * weight				currentWeight += weight;				const mix = weight / currentWeight;				this._mixBufferRegion(buffer, offset, 0, mix, stride);			}			this.cumulativeWeight = currentWeight;		} // accumulate data in the 'incoming' region into 'add'		accumulateAdditive(weight) {			const buffer = this.buffer,						stride = this.valueSize,						offset = stride * this._addIndex;			if (this.cumulativeWeightAdditive === 0) {				// add = identity				this._setIdentity();			} // add := add + incoming * weight			this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride);			this.cumulativeWeightAdditive += weight;		} // apply the state of 'accu<i>' to the binding when accus differ		apply(accuIndex) {			const stride = this.valueSize,						buffer = this.buffer,						offset = accuIndex * stride + stride,						weight = this.cumulativeWeight,						weightAdditive = this.cumulativeWeightAdditive,						binding = this.binding;			this.cumulativeWeight = 0;			this.cumulativeWeightAdditive = 0;			if (weight < 1) {				// accuN := accuN + original * ( 1 - cumulativeWeight )				const originalValueOffset = stride * this._origIndex;				this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride);			}			if (weightAdditive > 0) {				// accuN := accuN + additive accuN				this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride);			}			for (let i = stride, e = stride + stride; i !== e; ++i) {				if (buffer[i] !== buffer[i + stride]) {					// value has changed -> update scene graph					binding.setValue(buffer, offset);					break;				}			}		} // remember the state of the bound property and copy it to both accus		saveOriginalState() {			const binding = this.binding;			const buffer = this.buffer,						stride = this.valueSize,						originalValueOffset = stride * this._origIndex;			binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original			for (let i = stride, e = originalValueOffset; i !== e; ++i) {				buffer[i] = buffer[originalValueOffset + i % stride];			} // Add to identity for additive			this._setIdentity();			this.cumulativeWeight = 0;			this.cumulativeWeightAdditive = 0;		} // apply the state previously taken via 'saveOriginalState' to the binding		restoreOriginalState() {			const originalValueOffset = this.valueSize * 3;			this.binding.setValue(this.buffer, originalValueOffset);		}		_setAdditiveIdentityNumeric() {			const startIndex = this._addIndex * this.valueSize;			const endIndex = startIndex + this.valueSize;			for (let i = startIndex; i < endIndex; i++) {				this.buffer[i] = 0;			}		}		_setAdditiveIdentityQuaternion() {			this._setAdditiveIdentityNumeric();			this.buffer[this._addIndex * this.valueSize + 3] = 1;		}		_setAdditiveIdentityOther() {			const startIndex = this._origIndex * this.valueSize;			const targetIndex = this._addIndex * this.valueSize;			for (let i = 0; i < this.valueSize; i++) {				this.buffer[targetIndex + i] = this.buffer[startIndex + i];			}		} // mix functions		_select(buffer, dstOffset, srcOffset, t, stride) {			if (t >= 0.5) {				for (let i = 0; i !== stride; ++i) {					buffer[dstOffset + i] = buffer[srcOffset + i];				}			}		}		_slerp(buffer, dstOffset, srcOffset, t) {			Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t);		}		_slerpAdditive(buffer, dstOffset, srcOffset, t, stride) {			const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset			Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result			Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t);		}		_lerp(buffer, dstOffset, srcOffset, t, stride) {			const s = 1 - t;			for (let i = 0; i !== stride; ++i) {				const j = dstOffset + i;				buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t;			}		}		_lerpAdditive(buffer, dstOffset, srcOffset, t, stride) {			for (let i = 0; i !== stride; ++i) {				const j = dstOffset + i;				buffer[j] = buffer[j] + buffer[srcOffset + i] * t;			}		}	}	// Characters [].:/ are reserved for track binding syntax.	const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';	const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches	// only latin characters, and the unicode \p{L} is not yet supported. So	// instead, we exclude reserved characters and match everything else.	const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';	const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must	// be matched to parse the rest of the track name.	const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.	const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved	// characters. Accessor may contain any character except closing bracket.	const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may	// contain any non-bracket characters.	const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar);	const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$');	const _supportedObjectNames = ['material', 'materials', 'bones'];	class Composite {		constructor(targetGroup, path, optionalParsedPath) {			const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path);			this._targetGroup = targetGroup;			this._bindings = targetGroup.subscribe_(path, parsedPath);		}		getValue(array, offset) {			this.bind(); // bind all binding			const firstValidIndex = this._targetGroup.nCachedObjects_,						binding = this._bindings[firstValidIndex]; // and only call .getValue on the first			if (binding !== undefined) binding.getValue(array, offset);		}		setValue(array, offset) {			const bindings = this._bindings;			for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {				bindings[i].setValue(array, offset);			}		}		bind() {			const bindings = this._bindings;			for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {				bindings[i].bind();			}		}		unbind() {			const bindings = this._bindings;			for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {				bindings[i].unbind();			}		}	} // Note: This class uses a State pattern on a per-method basis:	// 'bind' sets 'this.getValue' / 'setValue' and shadows the	// prototype version of these methods with one that represents	// the bound state. When the property is not found, the methods	// become no-ops.	class PropertyBinding {		constructor(rootNode, path, parsedPath) {			this.path = path;			this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path);			this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode;			this.rootNode = rootNode; // initial state of these methods that calls 'bind'			this.getValue = this._getValue_unbound;			this.setValue = this._setValue_unbound;		}		static create(root, path, parsedPath) {			if (!(root && root.isAnimationObjectGroup)) {				return new PropertyBinding(root, path, parsedPath);			} else {				return new PropertyBinding.Composite(root, path, parsedPath);			}		}		/**		 * Replaces spaces with underscores and removes unsupported characters from		 * node names, to ensure compatibility with parseTrackName().		 *		 * @param {string} name Node name to be sanitized.		 * @return {string}		 */		static sanitizeNodeName(name) {			return name.replace(/\s/g, '_').replace(_reservedRe, '');		}		static parseTrackName(trackName) {			const matches = _trackRe.exec(trackName);			if (!matches) {				throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName);			}			const results = {				// directoryName: matches[ 1 ], // (tschw) currently unused				nodeName: matches[2],				objectName: matches[3],				objectIndex: matches[4],				propertyName: matches[5],				// required				propertyIndex: matches[6]			};			const lastDot = results.nodeName && results.nodeName.lastIndexOf('.');			if (lastDot !== undefined && lastDot !== -1) {				const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there				// is no way to parse 'foo.bar.baz': 'baz' must be a property, but				// 'bar' could be the objectName, or part of a nodeName (which can				// include '.' characters).				if (_supportedObjectNames.indexOf(objectName) !== -1) {					results.nodeName = results.nodeName.substring(0, lastDot);					results.objectName = objectName;				}			}			if (results.propertyName === null || results.propertyName.length === 0) {				throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName);			}			return results;		}		static findNode(root, nodeName) {			if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) {				return root;			} // search into skeleton bones.			if (root.skeleton) {				const bone = root.skeleton.getBoneByName(nodeName);				if (bone !== undefined) {					return bone;				}			} // search into node subtree.			if (root.children) {				const searchNodeSubtree = function (children) {					for (let i = 0; i < children.length; i++) {						const childNode = children[i];						if (childNode.name === nodeName || childNode.uuid === nodeName) {							return childNode;						}						const result = searchNodeSubtree(childNode.children);						if (result) return result;					}					return null;				};				const subTreeNode = searchNodeSubtree(root.children);				if (subTreeNode) {					return subTreeNode;				}			}			return null;		} // these are used to "bind" a nonexistent property		_getValue_unavailable() {}		_setValue_unavailable() {} // Getters		_getValue_direct(buffer, offset) {			buffer[offset] = this.targetObject[this.propertyName];		}		_getValue_array(buffer, offset) {			const source = this.resolvedProperty;			for (let i = 0, n = source.length; i !== n; ++i) {				buffer[offset++] = source[i];			}		}		_getValue_arrayElement(buffer, offset) {			buffer[offset] = this.resolvedProperty[this.propertyIndex];		}		_getValue_toArray(buffer, offset) {			this.resolvedProperty.toArray(buffer, offset);		} // Direct		_setValue_direct(buffer, offset) {			this.targetObject[this.propertyName] = buffer[offset];		}		_setValue_direct_setNeedsUpdate(buffer, offset) {			this.targetObject[this.propertyName] = buffer[offset];			this.targetObject.needsUpdate = true;		}		_setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) {			this.targetObject[this.propertyName] = buffer[offset];			this.targetObject.matrixWorldNeedsUpdate = true;		} // EntireArray		_setValue_array(buffer, offset) {			const dest = this.resolvedProperty;			for (let i = 0, n = dest.length; i !== n; ++i) {				dest[i] = buffer[offset++];			}		}		_setValue_array_setNeedsUpdate(buffer, offset) {			const dest = this.resolvedProperty;			for (let i = 0, n = dest.length; i !== n; ++i) {				dest[i] = buffer[offset++];			}			this.targetObject.needsUpdate = true;		}		_setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) {			const dest = this.resolvedProperty;			for (let i = 0, n = dest.length; i !== n; ++i) {				dest[i] = buffer[offset++];			}			this.targetObject.matrixWorldNeedsUpdate = true;		} // ArrayElement		_setValue_arrayElement(buffer, offset) {			this.resolvedProperty[this.propertyIndex] = buffer[offset];		}		_setValue_arrayElement_setNeedsUpdate(buffer, offset) {			this.resolvedProperty[this.propertyIndex] = buffer[offset];			this.targetObject.needsUpdate = true;		}		_setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) {			this.resolvedProperty[this.propertyIndex] = buffer[offset];			this.targetObject.matrixWorldNeedsUpdate = true;		} // HasToFromArray		_setValue_fromArray(buffer, offset) {			this.resolvedProperty.fromArray(buffer, offset);		}		_setValue_fromArray_setNeedsUpdate(buffer, offset) {			this.resolvedProperty.fromArray(buffer, offset);			this.targetObject.needsUpdate = true;		}		_setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) {			this.resolvedProperty.fromArray(buffer, offset);			this.targetObject.matrixWorldNeedsUpdate = true;		}		_getValue_unbound(targetArray, offset) {			this.bind();			this.getValue(targetArray, offset);		}		_setValue_unbound(sourceArray, offset) {			this.bind();			this.setValue(sourceArray, offset);		} // create getter / setter pair for a property in the scene graph		bind() {			let targetObject = this.node;			const parsedPath = this.parsedPath;			const objectName = parsedPath.objectName;			const propertyName = parsedPath.propertyName;			let propertyIndex = parsedPath.propertyIndex;			if (!targetObject) {				targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode;				this.node = targetObject;			} // set fail state so we can just 'return' on error			this.getValue = this._getValue_unavailable;			this.setValue = this._setValue_unavailable; // ensure there is a value node			if (!targetObject) {				console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.');				return;			}			if (objectName) {				let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials....				switch (objectName) {					case 'materials':						if (!targetObject.material) {							console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this);							return;						}						if (!targetObject.material.materials) {							console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this);							return;						}						targetObject = targetObject.material.materials;						break;					case 'bones':						if (!targetObject.skeleton) {							console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this);							return;						} // potential future optimization: skip this if propertyIndex is already an integer						// and convert the integer string to a true integer.						targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices.						for (let i = 0; i < targetObject.length; i++) {							if (targetObject[i].name === objectIndex) {								objectIndex = i;								break;							}						}						break;					default:						if (targetObject[objectName] === undefined) {							console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this);							return;						}						targetObject = targetObject[objectName];				}				if (objectIndex !== undefined) {					if (targetObject[objectIndex] === undefined) {						console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject);						return;					}					targetObject = targetObject[objectIndex];				}			} // resolve property			const nodeProperty = targetObject[propertyName];			if (nodeProperty === undefined) {				const nodeName = parsedPath.nodeName;				console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject);				return;			} // determine versioning scheme			let versioning = this.Versioning.None;			this.targetObject = targetObject;			if (targetObject.needsUpdate !== undefined) {				// material				versioning = this.Versioning.NeedsUpdate;			} else if (targetObject.matrixWorldNeedsUpdate !== undefined) {				// node transform				versioning = this.Versioning.MatrixWorldNeedsUpdate;			} // determine how the property gets bound			let bindingType = this.BindingType.Direct;			if (propertyIndex !== undefined) {				// access a sub element of the property array (only primitives are supported right now)				if (propertyName === 'morphTargetInfluences') {					// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.					// support resolving morphTarget names into indices.					if (!targetObject.geometry) {						console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this);						return;					}					if (targetObject.geometry.isBufferGeometry) {						if (!targetObject.geometry.morphAttributes) {							console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this);							return;						}						if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) {							propertyIndex = targetObject.morphTargetDictionary[propertyIndex];						}					} else {						console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this);						return;					}				}				bindingType = this.BindingType.ArrayElement;				this.resolvedProperty = nodeProperty;				this.propertyIndex = propertyIndex;			} else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) {				// must use copy for Object3D.Euler/Quaternion				bindingType = this.BindingType.HasFromToArray;				this.resolvedProperty = nodeProperty;			} else if (Array.isArray(nodeProperty)) {				bindingType = this.BindingType.EntireArray;				this.resolvedProperty = nodeProperty;			} else {				this.propertyName = propertyName;			} // select getter / setter			this.getValue = this.GetterByBindingType[bindingType];			this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning];		}		unbind() {			this.node = null; // back to the prototype version of getValue / setValue			// note: avoiding to mutate the shape of 'this' via 'delete'			this.getValue = this._getValue_unbound;			this.setValue = this._setValue_unbound;		}	}	PropertyBinding.Composite = Composite;	PropertyBinding.prototype.BindingType = {		Direct: 0,		EntireArray: 1,		ArrayElement: 2,		HasFromToArray: 3	};	PropertyBinding.prototype.Versioning = {		None: 0,		NeedsUpdate: 1,		MatrixWorldNeedsUpdate: 2	};	PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray];	PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct	PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray	PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement	PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray	PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]];	/**	 *	 * A group of objects that receives a shared animation state.	 *	 * Usage:	 *	 *	- Add objects you would otherwise pass as 'root' to the	 *		constructor or the .clipAction method of AnimationMixer.	 *	 *	- Instead pass this object as 'root'.	 *	 *	- You can also add and remove objects later when the mixer	 *		is running.	 *	 * Note:	 *	 *		Objects of this class appear as one object to the mixer,	 *		so cache control of the individual objects must be done	 *		on the group.	 *	 * Limitation:	 *	 *	- The animated properties must be compatible among the	 *		all objects in the group.	 *	 *	- A single property can either be controlled through a	 *		target group or directly, but not both.	 */	class AnimationObjectGroup {		constructor() {			this.uuid = generateUUID(); // cached objects followed by the active ones			this._objects = Array.prototype.slice.call(arguments);			this.nCachedObjects_ = 0; // threshold			// note: read by PropertyBinding.Composite			const indices = {};			this._indicesByUUID = indices; // for bookkeeping			for (let i = 0, n = arguments.length; i !== n; ++i) {				indices[arguments[i].uuid] = i;			}			this._paths = []; // inside: string			this._parsedPaths = []; // inside: { we don't care, here }			this._bindings = []; // inside: Array< PropertyBinding >			this._bindingsIndicesByPath = {}; // inside: indices in these arrays			const scope = this;			this.stats = {				objects: {					get total() {						return scope._objects.length;					},					get inUse() {						return this.total - scope.nCachedObjects_;					}				},				get bindingsPerObject() {					return scope._bindings.length;				}			};		}		add() {			const objects = this._objects,						indicesByUUID = this._indicesByUUID,						paths = this._paths,						parsedPaths = this._parsedPaths,						bindings = this._bindings,						nBindings = bindings.length;			let knownObject = undefined,					nObjects = objects.length,					nCachedObjects = this.nCachedObjects_;			for (let i = 0, n = arguments.length; i !== n; ++i) {				const object = arguments[i],							uuid = object.uuid;				let index = indicesByUUID[uuid];				if (index === undefined) {					// unknown object -> add it to the ACTIVE region					index = nObjects++;					indicesByUUID[uuid] = index;					objects.push(object); // accounting is done, now do the same for all bindings					for (let j = 0, m = nBindings; j !== m; ++j) {						bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j]));					}				} else if (index < nCachedObjects) {					knownObject = objects[index]; // move existing object to the ACTIVE region					const firstActiveIndex = --nCachedObjects,								lastCachedObject = objects[firstActiveIndex];					indicesByUUID[lastCachedObject.uuid] = index;					objects[index] = lastCachedObject;					indicesByUUID[uuid] = firstActiveIndex;					objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings					for (let j = 0, m = nBindings; j !== m; ++j) {						const bindingsForPath = bindings[j],									lastCached = bindingsForPath[firstActiveIndex];						let binding = bindingsForPath[index];						bindingsForPath[index] = lastCached;						if (binding === undefined) {							// since we do not bother to create new bindings							// for objects that are cached, the binding may							// or may not exist							binding = new PropertyBinding(object, paths[j], parsedPaths[j]);						}						bindingsForPath[firstActiveIndex] = binding;					}				} else if (objects[index] !== knownObject) {					console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.');				} // else the object is already where we want it to be			} // for arguments			this.nCachedObjects_ = nCachedObjects;		}		remove() {			const objects = this._objects,						indicesByUUID = this._indicesByUUID,						bindings = this._bindings,						nBindings = bindings.length;			let nCachedObjects = this.nCachedObjects_;			for (let i = 0, n = arguments.length; i !== n; ++i) {				const object = arguments[i],							uuid = object.uuid,							index = indicesByUUID[uuid];				if (index !== undefined && index >= nCachedObjects) {					// move existing object into the CACHED region					const lastCachedIndex = nCachedObjects++,								firstActiveObject = objects[lastCachedIndex];					indicesByUUID[firstActiveObject.uuid] = index;					objects[index] = firstActiveObject;					indicesByUUID[uuid] = lastCachedIndex;					objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings					for (let j = 0, m = nBindings; j !== m; ++j) {						const bindingsForPath = bindings[j],									firstActive = bindingsForPath[lastCachedIndex],									binding = bindingsForPath[index];						bindingsForPath[index] = firstActive;						bindingsForPath[lastCachedIndex] = binding;					}				}			} // for arguments			this.nCachedObjects_ = nCachedObjects;		} // remove & forget		uncache() {			const objects = this._objects,						indicesByUUID = this._indicesByUUID,						bindings = this._bindings,						nBindings = bindings.length;			let nCachedObjects = this.nCachedObjects_,					nObjects = objects.length;			for (let i = 0, n = arguments.length; i !== n; ++i) {				const object = arguments[i],							uuid = object.uuid,							index = indicesByUUID[uuid];				if (index !== undefined) {					delete indicesByUUID[uuid];					if (index < nCachedObjects) {						// object is cached, shrink the CACHED region						const firstActiveIndex = --nCachedObjects,									lastCachedObject = objects[firstActiveIndex],									lastIndex = --nObjects,									lastObject = objects[lastIndex]; // last cached object takes this object's place						indicesByUUID[lastCachedObject.uuid] = index;						objects[index] = lastCachedObject; // last object goes to the activated slot and pop						indicesByUUID[lastObject.uuid] = firstActiveIndex;						objects[firstActiveIndex] = lastObject;						objects.pop(); // accounting is done, now do the same for all bindings						for (let j = 0, m = nBindings; j !== m; ++j) {							const bindingsForPath = bindings[j],										lastCached = bindingsForPath[firstActiveIndex],										last = bindingsForPath[lastIndex];							bindingsForPath[index] = lastCached;							bindingsForPath[firstActiveIndex] = last;							bindingsForPath.pop();						}					} else {						// object is active, just swap with the last and pop						const lastIndex = --nObjects,									lastObject = objects[lastIndex];						if (lastIndex > 0) {							indicesByUUID[lastObject.uuid] = index;						}						objects[index] = lastObject;						objects.pop(); // accounting is done, now do the same for all bindings						for (let j = 0, m = nBindings; j !== m; ++j) {							const bindingsForPath = bindings[j];							bindingsForPath[index] = bindingsForPath[lastIndex];							bindingsForPath.pop();						}					} // cached or active				} // if object is known			} // for arguments			this.nCachedObjects_ = nCachedObjects;		} // Internal interface used by befriended PropertyBinding.Composite:		subscribe_(path, parsedPath) {			// returns an array of bindings for the given path that is changed			// according to the contained objects in the group			const indicesByPath = this._bindingsIndicesByPath;			let index = indicesByPath[path];			const bindings = this._bindings;			if (index !== undefined) return bindings[index];			const paths = this._paths,						parsedPaths = this._parsedPaths,						objects = this._objects,						nObjects = objects.length,						nCachedObjects = this.nCachedObjects_,						bindingsForPath = new Array(nObjects);			index = bindings.length;			indicesByPath[path] = index;			paths.push(path);			parsedPaths.push(parsedPath);			bindings.push(bindingsForPath);			for (let i = nCachedObjects, n = objects.length; i !== n; ++i) {				const object = objects[i];				bindingsForPath[i] = new PropertyBinding(object, path, parsedPath);			}			return bindingsForPath;		}		unsubscribe_(path) {			// tells the group to forget about a property path and no longer			// update the array previously obtained with 'subscribe_'			const indicesByPath = this._bindingsIndicesByPath,						index = indicesByPath[path];			if (index !== undefined) {				const paths = this._paths,							parsedPaths = this._parsedPaths,							bindings = this._bindings,							lastBindingsIndex = bindings.length - 1,							lastBindings = bindings[lastBindingsIndex],							lastBindingsPath = path[lastBindingsIndex];				indicesByPath[lastBindingsPath] = index;				bindings[index] = lastBindings;				bindings.pop();				parsedPaths[index] = parsedPaths[lastBindingsIndex];				parsedPaths.pop();				paths[index] = paths[lastBindingsIndex];				paths.pop();			}		}	}	AnimationObjectGroup.prototype.isAnimationObjectGroup = true;	class AnimationAction {		constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) {			this._mixer = mixer;			this._clip = clip;			this._localRoot = localRoot;			this.blendMode = blendMode;			const tracks = clip.tracks,						nTracks = tracks.length,						interpolants = new Array(nTracks);			const interpolantSettings = {				endingStart: ZeroCurvatureEnding,				endingEnd: ZeroCurvatureEnding			};			for (let i = 0; i !== nTracks; ++i) {				const interpolant = tracks[i].createInterpolant(null);				interpolants[i] = interpolant;				interpolant.settings = interpolantSettings;			}			this._interpolantSettings = interpolantSettings;			this._interpolants = interpolants; // bound by the mixer			// inside: PropertyMixer (managed by the mixer)			this._propertyBindings = new Array(nTracks);			this._cacheIndex = null; // for the memory manager			this._byClipCacheIndex = null; // for the memory manager			this._timeScaleInterpolant = null;			this._weightInterpolant = null;			this.loop = LoopRepeat;			this._loopCount = -1; // global mixer time when the action is to be started			// it's set back to 'null' upon start of the action			this._startTime = null; // scaled local time of the action			// gets clamped or wrapped to 0..clip.duration according to loop			this.time = 0;			this.timeScale = 1;			this._effectiveTimeScale = 1;			this.weight = 1;			this._effectiveWeight = 1;			this.repetitions = Infinity; // no. of repetitions when looping			this.paused = false; // true -> zero effective time scale			this.enabled = true; // false -> zero effective weight			this.clampWhenFinished = false; // keep feeding the last frame?			this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate			this.zeroSlopeAtEnd = true; // clips for start, loop and end		} // State & Scheduling		play() {			this._mixer._activateAction(this);			return this;		}		stop() {			this._mixer._deactivateAction(this);			return this.reset();		}		reset() {			this.paused = false;			this.enabled = true;			this.time = 0; // restart clip			this._loopCount = -1; // forget previous loops			this._startTime = null; // forget scheduling			return this.stopFading().stopWarping();		}		isRunning() {			return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this);		} // return true when play has been called		isScheduled() {			return this._mixer._isActiveAction(this);		}		startAt(time) {			this._startTime = time;			return this;		}		setLoop(mode, repetitions) {			this.loop = mode;			this.repetitions = repetitions;			return this;		} // Weight		// set the weight stopping any scheduled fading		// although .enabled = false yields an effective weight of zero, this		// method does *not* change .enabled, because it would be confusing		setEffectiveWeight(weight) {			this.weight = weight; // note: same logic as when updated at runtime			this._effectiveWeight = this.enabled ? weight : 0;			return this.stopFading();		} // return the weight considering fading and .enabled		getEffectiveWeight() {			return this._effectiveWeight;		}		fadeIn(duration) {			return this._scheduleFading(duration, 0, 1);		}		fadeOut(duration) {			return this._scheduleFading(duration, 1, 0);		}		crossFadeFrom(fadeOutAction, duration, warp) {			fadeOutAction.fadeOut(duration);			this.fadeIn(duration);			if (warp) {				const fadeInDuration = this._clip.duration,							fadeOutDuration = fadeOutAction._clip.duration,							startEndRatio = fadeOutDuration / fadeInDuration,							endStartRatio = fadeInDuration / fadeOutDuration;				fadeOutAction.warp(1.0, startEndRatio, duration);				this.warp(endStartRatio, 1.0, duration);			}			return this;		}		crossFadeTo(fadeInAction, duration, warp) {			return fadeInAction.crossFadeFrom(this, duration, warp);		}		stopFading() {			const weightInterpolant = this._weightInterpolant;			if (weightInterpolant !== null) {				this._weightInterpolant = null;				this._mixer._takeBackControlInterpolant(weightInterpolant);			}			return this;		} // Time Scale Control		// set the time scale stopping any scheduled warping		// although .paused = true yields an effective time scale of zero, this		// method does *not* change .paused, because it would be confusing		setEffectiveTimeScale(timeScale) {			this.timeScale = timeScale;			this._effectiveTimeScale = this.paused ? 0 : timeScale;			return this.stopWarping();		} // return the time scale considering warping and .paused		getEffectiveTimeScale() {			return this._effectiveTimeScale;		}		setDuration(duration) {			this.timeScale = this._clip.duration / duration;			return this.stopWarping();		}		syncWith(action) {			this.time = action.time;			this.timeScale = action.timeScale;			return this.stopWarping();		}		halt(duration) {			return this.warp(this._effectiveTimeScale, 0, duration);		}		warp(startTimeScale, endTimeScale, duration) {			const mixer = this._mixer,						now = mixer.time,						timeScale = this.timeScale;			let interpolant = this._timeScaleInterpolant;			if (interpolant === null) {				interpolant = mixer._lendControlInterpolant();				this._timeScaleInterpolant = interpolant;			}			const times = interpolant.parameterPositions,						values = interpolant.sampleValues;			times[0] = now;			times[1] = now + duration;			values[0] = startTimeScale / timeScale;			values[1] = endTimeScale / timeScale;			return this;		}		stopWarping() {			const timeScaleInterpolant = this._timeScaleInterpolant;			if (timeScaleInterpolant !== null) {				this._timeScaleInterpolant = null;				this._mixer._takeBackControlInterpolant(timeScaleInterpolant);			}			return this;		} // Object Accessors		getMixer() {			return this._mixer;		}		getClip() {			return this._clip;		}		getRoot() {			return this._localRoot || this._mixer._root;		} // Interna		_update(time, deltaTime, timeDirection, accuIndex) {			// called by the mixer			if (!this.enabled) {				// call ._updateWeight() to update ._effectiveWeight				this._updateWeight(time);				return;			}			const startTime = this._startTime;			if (startTime !== null) {				// check for scheduled start of action				const timeRunning = (time - startTime) * timeDirection;				if (timeRunning < 0 || timeDirection === 0) {					return; // yet to come / don't decide when delta = 0				} // start				this._startTime = null; // unschedule				deltaTime = timeDirection * timeRunning;			} // apply time scale and advance time			deltaTime *= this._updateTimeScale(time);			const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in			// an effective weight of 0			const weight = this._updateWeight(time);			if (weight > 0) {				const interpolants = this._interpolants;				const propertyMixers = this._propertyBindings;				switch (this.blendMode) {					case AdditiveAnimationBlendMode:						for (let j = 0, m = interpolants.length; j !== m; ++j) {							interpolants[j].evaluate(clipTime);							propertyMixers[j].accumulateAdditive(weight);						}						break;					case NormalAnimationBlendMode:					default:						for (let j = 0, m = interpolants.length; j !== m; ++j) {							interpolants[j].evaluate(clipTime);							propertyMixers[j].accumulate(accuIndex, weight);						}				}			}		}		_updateWeight(time) {			let weight = 0;			if (this.enabled) {				weight = this.weight;				const interpolant = this._weightInterpolant;				if (interpolant !== null) {					const interpolantValue = interpolant.evaluate(time)[0];					weight *= interpolantValue;					if (time > interpolant.parameterPositions[1]) {						this.stopFading();						if (interpolantValue === 0) {							// faded out, disable							this.enabled = false;						}					}				}			}			this._effectiveWeight = weight;			return weight;		}		_updateTimeScale(time) {			let timeScale = 0;			if (!this.paused) {				timeScale = this.timeScale;				const interpolant = this._timeScaleInterpolant;				if (interpolant !== null) {					const interpolantValue = interpolant.evaluate(time)[0];					timeScale *= interpolantValue;					if (time > interpolant.parameterPositions[1]) {						this.stopWarping();						if (timeScale === 0) {							// motion has halted, pause							this.paused = true;						} else {							// warp done - apply final time scale							this.timeScale = timeScale;						}					}				}			}			this._effectiveTimeScale = timeScale;			return timeScale;		}		_updateTime(deltaTime) {			const duration = this._clip.duration;			const loop = this.loop;			let time = this.time + deltaTime;			let loopCount = this._loopCount;			const pingPong = loop === LoopPingPong;			if (deltaTime === 0) {				if (loopCount === -1) return time;				return pingPong && (loopCount & 1) === 1 ? duration - time : time;			}			if (loop === LoopOnce) {				if (loopCount === -1) {					// just started					this._loopCount = 0;					this._setEndings(true, true, false);				}				handle_stop: {					if (time >= duration) {						time = duration;					} else if (time < 0) {						time = 0;					} else {						this.time = time;						break handle_stop;					}					if (this.clampWhenFinished) this.paused = true;else this.enabled = false;					this.time = time;					this._mixer.dispatchEvent({						type: 'finished',						action: this,						direction: deltaTime < 0 ? -1 : 1					});				}			} else {				// repetitive Repeat or PingPong				if (loopCount === -1) {					// just started					if (deltaTime >= 0) {						loopCount = 0;						this._setEndings(true, this.repetitions === 0, pingPong);					} else {						// when looping in reverse direction, the initial						// transition through zero counts as a repetition,						// so leave loopCount at -1						this._setEndings(this.repetitions === 0, true, pingPong);					}				}				if (time >= duration || time < 0) {					// wrap around					const loopDelta = Math.floor(time / duration); // signed					time -= duration * loopDelta;					loopCount += Math.abs(loopDelta);					const pending = this.repetitions - loopCount;					if (pending <= 0) {						// have to stop (switch state, clamp time, fire event)						if (this.clampWhenFinished) this.paused = true;else this.enabled = false;						time = deltaTime > 0 ? duration : 0;						this.time = time;						this._mixer.dispatchEvent({							type: 'finished',							action: this,							direction: deltaTime > 0 ? 1 : -1						});					} else {						// keep running						if (pending === 1) {							// entering the last round							const atStart = deltaTime < 0;							this._setEndings(atStart, !atStart, pingPong);						} else {							this._setEndings(false, false, pingPong);						}						this._loopCount = loopCount;						this.time = time;						this._mixer.dispatchEvent({							type: 'loop',							action: this,							loopDelta: loopDelta						});					}				} else {					this.time = time;				}				if (pingPong && (loopCount & 1) === 1) {					// invert time for the "pong round"					return duration - time;				}			}			return time;		}		_setEndings(atStart, atEnd, pingPong) {			const settings = this._interpolantSettings;			if (pingPong) {				settings.endingStart = ZeroSlopeEnding;				settings.endingEnd = ZeroSlopeEnding;			} else {				// assuming for LoopOnce atStart == atEnd == true				if (atStart) {					settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;				} else {					settings.endingStart = WrapAroundEnding;				}				if (atEnd) {					settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;				} else {					settings.endingEnd = WrapAroundEnding;				}			}		}		_scheduleFading(duration, weightNow, weightThen) {			const mixer = this._mixer,						now = mixer.time;			let interpolant = this._weightInterpolant;			if (interpolant === null) {				interpolant = mixer._lendControlInterpolant();				this._weightInterpolant = interpolant;			}			const times = interpolant.parameterPositions,						values = interpolant.sampleValues;			times[0] = now;			values[0] = weightNow;			times[1] = now + duration;			values[1] = weightThen;			return this;		}	}	class AnimationMixer extends EventDispatcher {		constructor(root) {			super();			this._root = root;			this._initMemoryManager();			this._accuIndex = 0;			this.time = 0;			this.timeScale = 1.0;		}		_bindAction(action, prototypeAction) {			const root = action._localRoot || this._root,						tracks = action._clip.tracks,						nTracks = tracks.length,						bindings = action._propertyBindings,						interpolants = action._interpolants,						rootUuid = root.uuid,						bindingsByRoot = this._bindingsByRootAndName;			let bindingsByName = bindingsByRoot[rootUuid];			if (bindingsByName === undefined) {				bindingsByName = {};				bindingsByRoot[rootUuid] = bindingsByName;			}			for (let i = 0; i !== nTracks; ++i) {				const track = tracks[i],							trackName = track.name;				let binding = bindingsByName[trackName];				if (binding !== undefined) {					bindings[i] = binding;				} else {					binding = bindings[i];					if (binding !== undefined) {						// existing binding, make sure the cache knows						if (binding._cacheIndex === null) {							++binding.referenceCount;							this._addInactiveBinding(binding, rootUuid, trackName);						}						continue;					}					const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath;					binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize());					++binding.referenceCount;					this._addInactiveBinding(binding, rootUuid, trackName);					bindings[i] = binding;				}				interpolants[i].resultBuffer = binding.buffer;			}		}		_activateAction(action) {			if (!this._isActiveAction(action)) {				if (action._cacheIndex === null) {					// this action has been forgotten by the cache, but the user					// appears to be still using it -> rebind					const rootUuid = (action._localRoot || this._root).uuid,								clipUuid = action._clip.uuid,								actionsForClip = this._actionsByClip[clipUuid];					this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]);					this._addInactiveAction(action, clipUuid, rootUuid);				}				const bindings = action._propertyBindings; // increment reference counts / sort out state				for (let i = 0, n = bindings.length; i !== n; ++i) {					const binding = bindings[i];					if (binding.useCount++ === 0) {						this._lendBinding(binding);						binding.saveOriginalState();					}				}				this._lendAction(action);			}		}		_deactivateAction(action) {			if (this._isActiveAction(action)) {				const bindings = action._propertyBindings; // decrement reference counts / sort out state				for (let i = 0, n = bindings.length; i !== n; ++i) {					const binding = bindings[i];					if (--binding.useCount === 0) {						binding.restoreOriginalState();						this._takeBackBinding(binding);					}				}				this._takeBackAction(action);			}		} // Memory manager		_initMemoryManager() {			this._actions = []; // 'nActiveActions' followed by inactive ones			this._nActiveActions = 0;			this._actionsByClip = {}; // inside:			// {			// 	knownActions: Array< AnimationAction > - used as prototypes			// 	actionByRoot: AnimationAction - lookup			// }			this._bindings = []; // 'nActiveBindings' followed by inactive ones			this._nActiveBindings = 0;			this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >			this._controlInterpolants = []; // same game as above			this._nActiveControlInterpolants = 0;			const scope = this;			this.stats = {				actions: {					get total() {						return scope._actions.length;					},					get inUse() {						return scope._nActiveActions;					}				},				bindings: {					get total() {						return scope._bindings.length;					},					get inUse() {						return scope._nActiveBindings;					}				},				controlInterpolants: {					get total() {						return scope._controlInterpolants.length;					},					get inUse() {						return scope._nActiveControlInterpolants;					}				}			};		} // Memory management for AnimationAction objects		_isActiveAction(action) {			const index = action._cacheIndex;			return index !== null && index < this._nActiveActions;		}		_addInactiveAction(action, clipUuid, rootUuid) {			const actions = this._actions,						actionsByClip = this._actionsByClip;			let actionsForClip = actionsByClip[clipUuid];			if (actionsForClip === undefined) {				actionsForClip = {					knownActions: [action],					actionByRoot: {}				};				action._byClipCacheIndex = 0;				actionsByClip[clipUuid] = actionsForClip;			} else {				const knownActions = actionsForClip.knownActions;				action._byClipCacheIndex = knownActions.length;				knownActions.push(action);			}			action._cacheIndex = actions.length;			actions.push(action);			actionsForClip.actionByRoot[rootUuid] = action;		}		_removeInactiveAction(action) {			const actions = this._actions,						lastInactiveAction = actions[actions.length - 1],						cacheIndex = action._cacheIndex;			lastInactiveAction._cacheIndex = cacheIndex;			actions[cacheIndex] = lastInactiveAction;			actions.pop();			action._cacheIndex = null;			const clipUuid = action._clip.uuid,						actionsByClip = this._actionsByClip,						actionsForClip = actionsByClip[clipUuid],						knownActionsForClip = actionsForClip.knownActions,						lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1],						byClipCacheIndex = action._byClipCacheIndex;			lastKnownAction._byClipCacheIndex = byClipCacheIndex;			knownActionsForClip[byClipCacheIndex] = lastKnownAction;			knownActionsForClip.pop();			action._byClipCacheIndex = null;			const actionByRoot = actionsForClip.actionByRoot,						rootUuid = (action._localRoot || this._root).uuid;			delete actionByRoot[rootUuid];			if (knownActionsForClip.length === 0) {				delete actionsByClip[clipUuid];			}			this._removeInactiveBindingsForAction(action);		}		_removeInactiveBindingsForAction(action) {			const bindings = action._propertyBindings;			for (let i = 0, n = bindings.length; i !== n; ++i) {				const binding = bindings[i];				if (--binding.referenceCount === 0) {					this._removeInactiveBinding(binding);				}			}		}		_lendAction(action) {			// [ active actions |	inactive actions	]			// [	active actions >| inactive actions ]			//								 s				a			//									<-swap->			//								 a				s			const actions = this._actions,						prevIndex = action._cacheIndex,						lastActiveIndex = this._nActiveActions++,						firstInactiveAction = actions[lastActiveIndex];			action._cacheIndex = lastActiveIndex;			actions[lastActiveIndex] = action;			firstInactiveAction._cacheIndex = prevIndex;			actions[prevIndex] = firstInactiveAction;		}		_takeBackAction(action) {			// [	active actions	| inactive actions ]			// [ active actions |< inactive actions	]			//				a				s			//				 <-swap->			//				s				a			const actions = this._actions,						prevIndex = action._cacheIndex,						firstInactiveIndex = --this._nActiveActions,						lastActiveAction = actions[firstInactiveIndex];			action._cacheIndex = firstInactiveIndex;			actions[firstInactiveIndex] = action;			lastActiveAction._cacheIndex = prevIndex;			actions[prevIndex] = lastActiveAction;		} // Memory management for PropertyMixer objects		_addInactiveBinding(binding, rootUuid, trackName) {			const bindingsByRoot = this._bindingsByRootAndName,						bindings = this._bindings;			let bindingByName = bindingsByRoot[rootUuid];			if (bindingByName === undefined) {				bindingByName = {};				bindingsByRoot[rootUuid] = bindingByName;			}			bindingByName[trackName] = binding;			binding._cacheIndex = bindings.length;			bindings.push(binding);		}		_removeInactiveBinding(binding) {			const bindings = this._bindings,						propBinding = binding.binding,						rootUuid = propBinding.rootNode.uuid,						trackName = propBinding.path,						bindingsByRoot = this._bindingsByRootAndName,						bindingByName = bindingsByRoot[rootUuid],						lastInactiveBinding = bindings[bindings.length - 1],						cacheIndex = binding._cacheIndex;			lastInactiveBinding._cacheIndex = cacheIndex;			bindings[cacheIndex] = lastInactiveBinding;			bindings.pop();			delete bindingByName[trackName];			if (Object.keys(bindingByName).length === 0) {				delete bindingsByRoot[rootUuid];			}		}		_lendBinding(binding) {			const bindings = this._bindings,						prevIndex = binding._cacheIndex,						lastActiveIndex = this._nActiveBindings++,						firstInactiveBinding = bindings[lastActiveIndex];			binding._cacheIndex = lastActiveIndex;			bindings[lastActiveIndex] = binding;			firstInactiveBinding._cacheIndex = prevIndex;			bindings[prevIndex] = firstInactiveBinding;		}		_takeBackBinding(binding) {			const bindings = this._bindings,						prevIndex = binding._cacheIndex,						firstInactiveIndex = --this._nActiveBindings,						lastActiveBinding = bindings[firstInactiveIndex];			binding._cacheIndex = firstInactiveIndex;			bindings[firstInactiveIndex] = binding;			lastActiveBinding._cacheIndex = prevIndex;			bindings[prevIndex] = lastActiveBinding;		} // Memory management of Interpolants for weight and time scale		_lendControlInterpolant() {			const interpolants = this._controlInterpolants,						lastActiveIndex = this._nActiveControlInterpolants++;			let interpolant = interpolants[lastActiveIndex];			if (interpolant === undefined) {				interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer);				interpolant.__cacheIndex = lastActiveIndex;				interpolants[lastActiveIndex] = interpolant;			}			return interpolant;		}		_takeBackControlInterpolant(interpolant) {			const interpolants = this._controlInterpolants,						prevIndex = interpolant.__cacheIndex,						firstInactiveIndex = --this._nActiveControlInterpolants,						lastActiveInterpolant = interpolants[firstInactiveIndex];			interpolant.__cacheIndex = firstInactiveIndex;			interpolants[firstInactiveIndex] = interpolant;			lastActiveInterpolant.__cacheIndex = prevIndex;			interpolants[prevIndex] = lastActiveInterpolant;		} // return an action for a clip optionally using a custom root target		// object (this method allocates a lot of dynamic memory in case a		// previously unknown clip/root combination is specified)		clipAction(clip, optionalRoot, blendMode) {			const root = optionalRoot || this._root,						rootUuid = root.uuid;			let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip;			const clipUuid = clipObject !== null ? clipObject.uuid : clip;			const actionsForClip = this._actionsByClip[clipUuid];			let prototypeAction = null;			if (blendMode === undefined) {				if (clipObject !== null) {					blendMode = clipObject.blendMode;				} else {					blendMode = NormalAnimationBlendMode;				}			}			if (actionsForClip !== undefined) {				const existingAction = actionsForClip.actionByRoot[rootUuid];				if (existingAction !== undefined && existingAction.blendMode === blendMode) {					return existingAction;				} // we know the clip, so we don't have to parse all				// the bindings again but can just copy				prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action				if (clipObject === null) clipObject = prototypeAction._clip;			} // clip must be known when specified via string			if (clipObject === null) return null; // allocate all resources required to run it			const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode);			this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager			this._addInactiveAction(newAction, clipUuid, rootUuid);			return newAction;		} // get an existing action		existingAction(clip, optionalRoot) {			const root = optionalRoot || this._root,						rootUuid = root.uuid,						clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip,						clipUuid = clipObject ? clipObject.uuid : clip,						actionsForClip = this._actionsByClip[clipUuid];			if (actionsForClip !== undefined) {				return actionsForClip.actionByRoot[rootUuid] || null;			}			return null;		} // deactivates all previously scheduled actions		stopAllAction() {			const actions = this._actions,						nActions = this._nActiveActions;			for (let i = nActions - 1; i >= 0; --i) {				actions[i].stop();			}			return this;		} // advance the time and update apply the animation		update(deltaTime) {			deltaTime *= this.timeScale;			const actions = this._actions,						nActions = this._nActiveActions,						time = this.time += deltaTime,						timeDirection = Math.sign(deltaTime),						accuIndex = this._accuIndex ^= 1; // run active actions			for (let i = 0; i !== nActions; ++i) {				const action = actions[i];				action._update(time, deltaTime, timeDirection, accuIndex);			} // update scene graph			const bindings = this._bindings,						nBindings = this._nActiveBindings;			for (let i = 0; i !== nBindings; ++i) {				bindings[i].apply(accuIndex);			}			return this;		} // Allows you to seek to a specific time in an animation.		setTime(timeInSeconds) {			this.time = 0; // Zero out time attribute for AnimationMixer object;			for (let i = 0; i < this._actions.length; i++) {				this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects.			}			return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object.		} // return this mixer's root target object		getRoot() {			return this._root;		} // free all resources specific to a particular clip		uncacheClip(clip) {			const actions = this._actions,						clipUuid = clip.uuid,						actionsByClip = this._actionsByClip,						actionsForClip = actionsByClip[clipUuid];			if (actionsForClip !== undefined) {				// note: just calling _removeInactiveAction would mess up the				// iteration state and also require updating the state we can				// just throw away				const actionsToRemove = actionsForClip.knownActions;				for (let i = 0, n = actionsToRemove.length; i !== n; ++i) {					const action = actionsToRemove[i];					this._deactivateAction(action);					const cacheIndex = action._cacheIndex,								lastInactiveAction = actions[actions.length - 1];					action._cacheIndex = null;					action._byClipCacheIndex = null;					lastInactiveAction._cacheIndex = cacheIndex;					actions[cacheIndex] = lastInactiveAction;					actions.pop();					this._removeInactiveBindingsForAction(action);				}				delete actionsByClip[clipUuid];			}		} // free all resources specific to a particular root target object		uncacheRoot(root) {			const rootUuid = root.uuid,						actionsByClip = this._actionsByClip;			for (const clipUuid in actionsByClip) {				const actionByRoot = actionsByClip[clipUuid].actionByRoot,							action = actionByRoot[rootUuid];				if (action !== undefined) {					this._deactivateAction(action);					this._removeInactiveAction(action);				}			}			const bindingsByRoot = this._bindingsByRootAndName,						bindingByName = bindingsByRoot[rootUuid];			if (bindingByName !== undefined) {				for (const trackName in bindingByName) {					const binding = bindingByName[trackName];					binding.restoreOriginalState();					this._removeInactiveBinding(binding);				}			}		} // remove a targeted clip from the cache		uncacheAction(clip, optionalRoot) {			const action = this.existingAction(clip, optionalRoot);			if (action !== null) {				this._deactivateAction(action);				this._removeInactiveAction(action);			}		}	}	AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1);	class Uniform {		constructor(value) {			if (typeof value === 'string') {				console.warn('THREE.Uniform: Type parameter is no longer needed.');				value = arguments[1];			}			this.value = value;		}		clone() {			return new Uniform(this.value.clone === undefined ? this.value : this.value.clone());		}	}	class InstancedInterleavedBuffer extends InterleavedBuffer {		constructor(array, stride, meshPerAttribute = 1) {			super(array, stride);			this.meshPerAttribute = meshPerAttribute;		}		copy(source) {			super.copy(source);			this.meshPerAttribute = source.meshPerAttribute;			return this;		}		clone(data) {			const ib = super.clone(data);			ib.meshPerAttribute = this.meshPerAttribute;			return ib;		}		toJSON(data) {			const json = super.toJSON(data);			json.isInstancedInterleavedBuffer = true;			json.meshPerAttribute = this.meshPerAttribute;			return json;		}	}	InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true;	class GLBufferAttribute {		constructor(buffer, type, itemSize, elementSize, count) {			this.buffer = buffer;			this.type = type;			this.itemSize = itemSize;			this.elementSize = elementSize;			this.count = count;			this.version = 0;		}		set needsUpdate(value) {			if (value === true) this.version++;		}		setBuffer(buffer) {			this.buffer = buffer;			return this;		}		setType(type, elementSize) {			this.type = type;			this.elementSize = elementSize;			return this;		}		setItemSize(itemSize) {			this.itemSize = itemSize;			return this;		}		setCount(count) {			this.count = count;			return this;		}	}	GLBufferAttribute.prototype.isGLBufferAttribute = true;	class Raycaster {		constructor(origin, direction, near = 0, far = Infinity) {			this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations)			this.near = near;			this.far = far;			this.camera = null;			this.layers = new Layers();			this.params = {				Mesh: {},				Line: {					threshold: 1				},				LOD: {},				Points: {					threshold: 1				},				Sprite: {}			};		}		set(origin, direction) {			// direction is assumed to be normalized (for accurate distance calculations)			this.ray.set(origin, direction);		}		setFromCamera(coords, camera) {			if (camera && camera.isPerspectiveCamera) {				this.ray.origin.setFromMatrixPosition(camera.matrixWorld);				this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize();				this.camera = camera;			} else if (camera && camera.isOrthographicCamera) {				this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera				this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld);				this.camera = camera;			} else {				console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type);			}		}		intersectObject(object, recursive = true, intersects = []) {			intersectObject(object, this, intersects, recursive);			intersects.sort(ascSort);			return intersects;		}		intersectObjects(objects, recursive = true, intersects = []) {			for (let i = 0, l = objects.length; i < l; i++) {				intersectObject(objects[i], this, intersects, recursive);			}			intersects.sort(ascSort);			return intersects;		}	}	function ascSort(a, b) {		return a.distance - b.distance;	}	function intersectObject(object, raycaster, intersects, recursive) {		if (object.layers.test(raycaster.layers)) {			object.raycast(raycaster, intersects);		}		if (recursive === true) {			const children = object.children;			for (let i = 0, l = children.length; i < l; i++) {				intersectObject(children[i], raycaster, intersects, true);			}		}	}	/**	 * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system	 *	 * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.	 * The azimuthal angle (theta) is measured from the positive z-axis.	 */	class Spherical {		constructor(radius = 1, phi = 0, theta = 0) {			this.radius = radius;			this.phi = phi; // polar angle			this.theta = theta; // azimuthal angle			return this;		}		set(radius, phi, theta) {			this.radius = radius;			this.phi = phi;			this.theta = theta;			return this;		}		copy(other) {			this.radius = other.radius;			this.phi = other.phi;			this.theta = other.theta;			return this;		} // restrict phi to be betwee EPS and PI-EPS		makeSafe() {			const EPS = 0.000001;			this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi));			return this;		}		setFromVector3(v) {			return this.setFromCartesianCoords(v.x, v.y, v.z);		}		setFromCartesianCoords(x, y, z) {			this.radius = Math.sqrt(x * x + y * y + z * z);			if (this.radius === 0) {				this.theta = 0;				this.phi = 0;			} else {				this.theta = Math.atan2(x, z);				this.phi = Math.acos(clamp(y / this.radius, -1, 1));			}			return this;		}		clone() {			return new this.constructor().copy(this);		}	}	/**	 * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system	 */	class Cylindrical {		constructor(radius = 1, theta = 0, y = 0) {			this.radius = radius; // distance from the origin to a point in the x-z plane			this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis			this.y = y; // height above the x-z plane			return this;		}		set(radius, theta, y) {			this.radius = radius;			this.theta = theta;			this.y = y;			return this;		}		copy(other) {			this.radius = other.radius;			this.theta = other.theta;			this.y = other.y;			return this;		}		setFromVector3(v) {			return this.setFromCartesianCoords(v.x, v.y, v.z);		}		setFromCartesianCoords(x, y, z) {			this.radius = Math.sqrt(x * x + z * z);			this.theta = Math.atan2(x, z);			this.y = y;			return this;		}		clone() {			return new this.constructor().copy(this);		}	}	const _vector$4 = /*@__PURE__*/new Vector2();	class Box2 {		constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) {			this.min = min;			this.max = max;		}		set(min, max) {			this.min.copy(min);			this.max.copy(max);			return this;		}		setFromPoints(points) {			this.makeEmpty();			for (let i = 0, il = points.length; i < il; i++) {				this.expandByPoint(points[i]);			}			return this;		}		setFromCenterAndSize(center, size) {			const halfSize = _vector$4.copy(size).multiplyScalar(0.5);			this.min.copy(center).sub(halfSize);			this.max.copy(center).add(halfSize);			return this;		}		clone() {			return new this.constructor().copy(this);		}		copy(box) {			this.min.copy(box.min);			this.max.copy(box.max);			return this;		}		makeEmpty() {			this.min.x = this.min.y = +Infinity;			this.max.x = this.max.y = -Infinity;			return this;		}		isEmpty() {			// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes			return this.max.x < this.min.x || this.max.y < this.min.y;		}		getCenter(target) {			return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);		}		getSize(target) {			return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min);		}		expandByPoint(point) {			this.min.min(point);			this.max.max(point);			return this;		}		expandByVector(vector) {			this.min.sub(vector);			this.max.add(vector);			return this;		}		expandByScalar(scalar) {			this.min.addScalar(-scalar);			this.max.addScalar(scalar);			return this;		}		containsPoint(point) {			return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true;		}		containsBox(box) {			return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y;		}		getParameter(point, target) {			// This can potentially have a divide by zero if the box			// has a size dimension of 0.			return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y));		}		intersectsBox(box) {			// using 4 splitting planes to rule out intersections			return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true;		}		clampPoint(point, target) {			return target.copy(point).clamp(this.min, this.max);		}		distanceToPoint(point) {			const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max);			return clampedPoint.sub(point).length();		}		intersect(box) {			this.min.max(box.min);			this.max.min(box.max);			return this;		}		union(box) {			this.min.min(box.min);			this.max.max(box.max);			return this;		}		translate(offset) {			this.min.add(offset);			this.max.add(offset);			return this;		}		equals(box) {			return box.min.equals(this.min) && box.max.equals(this.max);		}	}	Box2.prototype.isBox2 = true;	const _startP = /*@__PURE__*/new Vector3();	const _startEnd = /*@__PURE__*/new Vector3();	class Line3 {		constructor(start = new Vector3(), end = new Vector3()) {			this.start = start;			this.end = end;		}		set(start, end) {			this.start.copy(start);			this.end.copy(end);			return this;		}		copy(line) {			this.start.copy(line.start);			this.end.copy(line.end);			return this;		}		getCenter(target) {			return target.addVectors(this.start, this.end).multiplyScalar(0.5);		}		delta(target) {			return target.subVectors(this.end, this.start);		}		distanceSq() {			return this.start.distanceToSquared(this.end);		}		distance() {			return this.start.distanceTo(this.end);		}		at(t, target) {			return this.delta(target).multiplyScalar(t).add(this.start);		}		closestPointToPointParameter(point, clampToLine) {			_startP.subVectors(point, this.start);			_startEnd.subVectors(this.end, this.start);			const startEnd2 = _startEnd.dot(_startEnd);			const startEnd_startP = _startEnd.dot(_startP);			let t = startEnd_startP / startEnd2;			if (clampToLine) {				t = clamp(t, 0, 1);			}			return t;		}		closestPointToPoint(point, clampToLine, target) {			const t = this.closestPointToPointParameter(point, clampToLine);			return this.delta(target).multiplyScalar(t).add(this.start);		}		applyMatrix4(matrix) {			this.start.applyMatrix4(matrix);			this.end.applyMatrix4(matrix);			return this;		}		equals(line) {			return line.start.equals(this.start) && line.end.equals(this.end);		}		clone() {			return new this.constructor().copy(this);		}	}	const _vector$3 = /*@__PURE__*/new Vector3();	class SpotLightHelper extends Object3D {		constructor(light, color) {			super();			this.light = light;			this.light.updateMatrixWorld();			this.matrix = light.matrixWorld;			this.matrixAutoUpdate = false;			this.color = color;			const geometry = new BufferGeometry();			const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1];			for (let i = 0, j = 1, l = 32; i < l; i++, j++) {				const p1 = i / l * Math.PI * 2;				const p2 = j / l * Math.PI * 2;				positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1);			}			geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));			const material = new LineBasicMaterial({				fog: false,				toneMapped: false			});			this.cone = new LineSegments(geometry, material);			this.add(this.cone);			this.update();		}		dispose() {			this.cone.geometry.dispose();			this.cone.material.dispose();		}		update() {			this.light.updateMatrixWorld();			const coneLength = this.light.distance ? this.light.distance : 1000;			const coneWidth = coneLength * Math.tan(this.light.angle);			this.cone.scale.set(coneWidth, coneWidth, coneLength);			_vector$3.setFromMatrixPosition(this.light.target.matrixWorld);			this.cone.lookAt(_vector$3);			if (this.color !== undefined) {				this.cone.material.color.set(this.color);			} else {				this.cone.material.color.copy(this.light.color);			}		}	}	const _vector$2 = /*@__PURE__*/new Vector3();	const _boneMatrix = /*@__PURE__*/new Matrix4();	const _matrixWorldInv = /*@__PURE__*/new Matrix4();	class SkeletonHelper extends LineSegments {		constructor(object) {			const bones = getBoneList(object);			const geometry = new BufferGeometry();			const vertices = [];			const colors = [];			const color1 = new Color(0, 0, 1);			const color2 = new Color(0, 1, 0);			for (let i = 0; i < bones.length; i++) {				const bone = bones[i];				if (bone.parent && bone.parent.isBone) {					vertices.push(0, 0, 0);					vertices.push(0, 0, 0);					colors.push(color1.r, color1.g, color1.b);					colors.push(color2.r, color2.g, color2.b);				}			}			geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));			geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));			const material = new LineBasicMaterial({				vertexColors: true,				depthTest: false,				depthWrite: false,				toneMapped: false,				transparent: true			});			super(geometry, material);			this.type = 'SkeletonHelper';			this.isSkeletonHelper = true;			this.root = object;			this.bones = bones;			this.matrix = object.matrixWorld;			this.matrixAutoUpdate = false;		}		updateMatrixWorld(force) {			const bones = this.bones;			const geometry = this.geometry;			const position = geometry.getAttribute('position');			_matrixWorldInv.copy(this.root.matrixWorld).invert();			for (let i = 0, j = 0; i < bones.length; i++) {				const bone = bones[i];				if (bone.parent && bone.parent.isBone) {					_boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld);					_vector$2.setFromMatrixPosition(_boneMatrix);					position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z);					_boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld);					_vector$2.setFromMatrixPosition(_boneMatrix);					position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z);					j += 2;				}			}			geometry.getAttribute('position').needsUpdate = true;			super.updateMatrixWorld(force);		}	}	function getBoneList(object) {		const boneList = [];		if (object && object.isBone) {			boneList.push(object);		}		for (let i = 0; i < object.children.length; i++) {			boneList.push.apply(boneList, getBoneList(object.children[i]));		}		return boneList;	}	class PointLightHelper extends Mesh {		constructor(light, sphereSize, color) {			const geometry = new SphereGeometry(sphereSize, 4, 2);			const material = new MeshBasicMaterial({				wireframe: true,				fog: false,				toneMapped: false			});			super(geometry, material);			this.light = light;			this.light.updateMatrixWorld();			this.color = color;			this.type = 'PointLightHelper';			this.matrix = this.light.matrixWorld;			this.matrixAutoUpdate = false;			this.update();			/*			// TODO: delete this comment?			const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );			const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );			this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );			this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );			const d = light.distance;			if ( d === 0.0 ) {				this.lightDistance.visible = false;			} else {				this.lightDistance.scale.set( d, d, d );			}			this.add( this.lightDistance );			*/		}		dispose() {			this.geometry.dispose();			this.material.dispose();		}		update() {			if (this.color !== undefined) {				this.material.color.set(this.color);			} else {				this.material.color.copy(this.light.color);			}			/*			const d = this.light.distance;				if ( d === 0.0 ) {					this.lightDistance.visible = false;				} else {					this.lightDistance.visible = true;				this.lightDistance.scale.set( d, d, d );				}			*/		}	}	const _vector$1 = /*@__PURE__*/new Vector3();	const _color1 = /*@__PURE__*/new Color();	const _color2 = /*@__PURE__*/new Color();	class HemisphereLightHelper extends Object3D {		constructor(light, size, color) {			super();			this.light = light;			this.light.updateMatrixWorld();			this.matrix = light.matrixWorld;			this.matrixAutoUpdate = false;			this.color = color;			const geometry = new OctahedronGeometry(size);			geometry.rotateY(Math.PI * 0.5);			this.material = new MeshBasicMaterial({				wireframe: true,				fog: false,				toneMapped: false			});			if (this.color === undefined) this.material.vertexColors = true;			const position = geometry.getAttribute('position');			const colors = new Float32Array(position.count * 3);			geometry.setAttribute('color', new BufferAttribute(colors, 3));			this.add(new Mesh(geometry, this.material));			this.update();		}		dispose() {			this.children[0].geometry.dispose();			this.children[0].material.dispose();		}		update() {			const mesh = this.children[0];			if (this.color !== undefined) {				this.material.color.set(this.color);			} else {				const colors = mesh.geometry.getAttribute('color');				_color1.copy(this.light.color);				_color2.copy(this.light.groundColor);				for (let i = 0, l = colors.count; i < l; i++) {					const color = i < l / 2 ? _color1 : _color2;					colors.setXYZ(i, color.r, color.g, color.b);				}				colors.needsUpdate = true;			}			mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate());		}	}	class GridHelper extends LineSegments {		constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) {			color1 = new Color(color1);			color2 = new Color(color2);			const center = divisions / 2;			const step = size / divisions;			const halfSize = size / 2;			const vertices = [],						colors = [];			for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) {				vertices.push(-halfSize, 0, k, halfSize, 0, k);				vertices.push(k, 0, -halfSize, k, 0, halfSize);				const color = i === center ? color1 : color2;				color.toArray(colors, j);				j += 3;				color.toArray(colors, j);				j += 3;				color.toArray(colors, j);				j += 3;				color.toArray(colors, j);				j += 3;			}			const geometry = new BufferGeometry();			geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));			geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));			const material = new LineBasicMaterial({				vertexColors: true,				toneMapped: false			});			super(geometry, material);			this.type = 'GridHelper';		}	}	class PolarGridHelper extends LineSegments {		constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) {			color1 = new Color(color1);			color2 = new Color(color2);			const vertices = [];			const colors = []; // create the radials			for (let i = 0; i <= radials; i++) {				const v = i / radials * (Math.PI * 2);				const x = Math.sin(v) * radius;				const z = Math.cos(v) * radius;				vertices.push(0, 0, 0);				vertices.push(x, 0, z);				const color = i & 1 ? color1 : color2;				colors.push(color.r, color.g, color.b);				colors.push(color.r, color.g, color.b);			} // create the circles			for (let i = 0; i <= circles; i++) {				const color = i & 1 ? color1 : color2;				const r = radius - radius / circles * i;				for (let j = 0; j < divisions; j++) {					// first vertex					let v = j / divisions * (Math.PI * 2);					let x = Math.sin(v) * r;					let z = Math.cos(v) * r;					vertices.push(x, 0, z);					colors.push(color.r, color.g, color.b); // second vertex					v = (j + 1) / divisions * (Math.PI * 2);					x = Math.sin(v) * r;					z = Math.cos(v) * r;					vertices.push(x, 0, z);					colors.push(color.r, color.g, color.b);				}			}			const geometry = new BufferGeometry();			geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));			geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));			const material = new LineBasicMaterial({				vertexColors: true,				toneMapped: false			});			super(geometry, material);			this.type = 'PolarGridHelper';		}	}	const _v1 = /*@__PURE__*/new Vector3();	const _v2 = /*@__PURE__*/new Vector3();	const _v3 = /*@__PURE__*/new Vector3();	class DirectionalLightHelper extends Object3D {		constructor(light, size, color) {			super();			this.light = light;			this.light.updateMatrixWorld();			this.matrix = light.matrixWorld;			this.matrixAutoUpdate = false;			this.color = color;			if (size === undefined) size = 1;			let geometry = new BufferGeometry();			geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3));			const material = new LineBasicMaterial({				fog: false,				toneMapped: false			});			this.lightPlane = new Line(geometry, material);			this.add(this.lightPlane);			geometry = new BufferGeometry();			geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3));			this.targetLine = new Line(geometry, material);			this.add(this.targetLine);			this.update();		}		dispose() {			this.lightPlane.geometry.dispose();			this.lightPlane.material.dispose();			this.targetLine.geometry.dispose();			this.targetLine.material.dispose();		}		update() {			_v1.setFromMatrixPosition(this.light.matrixWorld);			_v2.setFromMatrixPosition(this.light.target.matrixWorld);			_v3.subVectors(_v2, _v1);			this.lightPlane.lookAt(_v2);			if (this.color !== undefined) {				this.lightPlane.material.color.set(this.color);				this.targetLine.material.color.set(this.color);			} else {				this.lightPlane.material.color.copy(this.light.color);				this.targetLine.material.color.copy(this.light.color);			}			this.targetLine.lookAt(_v2);			this.targetLine.scale.z = _v3.length();		}	}	const _vector = /*@__PURE__*/new Vector3();	const _camera = /*@__PURE__*/new Camera();	/**	 *	- shows frustum, line of sight and up of the camera	 *	- suitable for fast updates	 * 	- based on frustum visualization in lightgl.js shadowmap example	 *		http://evanw.github.com/lightgl.js/tests/shadowmap.html	 */	class CameraHelper extends LineSegments {		constructor(camera) {			const geometry = new BufferGeometry();			const material = new LineBasicMaterial({				color: 0xffffff,				vertexColors: true,				toneMapped: false			});			const vertices = [];			const colors = [];			const pointMap = {}; // colors			const colorFrustum = new Color(0xffaa00);			const colorCone = new Color(0xff0000);			const colorUp = new Color(0x00aaff);			const colorTarget = new Color(0xffffff);			const colorCross = new Color(0x333333); // near			addLine('n1', 'n2', colorFrustum);			addLine('n2', 'n4', colorFrustum);			addLine('n4', 'n3', colorFrustum);			addLine('n3', 'n1', colorFrustum); // far			addLine('f1', 'f2', colorFrustum);			addLine('f2', 'f4', colorFrustum);			addLine('f4', 'f3', colorFrustum);			addLine('f3', 'f1', colorFrustum); // sides			addLine('n1', 'f1', colorFrustum);			addLine('n2', 'f2', colorFrustum);			addLine('n3', 'f3', colorFrustum);			addLine('n4', 'f4', colorFrustum); // cone			addLine('p', 'n1', colorCone);			addLine('p', 'n2', colorCone);			addLine('p', 'n3', colorCone);			addLine('p', 'n4', colorCone); // up			addLine('u1', 'u2', colorUp);			addLine('u2', 'u3', colorUp);			addLine('u3', 'u1', colorUp); // target			addLine('c', 't', colorTarget);			addLine('p', 'c', colorCross); // cross			addLine('cn1', 'cn2', colorCross);			addLine('cn3', 'cn4', colorCross);			addLine('cf1', 'cf2', colorCross);			addLine('cf3', 'cf4', colorCross);			function addLine(a, b, color) {				addPoint(a, color);				addPoint(b, color);			}			function addPoint(id, color) {				vertices.push(0, 0, 0);				colors.push(color.r, color.g, color.b);				if (pointMap[id] === undefined) {					pointMap[id] = [];				}				pointMap[id].push(vertices.length / 3 - 1);			}			geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));			geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));			super(geometry, material);			this.type = 'CameraHelper';			this.camera = camera;			if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix();			this.matrix = camera.matrixWorld;			this.matrixAutoUpdate = false;			this.pointMap = pointMap;			this.update();		}		update() {			const geometry = this.geometry;			const pointMap = this.pointMap;			const w = 1,						h = 1; // we need just camera projection matrix inverse			// world matrix must be identity			_camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target			setPoint('c', pointMap, geometry, _camera, 0, 0, -1);			setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near			setPoint('n1', pointMap, geometry, _camera, -w, -h, -1);			setPoint('n2', pointMap, geometry, _camera, w, -h, -1);			setPoint('n3', pointMap, geometry, _camera, -w, h, -1);			setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far			setPoint('f1', pointMap, geometry, _camera, -w, -h, 1);			setPoint('f2', pointMap, geometry, _camera, w, -h, 1);			setPoint('f3', pointMap, geometry, _camera, -w, h, 1);			setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up			setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1);			setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1);			setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross			setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1);			setPoint('cf2', pointMap, geometry, _camera, w, 0, 1);			setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1);			setPoint('cf4', pointMap, geometry, _camera, 0, h, 1);			setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1);			setPoint('cn2', pointMap, geometry, _camera, w, 0, -1);			setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1);			setPoint('cn4', pointMap, geometry, _camera, 0, h, -1);			geometry.getAttribute('position').needsUpdate = true;		}		dispose() {			this.geometry.dispose();			this.material.dispose();		}	}	function setPoint(point, pointMap, geometry, camera, x, y, z) {		_vector.set(x, y, z).unproject(camera);		const points = pointMap[point];		if (points !== undefined) {			const position = geometry.getAttribute('position');			for (let i = 0, l = points.length; i < l; i++) {				position.setXYZ(points[i], _vector.x, _vector.y, _vector.z);			}		}	}	const _box = /*@__PURE__*/new Box3();	class BoxHelper extends LineSegments {		constructor(object, color = 0xffff00) {			const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);			const positions = new Float32Array(8 * 3);			const geometry = new BufferGeometry();			geometry.setIndex(new BufferAttribute(indices, 1));			geometry.setAttribute('position', new BufferAttribute(positions, 3));			super(geometry, new LineBasicMaterial({				color: color,				toneMapped: false			}));			this.object = object;			this.type = 'BoxHelper';			this.matrixAutoUpdate = false;			this.update();		}		update(object) {			if (object !== undefined) {				console.warn('THREE.BoxHelper: .update() has no longer arguments.');			}			if (this.object !== undefined) {				_box.setFromObject(this.object);			}			if (_box.isEmpty()) return;			const min = _box.min;			const max = _box.max;			/*				5____4			1/___0/|			| 6__|_7			2/___3/				0: max.x, max.y, max.z			1: min.x, max.y, max.z			2: min.x, min.y, max.z			3: max.x, min.y, max.z			4: max.x, max.y, min.z			5: min.x, max.y, min.z			6: min.x, min.y, min.z			7: max.x, min.y, min.z			*/			const position = this.geometry.attributes.position;			const array = position.array;			array[0] = max.x;			array[1] = max.y;			array[2] = max.z;			array[3] = min.x;			array[4] = max.y;			array[5] = max.z;			array[6] = min.x;			array[7] = min.y;			array[8] = max.z;			array[9] = max.x;			array[10] = min.y;			array[11] = max.z;			array[12] = max.x;			array[13] = max.y;			array[14] = min.z;			array[15] = min.x;			array[16] = max.y;			array[17] = min.z;			array[18] = min.x;			array[19] = min.y;			array[20] = min.z;			array[21] = max.x;			array[22] = min.y;			array[23] = min.z;			position.needsUpdate = true;			this.geometry.computeBoundingSphere();		}		setFromObject(object) {			this.object = object;			this.update();			return this;		}		copy(source) {			LineSegments.prototype.copy.call(this, source);			this.object = source.object;			return this;		}	}	class Box3Helper extends LineSegments {		constructor(box, color = 0xffff00) {			const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);			const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1];			const geometry = new BufferGeometry();			geometry.setIndex(new BufferAttribute(indices, 1));			geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));			super(geometry, new LineBasicMaterial({				color: color,				toneMapped: false			}));			this.box = box;			this.type = 'Box3Helper';			this.geometry.computeBoundingSphere();		}		updateMatrixWorld(force) {			const box = this.box;			if (box.isEmpty()) return;			box.getCenter(this.position);			box.getSize(this.scale);			this.scale.multiplyScalar(0.5);			super.updateMatrixWorld(force);		}	}	class PlaneHelper extends Line {		constructor(plane, size = 1, hex = 0xffff00) {			const color = hex;			const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0];			const geometry = new BufferGeometry();			geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));			geometry.computeBoundingSphere();			super(geometry, new LineBasicMaterial({				color: color,				toneMapped: false			}));			this.type = 'PlaneHelper';			this.plane = plane;			this.size = size;			const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1];			const geometry2 = new BufferGeometry();			geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3));			geometry2.computeBoundingSphere();			this.add(new Mesh(geometry2, new MeshBasicMaterial({				color: color,				opacity: 0.2,				transparent: true,				depthWrite: false,				toneMapped: false			})));		}		updateMatrixWorld(force) {			let scale = -this.plane.constant;			if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter			this.scale.set(0.5 * this.size, 0.5 * this.size, scale);			this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here			this.lookAt(this.plane.normal);			super.updateMatrixWorld(force);		}	}	const _axis = /*@__PURE__*/new Vector3();	let _lineGeometry, _coneGeometry;	class ArrowHelper extends Object3D {		// dir is assumed to be normalized		constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) {			super();			this.type = 'ArrowHelper';			if (_lineGeometry === undefined) {				_lineGeometry = new BufferGeometry();				_lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3));				_coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1);				_coneGeometry.translate(0, -0.5, 0);			}			this.position.copy(origin);			this.line = new Line(_lineGeometry, new LineBasicMaterial({				color: color,				toneMapped: false			}));			this.line.matrixAutoUpdate = false;			this.add(this.line);			this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({				color: color,				toneMapped: false			}));			this.cone.matrixAutoUpdate = false;			this.add(this.cone);			this.setDirection(dir);			this.setLength(length, headLength, headWidth);		}		setDirection(dir) {			// dir is assumed to be normalized			if (dir.y > 0.99999) {				this.quaternion.set(0, 0, 0, 1);			} else if (dir.y < -0.99999) {				this.quaternion.set(1, 0, 0, 0);			} else {				_axis.set(dir.z, 0, -dir.x).normalize();				const radians = Math.acos(dir.y);				this.quaternion.setFromAxisAngle(_axis, radians);			}		}		setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) {			this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458			this.line.updateMatrix();			this.cone.scale.set(headWidth, headLength, headWidth);			this.cone.position.y = length;			this.cone.updateMatrix();		}		setColor(color) {			this.line.material.color.set(color);			this.cone.material.color.set(color);		}		copy(source) {			super.copy(source, false);			this.line.copy(source.line);			this.cone.copy(source.cone);			return this;		}	}	class AxesHelper extends LineSegments {		constructor(size = 1) {			const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size];			const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1];			const geometry = new BufferGeometry();			geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));			geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));			const material = new LineBasicMaterial({				vertexColors: true,				toneMapped: false			});			super(geometry, material);			this.type = 'AxesHelper';		}		setColors(xAxisColor, yAxisColor, zAxisColor) {			const color = new Color();			const array = this.geometry.attributes.color.array;			color.set(xAxisColor);			color.toArray(array, 0);			color.toArray(array, 3);			color.set(yAxisColor);			color.toArray(array, 6);			color.toArray(array, 9);			color.set(zAxisColor);			color.toArray(array, 12);			color.toArray(array, 15);			this.geometry.attributes.color.needsUpdate = true;			return this;		}		dispose() {			this.geometry.dispose();			this.material.dispose();		}	}	class ShapePath {		constructor() {			this.type = 'ShapePath';			this.color = new Color();			this.subPaths = [];			this.currentPath = null;		}		moveTo(x, y) {			this.currentPath = new Path();			this.subPaths.push(this.currentPath);			this.currentPath.moveTo(x, y);			return this;		}		lineTo(x, y) {			this.currentPath.lineTo(x, y);			return this;		}		quadraticCurveTo(aCPx, aCPy, aX, aY) {			this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY);			return this;		}		bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {			this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY);			return this;		}		splineThru(pts) {			this.currentPath.splineThru(pts);			return this;		}		toShapes(isCCW, noHoles) {			function toShapesNoHoles(inSubpaths) {				const shapes = [];				for (let i = 0, l = inSubpaths.length; i < l; i++) {					const tmpPath = inSubpaths[i];					const tmpShape = new Shape();					tmpShape.curves = tmpPath.curves;					shapes.push(tmpShape);				}				return shapes;			}			function isPointInsidePolygon(inPt, inPolygon) {				const polyLen = inPolygon.length; // inPt on polygon contour => immediate success		or				// toggling of inside/outside at every single! intersection point of an edge				//	with the horizontal line through inPt, left of inPt				//	not counting lowerY endpoints of edges and whole edges on that line				let inside = false;				for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) {					let edgeLowPt = inPolygon[p];					let edgeHighPt = inPolygon[q];					let edgeDx = edgeHighPt.x - edgeLowPt.x;					let edgeDy = edgeHighPt.y - edgeLowPt.y;					if (Math.abs(edgeDy) > Number.EPSILON) {						// not parallel						if (edgeDy < 0) {							edgeLowPt = inPolygon[q];							edgeDx = -edgeDx;							edgeHighPt = inPolygon[p];							edgeDy = -edgeDy;						}						if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue;						if (inPt.y === edgeLowPt.y) {							if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ?							// continue;				// no intersection or edgeLowPt => doesn't count !!!						} else {							const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y);							if (perpEdge === 0) return true; // inPt is on contour ?							if (perpEdge < 0) continue;							inside = !inside; // true intersection left of inPt						}					} else {						// parallel or collinear						if (inPt.y !== edgeLowPt.y) continue; // parallel						// edge lies on the same horizontal line as inPt						if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour !						// continue;					}				}				return inside;			}			const isClockWise = ShapeUtils.isClockWise;			const subPaths = this.subPaths;			if (subPaths.length === 0) return [];			if (noHoles === true) return toShapesNoHoles(subPaths);			let solid, tmpPath, tmpShape;			const shapes = [];			if (subPaths.length === 1) {				tmpPath = subPaths[0];				tmpShape = new Shape();				tmpShape.curves = tmpPath.curves;				shapes.push(tmpShape);				return shapes;			}			let holesFirst = !isClockWise(subPaths[0].getPoints());			holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst);			const betterShapeHoles = [];			const newShapes = [];			let newShapeHoles = [];			let mainIdx = 0;			let tmpPoints;			newShapes[mainIdx] = undefined;			newShapeHoles[mainIdx] = [];			for (let i = 0, l = subPaths.length; i < l; i++) {				tmpPath = subPaths[i];				tmpPoints = tmpPath.getPoints();				solid = isClockWise(tmpPoints);				solid = isCCW ? !solid : solid;				if (solid) {					if (!holesFirst && newShapes[mainIdx]) mainIdx++;					newShapes[mainIdx] = {						s: new Shape(),						p: tmpPoints					};					newShapes[mainIdx].s.curves = tmpPath.curves;					if (holesFirst) mainIdx++;					newShapeHoles[mainIdx] = []; //console.log('cw', i);				} else {					newShapeHoles[mainIdx].push({						h: tmpPath,						p: tmpPoints[0]					}); //console.log('ccw', i);				}			} // only Holes? -> probably all Shapes with wrong orientation			if (!newShapes[0]) return toShapesNoHoles(subPaths);			if (newShapes.length > 1) {				let ambiguous = false;				const toChange = [];				for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {					betterShapeHoles[sIdx] = [];				}				for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {					const sho = newShapeHoles[sIdx];					for (let hIdx = 0; hIdx < sho.length; hIdx++) {						const ho = sho[hIdx];						let hole_unassigned = true;						for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) {							if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) {								if (sIdx !== s2Idx) toChange.push({									froms: sIdx,									tos: s2Idx,									hole: hIdx								});								if (hole_unassigned) {									hole_unassigned = false;									betterShapeHoles[s2Idx].push(ho);								} else {									ambiguous = true;								}							}						}						if (hole_unassigned) {							betterShapeHoles[sIdx].push(ho);						}					}				} // console.log("ambiguous: ", ambiguous);				if (toChange.length > 0) {					// console.log("to change: ", toChange);					if (!ambiguous) newShapeHoles = betterShapeHoles;				}			}			let tmpHoles;			for (let i = 0, il = newShapes.length; i < il; i++) {				tmpShape = newShapes[i].s;				shapes.push(tmpShape);				tmpHoles = newShapeHoles[i];				for (let j = 0, jl = tmpHoles.length; j < jl; j++) {					tmpShape.holes.push(tmpHoles[j].h);				}			} //console.log("shape", shapes);			return shapes;		}	}	const _floatView = new Float32Array(1);	const _int32View = new Int32Array(_floatView.buffer);	class DataUtils {		// Converts float32 to float16 (stored as uint16 value).		static toHalfFloat(val) {			if (val > 65504) {				console.warn('THREE.DataUtils.toHalfFloat(): value exceeds 65504.');				val = 65504; // maximum representable value in float16			} // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410			/* This method is faster than the OpenEXR implementation (very often			* used, eg. in Ogre), with the additional benefit of rounding, inspired			* by James Tursa?s half-precision code. */			_floatView[0] = val;			const x = _int32View[0];			let bits = x >> 16 & 0x8000;			/* Get the sign */			let m = x >> 12 & 0x07ff;			/* Keep one extra bit for rounding */			const e = x >> 23 & 0xff;			/* Using int is faster here */			/* If zero, or denormal, or exponent underflows too much for a denormal				* half, return signed zero. */			if (e < 103) return bits;			/* If NaN, return NaN. If Inf or exponent overflow, return Inf. */			if (e > 142) {				bits |= 0x7c00;				/* If exponent was 0xff and one mantissa bit was set, it means NaN,							* not Inf, so make sure we set one mantissa bit too. */				bits |= (e == 255 ? 0 : 1) && x & 0x007fffff;				return bits;			}			/* If exponent underflows but not too much, return a denormal */			if (e < 113) {				m |= 0x0800;				/* Extra rounding may overflow and set mantissa to 0 and exponent					* to 1, which is OK. */				bits |= (m >> 114 - e) + (m >> 113 - e & 1);				return bits;			}			bits |= e - 112 << 10 | m >> 1;			/* Extra rounding. An overflow will set mantissa to 0 and increment				* the exponent, which is OK. */			bits += m & 1;			return bits;		}	}	const LineStrip = 0;	const LinePieces = 1;	const NoColors = 0;	const FaceColors = 1;	const VertexColors = 2;	function MeshFaceMaterial(materials) {		console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.');		return materials;	}	function MultiMaterial(materials = []) {		console.warn('THREE.MultiMaterial has been removed. Use an Array instead.');		materials.isMultiMaterial = true;		materials.materials = materials;		materials.clone = function () {			return materials.slice();		};		return materials;	}	function PointCloud(geometry, material) {		console.warn('THREE.PointCloud has been renamed to THREE.Points.');		return new Points(geometry, material);	}	function Particle(material) {		console.warn('THREE.Particle has been renamed to THREE.Sprite.');		return new Sprite(material);	}	function ParticleSystem(geometry, material) {		console.warn('THREE.ParticleSystem has been renamed to THREE.Points.');		return new Points(geometry, material);	}	function PointCloudMaterial(parameters) {		console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.');		return new PointsMaterial(parameters);	}	function ParticleBasicMaterial(parameters) {		console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.');		return new PointsMaterial(parameters);	}	function ParticleSystemMaterial(parameters) {		console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.');		return new PointsMaterial(parameters);	}	function Vertex(x, y, z) {		console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.');		return new Vector3(x, y, z);	} //	function DynamicBufferAttribute(array, itemSize) {		console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.');		return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage);	}	function Int8Attribute(array, itemSize) {		console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.');		return new Int8BufferAttribute(array, itemSize);	}	function Uint8Attribute(array, itemSize) {		console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.');		return new Uint8BufferAttribute(array, itemSize);	}	function Uint8ClampedAttribute(array, itemSize) {		console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.');		return new Uint8ClampedBufferAttribute(array, itemSize);	}	function Int16Attribute(array, itemSize) {		console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.');		return new Int16BufferAttribute(array, itemSize);	}	function Uint16Attribute(array, itemSize) {		console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.');		return new Uint16BufferAttribute(array, itemSize);	}	function Int32Attribute(array, itemSize) {		console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.');		return new Int32BufferAttribute(array, itemSize);	}	function Uint32Attribute(array, itemSize) {		console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.');		return new Uint32BufferAttribute(array, itemSize);	}	function Float32Attribute(array, itemSize) {		console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.');		return new Float32BufferAttribute(array, itemSize);	}	function Float64Attribute(array, itemSize) {		console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.');		return new Float64BufferAttribute(array, itemSize);	} //	Curve.create = function (construct, getPoint) {		console.log('THREE.Curve.create() has been deprecated');		construct.prototype = Object.create(Curve.prototype);		construct.prototype.constructor = construct;		construct.prototype.getPoint = getPoint;		return construct;	}; //	Path.prototype.fromPoints = function (points) {		console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().');		return this.setFromPoints(points);	}; //	function AxisHelper(size) {		console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.');		return new AxesHelper(size);	}	function BoundingBoxHelper(object, color) {		console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.');		return new BoxHelper(object, color);	}	function EdgesHelper(object, hex) {		console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.');		return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({			color: hex !== undefined ? hex : 0xffffff		}));	}	GridHelper.prototype.setColors = function () {		console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.');	};	SkeletonHelper.prototype.update = function () {		console.error('THREE.SkeletonHelper: update() no longer needs to be called.');	};	function WireframeHelper(object, hex) {		console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.');		return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({			color: hex !== undefined ? hex : 0xffffff		}));	} //	Loader.prototype.extractUrlBase = function (url) {		console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.');		return LoaderUtils.extractUrlBase(url);	};	Loader.Handlers = {		add: function () {			console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.');		},		get: function () {			console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.');		}	};	function XHRLoader(manager) {		console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.');		return new FileLoader(manager);	}	function BinaryTextureLoader(manager) {		console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.');		return new DataTextureLoader(manager);	} //	Box2.prototype.center = function (optionalTarget) {		console.warn('THREE.Box2: .center() has been renamed to .getCenter().');		return this.getCenter(optionalTarget);	};	Box2.prototype.empty = function () {		console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().');		return this.isEmpty();	};	Box2.prototype.isIntersectionBox = function (box) {		console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().');		return this.intersectsBox(box);	};	Box2.prototype.size = function (optionalTarget) {		console.warn('THREE.Box2: .size() has been renamed to .getSize().');		return this.getSize(optionalTarget);	}; //	Box3.prototype.center = function (optionalTarget) {		console.warn('THREE.Box3: .center() has been renamed to .getCenter().');		return this.getCenter(optionalTarget);	};	Box3.prototype.empty = function () {		console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().');		return this.isEmpty();	};	Box3.prototype.isIntersectionBox = function (box) {		console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().');		return this.intersectsBox(box);	};	Box3.prototype.isIntersectionSphere = function (sphere) {		console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().');		return this.intersectsSphere(sphere);	};	Box3.prototype.size = function (optionalTarget) {		console.warn('THREE.Box3: .size() has been renamed to .getSize().');		return this.getSize(optionalTarget);	}; //	Sphere.prototype.empty = function () {		console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().');		return this.isEmpty();	}; //	Frustum.prototype.setFromMatrix = function (m) {		console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().');		return this.setFromProjectionMatrix(m);	}; //	Line3.prototype.center = function (optionalTarget) {		console.warn('THREE.Line3: .center() has been renamed to .getCenter().');		return this.getCenter(optionalTarget);	}; //	Matrix3.prototype.flattenToArrayOffset = function (array, offset) {		console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');		return this.toArray(array, offset);	};	Matrix3.prototype.multiplyVector3 = function (vector) {		console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.');		return vector.applyMatrix3(this);	};	Matrix3.prototype.multiplyVector3Array = function () {		console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.');	};	Matrix3.prototype.applyToBufferAttribute = function (attribute) {		console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.');		return attribute.applyMatrix3(this);	};	Matrix3.prototype.applyToVector3Array = function () {		console.error('THREE.Matrix3: .applyToVector3Array() has been removed.');	};	Matrix3.prototype.getInverse = function (matrix) {		console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');		return this.copy(matrix).invert();	}; //	Matrix4.prototype.extractPosition = function (m) {		console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().');		return this.copyPosition(m);	};	Matrix4.prototype.flattenToArrayOffset = function (array, offset) {		console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');		return this.toArray(array, offset);	};	Matrix4.prototype.getPosition = function () {		console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.');		return new Vector3().setFromMatrixColumn(this, 3);	};	Matrix4.prototype.setRotationFromQuaternion = function (q) {		console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().');		return this.makeRotationFromQuaternion(q);	};	Matrix4.prototype.multiplyToArray = function () {		console.warn('THREE.Matrix4: .multiplyToArray() has been removed.');	};	Matrix4.prototype.multiplyVector3 = function (vector) {		console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.');		return vector.applyMatrix4(this);	};	Matrix4.prototype.multiplyVector4 = function (vector) {		console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.');		return vector.applyMatrix4(this);	};	Matrix4.prototype.multiplyVector3Array = function () {		console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.');	};	Matrix4.prototype.rotateAxis = function (v) {		console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.');		v.transformDirection(this);	};	Matrix4.prototype.crossVector = function (vector) {		console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.');		return vector.applyMatrix4(this);	};	Matrix4.prototype.translate = function () {		console.error('THREE.Matrix4: .translate() has been removed.');	};	Matrix4.prototype.rotateX = function () {		console.error('THREE.Matrix4: .rotateX() has been removed.');	};	Matrix4.prototype.rotateY = function () {		console.error('THREE.Matrix4: .rotateY() has been removed.');	};	Matrix4.prototype.rotateZ = function () {		console.error('THREE.Matrix4: .rotateZ() has been removed.');	};	Matrix4.prototype.rotateByAxis = function () {		console.error('THREE.Matrix4: .rotateByAxis() has been removed.');	};	Matrix4.prototype.applyToBufferAttribute = function (attribute) {		console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.');		return attribute.applyMatrix4(this);	};	Matrix4.prototype.applyToVector3Array = function () {		console.error('THREE.Matrix4: .applyToVector3Array() has been removed.');	};	Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) {		console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.');		return this.makePerspective(left, right, top, bottom, near, far);	};	Matrix4.prototype.getInverse = function (matrix) {		console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');		return this.copy(matrix).invert();	}; //	Plane.prototype.isIntersectionLine = function (line) {		console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().');		return this.intersectsLine(line);	}; //	Quaternion.prototype.multiplyVector3 = function (vector) {		console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.');		return vector.applyQuaternion(this);	};	Quaternion.prototype.inverse = function () {		console.warn('THREE.Quaternion: .inverse() has been renamed to invert().');		return this.invert();	}; //	Ray.prototype.isIntersectionBox = function (box) {		console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().');		return this.intersectsBox(box);	};	Ray.prototype.isIntersectionPlane = function (plane) {		console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().');		return this.intersectsPlane(plane);	};	Ray.prototype.isIntersectionSphere = function (sphere) {		console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().');		return this.intersectsSphere(sphere);	}; //	Triangle.prototype.area = function () {		console.warn('THREE.Triangle: .area() has been renamed to .getArea().');		return this.getArea();	};	Triangle.prototype.barycoordFromPoint = function (point, target) {		console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');		return this.getBarycoord(point, target);	};	Triangle.prototype.midpoint = function (target) {		console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().');		return this.getMidpoint(target);	};	Triangle.prototypenormal = function (target) {		console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');		return this.getNormal(target);	};	Triangle.prototype.plane = function (target) {		console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().');		return this.getPlane(target);	};	Triangle.barycoordFromPoint = function (point, a, b, c, target) {		console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');		return Triangle.getBarycoord(point, a, b, c, target);	};	Triangle.normal = function (a, b, c, target) {		console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');		return Triangle.getNormal(a, b, c, target);	}; //	Shape.prototype.extractAllPoints = function (divisions) {		console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.');		return this.extractPoints(divisions);	};	Shape.prototype.extrude = function (options) {		console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.');		return new ExtrudeGeometry(this, options);	};	Shape.prototype.makeGeometry = function (options) {		console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.');		return new ShapeGeometry(this, options);	}; //	Vector2.prototype.fromAttribute = function (attribute, index, offset) {		console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().');		return this.fromBufferAttribute(attribute, index, offset);	};	Vector2.prototype.distanceToManhattan = function (v) {		console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');		return this.manhattanDistanceTo(v);	};	Vector2.prototype.lengthManhattan = function () {		console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().');		return this.manhattanLength();	}; //	Vector3.prototype.setEulerFromRotationMatrix = function () {		console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.');	};	Vector3.prototype.setEulerFromQuaternion = function () {		console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.');	};	Vector3.prototype.getPositionFromMatrix = function (m) {		console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().');		return this.setFromMatrixPosition(m);	};	Vector3.prototype.getScaleFromMatrix = function (m) {		console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().');		return this.setFromMatrixScale(m);	};	Vector3.prototype.getColumnFromMatrix = function (index, matrix) {		console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().');		return this.setFromMatrixColumn(matrix, index);	};	Vector3.prototype.applyProjection = function (m) {		console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.');		return this.applyMatrix4(m);	};	Vector3.prototype.fromAttribute = function (attribute, index, offset) {		console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().');		return this.fromBufferAttribute(attribute, index, offset);	};	Vector3.prototype.distanceToManhattan = function (v) {		console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');		return this.manhattanDistanceTo(v);	};	Vector3.prototype.lengthManhattan = function () {		console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().');		return this.manhattanLength();	}; //	Vector4.prototype.fromAttribute = function (attribute, index, offset) {		console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().');		return this.fromBufferAttribute(attribute, index, offset);	};	Vector4.prototype.lengthManhattan = function () {		console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().');		return this.manhattanLength();	}; //	Object3D.prototype.getChildByName = function (name) {		console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().');		return this.getObjectByName(name);	};	Object3D.prototype.renderDepth = function () {		console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.');	};	Object3D.prototype.translate = function (distance, axis) {		console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.');		return this.translateOnAxis(axis, distance);	};	Object3D.prototype.getWorldRotation = function () {		console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.');	};	Object3D.prototype.applyMatrix = function (matrix) {		console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().');		return this.applyMatrix4(matrix);	};	Object.defineProperties(Object3D.prototype, {		eulerOrder: {			get: function () {				console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');				return this.rotation.order;			},			set: function (value) {				console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');				this.rotation.order = value;			}		},		useQuaternion: {			get: function () {				console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');			},			set: function () {				console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');			}		}	});	Mesh.prototype.setDrawMode = function () {		console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');	};	Object.defineProperties(Mesh.prototype, {		drawMode: {			get: function () {				console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.');				return TrianglesDrawMode;			},			set: function () {				console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');			}		}	});	SkinnedMesh.prototype.initBones = function () {		console.error('THREE.SkinnedMesh: initBones() has been removed.');	}; //	PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) {		console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.');		if (filmGauge !== undefined) this.filmGauge = filmGauge;		this.setFocalLength(focalLength);	}; //	Object.defineProperties(Light.prototype, {		onlyShadow: {			set: function () {				console.warn('THREE.Light: .onlyShadow has been removed.');			}		},		shadowCameraFov: {			set: function (value) {				console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.');				this.shadow.camera.fov = value;			}		},		shadowCameraLeft: {			set: function (value) {				console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.');				this.shadow.camera.left = value;			}		},		shadowCameraRight: {			set: function (value) {				console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.');				this.shadow.camera.right = value;			}		},		shadowCameraTop: {			set: function (value) {				console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.');				this.shadow.camera.top = value;			}		},		shadowCameraBottom: {			set: function (value) {				console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.');				this.shadow.camera.bottom = value;			}		},		shadowCameraNear: {			set: function (value) {				console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.');				this.shadow.camera.near = value;			}		},		shadowCameraFar: {			set: function (value) {				console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.');				this.shadow.camera.far = value;			}		},		shadowCameraVisible: {			set: function () {				console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.');			}		},		shadowBias: {			set: function (value) {				console.warn('THREE.Light: .shadowBias is now .shadow.bias.');				this.shadow.bias = value;			}		},		shadowDarkness: {			set: function () {				console.warn('THREE.Light: .shadowDarkness has been removed.');			}		},		shadowMapWidth: {			set: function (value) {				console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.');				this.shadow.mapSize.width = value;			}		},		shadowMapHeight: {			set: function (value) {				console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.');				this.shadow.mapSize.height = value;			}		}	}); //	Object.defineProperties(BufferAttribute.prototype, {		length: {			get: function () {				console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.');				return this.array.length;			}		},		dynamic: {			get: function () {				console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');				return this.usage === DynamicDrawUsage;			},			set: function () {				console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');				this.setUsage(DynamicDrawUsage);			}		}	});	BufferAttribute.prototype.setDynamic = function (value) {		console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.');		this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);		return this;	};	BufferAttribute.prototype.copyIndicesArray = function () {		console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.');	}, BufferAttribute.prototype.setArray = function () {		console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');	}; //	BufferGeometry.prototype.addIndex = function (index) {		console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().');		this.setIndex(index);	};	BufferGeometry.prototype.addAttribute = function (name, attribute) {		console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().');		if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) {			console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).');			return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2]));		}		if (name === 'index') {			console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.');			this.setIndex(attribute);			return this;		}		return this.setAttribute(name, attribute);	};	BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) {		if (indexOffset !== undefined) {			console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.');		}		console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().');		this.addGroup(start, count);	};	BufferGeometry.prototype.clearDrawCalls = function () {		console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().');		this.clearGroups();	};	BufferGeometry.prototype.computeOffsets = function () {		console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.');	};	BufferGeometry.prototype.removeAttribute = function (name) {		console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().');		return this.deleteAttribute(name);	};	BufferGeometry.prototype.applyMatrix = function (matrix) {		console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().');		return this.applyMatrix4(matrix);	};	Object.defineProperties(BufferGeometry.prototype, {		drawcalls: {			get: function () {				console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.');				return this.groups;			}		},		offsets: {			get: function () {				console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.');				return this.groups;			}		}	});	InterleavedBuffer.prototype.setDynamic = function (value) {		console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.');		this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);		return this;	};	InterleavedBuffer.prototype.setArray = function () {		console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');	}; //	ExtrudeGeometry.prototype.getArrays = function () {		console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.');	};	ExtrudeGeometry.prototype.addShapeList = function () {		console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.');	};	ExtrudeGeometry.prototype.addShape = function () {		console.error('THREE.ExtrudeGeometry: .addShape() has been removed.');	}; //	Scene.prototype.dispose = function () {		console.error('THREE.Scene: .dispose() has been removed.');	}; //	Uniform.prototype.onUpdate = function () {		console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.');		return this;	}; //	Object.defineProperties(Material.prototype, {		wrapAround: {			get: function () {				console.warn('THREE.Material: .wrapAround has been removed.');			},			set: function () {				console.warn('THREE.Material: .wrapAround has been removed.');			}		},		overdraw: {			get: function () {				console.warn('THREE.Material: .overdraw has been removed.');			},			set: function () {				console.warn('THREE.Material: .overdraw has been removed.');			}		},		wrapRGB: {			get: function () {				console.warn('THREE.Material: .wrapRGB has been removed.');				return new Color();			}		},		shading: {			get: function () {				console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');			},			set: function (value) {				console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');				this.flatShading = value === FlatShading;			}		},		stencilMask: {			get: function () {				console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');				return this.stencilFuncMask;			},			set: function (value) {				console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');				this.stencilFuncMask = value;			}		},		vertexTangents: {			get: function () {				console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');			},			set: function () {				console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');			}		}	});	Object.defineProperties(ShaderMaterial.prototype, {		derivatives: {			get: function () {				console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');				return this.extensions.derivatives;			},			set: function (value) {				console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');				this.extensions.derivatives = value;			}		}	}); //	WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) {		console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.');		this.setRenderTarget(renderTarget);		this.clear(color, depth, stencil);	};	WebGLRenderer.prototype.animate = function (callback) {		console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().');		this.setAnimationLoop(callback);	};	WebGLRenderer.prototype.getCurrentRenderTarget = function () {		console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().');		return this.getRenderTarget();	};	WebGLRenderer.prototype.getMaxAnisotropy = function () {		console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().');		return this.capabilities.getMaxAnisotropy();	};	WebGLRenderer.prototype.getPrecision = function () {		console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.');		return this.capabilities.precision;	};	WebGLRenderer.prototype.resetGLState = function () {		console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().');		return this.state.reset();	};	WebGLRenderer.prototype.supportsFloatTextures = function () {		console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).');		return this.extensions.get('OES_texture_float');	};	WebGLRenderer.prototype.supportsHalfFloatTextures = function () {		console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).');		return this.extensions.get('OES_texture_half_float');	};	WebGLRenderer.prototype.supportsStandardDerivatives = function () {		console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).');		return this.extensions.get('OES_standard_derivatives');	};	WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () {		console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).');		return this.extensions.get('WEBGL_compressed_texture_s3tc');	};	WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () {		console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).');		return this.extensions.get('WEBGL_compressed_texture_pvrtc');	};	WebGLRenderer.prototype.supportsBlendMinMax = function () {		console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).');		return this.extensions.get('EXT_blend_minmax');	};	WebGLRenderer.prototype.supportsVertexTextures = function () {		console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.');		return this.capabilities.vertexTextures;	};	WebGLRenderer.prototype.supportsInstancedArrays = function () {		console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).');		return this.extensions.get('ANGLE_instanced_arrays');	};	WebGLRenderer.prototype.enableScissorTest = function (boolean) {		console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().');		this.setScissorTest(boolean);	};	WebGLRenderer.prototype.initMaterial = function () {		console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.');	};	WebGLRenderer.prototype.addPrePlugin = function () {		console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.');	};	WebGLRenderer.prototype.addPostPlugin = function () {		console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.');	};	WebGLRenderer.prototype.updateShadowMap = function () {		console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.');	};	WebGLRenderer.prototype.setFaceCulling = function () {		console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.');	};	WebGLRenderer.prototype.allocTextureUnit = function () {		console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.');	};	WebGLRenderer.prototype.setTexture = function () {		console.warn('THREE.WebGLRenderer: .setTexture() has been removed.');	};	WebGLRenderer.prototype.setTexture2D = function () {		console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.');	};	WebGLRenderer.prototype.setTextureCube = function () {		console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.');	};	WebGLRenderer.prototype.getActiveMipMapLevel = function () {		console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().');		return this.getActiveMipmapLevel();	};	Object.defineProperties(WebGLRenderer.prototype, {		shadowMapEnabled: {			get: function () {				return this.shadowMap.enabled;			},			set: function (value) {				console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.');				this.shadowMap.enabled = value;			}		},		shadowMapType: {			get: function () {				return this.shadowMap.type;			},			set: function (value) {				console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.');				this.shadowMap.type = value;			}		},		shadowMapCullFace: {			get: function () {				console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');				return undefined;			},			set: function () {				console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');			}		},		context: {			get: function () {				console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.');				return this.getContext();			}		},		vr: {			get: function () {				console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr');				return this.xr;			}		},		gammaInput: {			get: function () {				console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');				return false;			},			set: function () {				console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');			}		},		gammaOutput: {			get: function () {				console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');				return false;			},			set: function (value) {				console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');				this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding;			}		},		toneMappingWhitePoint: {			get: function () {				console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');				return 1.0;			},			set: function () {				console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');			}		}	});	Object.defineProperties(WebGLShadowMap.prototype, {		cullFace: {			get: function () {				console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');				return undefined;			},			set: function () {				console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');			}		},		renderReverseSided: {			get: function () {				console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');				return undefined;			},			set: function () {				console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');			}		},		renderSingleSided: {			get: function () {				console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');				return undefined;			},			set: function () {				console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');			}		}	});	function WebGLRenderTargetCube(width, height, options) {		console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).');		return new WebGLCubeRenderTarget(width, options);	} //	Object.defineProperties(WebGLRenderTarget.prototype, {		wrapS: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');				return this.texture.wrapS;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');				this.texture.wrapS = value;			}		},		wrapT: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');				return this.texture.wrapT;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');				this.texture.wrapT = value;			}		},		magFilter: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');				return this.texture.magFilter;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');				this.texture.magFilter = value;			}		},		minFilter: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');				return this.texture.minFilter;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');				this.texture.minFilter = value;			}		},		anisotropy: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');				return this.texture.anisotropy;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');				this.texture.anisotropy = value;			}		},		offset: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');				return this.texture.offset;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');				this.texture.offset = value;			}		},		repeat: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');				return this.texture.repeat;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');				this.texture.repeat = value;			}		},		format: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');				return this.texture.format;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');				this.texture.format = value;			}		},		type: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');				return this.texture.type;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');				this.texture.type = value;			}		},		generateMipmaps: {			get: function () {				console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');				return this.texture.generateMipmaps;			},			set: function (value) {				console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');				this.texture.generateMipmaps = value;			}		}	}); //	Audio.prototype.load = function (file) {		console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.');		const scope = this;		const audioLoader = new AudioLoader();		audioLoader.load(file, function (buffer) {			scope.setBuffer(buffer);		});		return this;	};	AudioAnalyser.prototype.getData = function () {		console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().');		return this.getFrequencyData();	}; //	CubeCamera.prototype.updateCubeMap = function (renderer, scene) {		console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().');		return this.update(renderer, scene);	};	CubeCamera.prototype.clear = function (renderer, color, depth, stencil) {		console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().');		return this.renderTarget.clear(renderer, color, depth, stencil);	};	ImageUtils.crossOrigin = undefined;	ImageUtils.loadTexture = function (url, mapping, onLoad, onError) {		console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.');		const loader = new TextureLoader();		loader.setCrossOrigin(this.crossOrigin);		const texture = loader.load(url, onLoad, undefined, onError);		if (mapping) texture.mapping = mapping;		return texture;	};	ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) {		console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.');		const loader = new CubeTextureLoader();		loader.setCrossOrigin(this.crossOrigin);		const texture = loader.load(urls, onLoad, undefined, onError);		if (mapping) texture.mapping = mapping;		return texture;	};	ImageUtils.loadCompressedTexture = function () {		console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.');	};	ImageUtils.loadCompressedTextureCube = function () {		console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.');	}; //	function CanvasRenderer() {		console.error('THREE.CanvasRenderer has been removed');	} //	function JSONLoader() {		console.error('THREE.JSONLoader has been removed.');	} //	const SceneUtils = {		createMultiMaterialObject: function () {			console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');		},		detach: function () {			console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');		},		attach: function () {			console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');		}	}; //	function LensFlare() {		console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js');	} //	function ParametricGeometry() {		console.error('THREE.ParametricGeometry has been moved to /examples/jsm/geometries/ParametricGeometry.js');		return new BufferGeometry();	}	function TextGeometry() {		console.error('THREE.TextGeometry has been moved to /examples/jsm/geometries/TextGeometry.js');		return new BufferGeometry();	}	function FontLoader() {		console.error('THREE.FontLoader has been moved to /examples/jsm/loaders/FontLoader.js');	}	function Font() {		console.error('THREE.Font has been moved to /examples/jsm/loaders/FontLoader.js');	}	function ImmediateRenderObject() {		console.error('THREE.ImmediateRenderObject has been removed.');	}	if (typeof __THREE_DEVTOOLS__ !== 'undefined') {		/* eslint-disable no-undef */		__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', {			detail: {				revision: REVISION			}		}));		/* eslint-enable no-undef */	}	if (typeof window !== 'undefined') {		if (window.__THREE__) {			console.warn('WARNING: Multiple instances of Three.js being imported.');		} else {			window.__THREE__ = REVISION;		}	}	exports.ACESFilmicToneMapping = ACESFilmicToneMapping;	exports.AddEquation = AddEquation;	exports.AddOperation = AddOperation;	exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode;	exports.AdditiveBlending = AdditiveBlending;	exports.AlphaFormat = AlphaFormat;	exports.AlwaysDepth = AlwaysDepth;	exports.AlwaysStencilFunc = AlwaysStencilFunc;	exports.AmbientLight = AmbientLight;	exports.AmbientLightProbe = AmbientLightProbe;	exports.AnimationClip = AnimationClip;	exports.AnimationLoader = AnimationLoader;	exports.AnimationMixer = AnimationMixer;	exports.AnimationObjectGroup = AnimationObjectGroup;	exports.AnimationUtils = AnimationUtils;	exports.ArcCurve = ArcCurve;	exports.ArrayCamera = ArrayCamera;	exports.ArrowHelper = ArrowHelper;	exports.Audio = Audio;	exports.AudioAnalyser = AudioAnalyser;	exports.AudioContext = AudioContext;	exports.AudioListener = AudioListener;	exports.AudioLoader = AudioLoader;	exports.AxesHelper = AxesHelper;	exports.AxisHelper = AxisHelper;	exports.BackSide = BackSide;	exports.BasicDepthPacking = BasicDepthPacking;	exports.BasicShadowMap = BasicShadowMap;	exports.BinaryTextureLoader = BinaryTextureLoader;	exports.Bone = Bone;	exports.BooleanKeyframeTrack = BooleanKeyframeTrack;	exports.BoundingBoxHelper = BoundingBoxHelper;	exports.Box2 = Box2;	exports.Box3 = Box3;	exports.Box3Helper = Box3Helper;	exports.BoxBufferGeometry = BoxGeometry;	exports.BoxGeometry = BoxGeometry;	exports.BoxHelper = BoxHelper;	exports.BufferAttribute = BufferAttribute;	exports.BufferGeometry = BufferGeometry;	exports.BufferGeometryLoader = BufferGeometryLoader;	exports.ByteType = ByteType;	exports.Cache = Cache;	exports.Camera = Camera;	exports.CameraHelper = CameraHelper;	exports.CanvasRenderer = CanvasRenderer;	exports.CanvasTexture = CanvasTexture;	exports.CatmullRomCurve3 = CatmullRomCurve3;	exports.CineonToneMapping = CineonToneMapping;	exports.CircleBufferGeometry = CircleGeometry;	exports.CircleGeometry = CircleGeometry;	exports.ClampToEdgeWrapping = ClampToEdgeWrapping;	exports.Clock = Clock;	exports.Color = Color;	exports.ColorKeyframeTrack = ColorKeyframeTrack;	exports.CompressedTexture = CompressedTexture;	exports.CompressedTextureLoader = CompressedTextureLoader;	exports.ConeBufferGeometry = ConeGeometry;	exports.ConeGeometry = ConeGeometry;	exports.CubeCamera = CubeCamera;	exports.CubeReflectionMapping = CubeReflectionMapping;	exports.CubeRefractionMapping = CubeRefractionMapping;	exports.CubeTexture = CubeTexture;	exports.CubeTextureLoader = CubeTextureLoader;	exports.CubeUVReflectionMapping = CubeUVReflectionMapping;	exports.CubeUVRefractionMapping = CubeUVRefractionMapping;	exports.CubicBezierCurve = CubicBezierCurve;	exports.CubicBezierCurve3 = CubicBezierCurve3;	exports.CubicInterpolant = CubicInterpolant;	exports.CullFaceBack = CullFaceBack;	exports.CullFaceFront = CullFaceFront;	exports.CullFaceFrontBack = CullFaceFrontBack;	exports.CullFaceNone = CullFaceNone;	exports.Curve = Curve;	exports.CurvePath = CurvePath;	exports.CustomBlending = CustomBlending;	exports.CustomToneMapping = CustomToneMapping;	exports.CylinderBufferGeometry = CylinderGeometry;	exports.CylinderGeometry = CylinderGeometry;	exports.Cylindrical = Cylindrical;	exports.DataTexture = DataTexture;	exports.DataTexture2DArray = DataTexture2DArray;	exports.DataTexture3D = DataTexture3D;	exports.DataTextureLoader = DataTextureLoader;	exports.DataUtils = DataUtils;	exports.DecrementStencilOp = DecrementStencilOp;	exports.DecrementWrapStencilOp = DecrementWrapStencilOp;	exports.DefaultLoadingManager = DefaultLoadingManager;	exports.DepthFormat = DepthFormat;	exports.DepthStencilFormat = DepthStencilFormat;	exports.DepthTexture = DepthTexture;	exports.DirectionalLight = DirectionalLight;	exports.DirectionalLightHelper = DirectionalLightHelper;	exports.DiscreteInterpolant = DiscreteInterpolant;	exports.DodecahedronBufferGeometry = DodecahedronGeometry;	exports.DodecahedronGeometry = DodecahedronGeometry;	exports.DoubleSide = DoubleSide;	exports.DstAlphaFactor = DstAlphaFactor;	exports.DstColorFactor = DstColorFactor;	exports.DynamicBufferAttribute = DynamicBufferAttribute;	exports.DynamicCopyUsage = DynamicCopyUsage;	exports.DynamicDrawUsage = DynamicDrawUsage;	exports.DynamicReadUsage = DynamicReadUsage;	exports.EdgesGeometry = EdgesGeometry;	exports.EdgesHelper = EdgesHelper;	exports.EllipseCurve = EllipseCurve;	exports.EqualDepth = EqualDepth;	exports.EqualStencilFunc = EqualStencilFunc;	exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;	exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;	exports.Euler = Euler;	exports.EventDispatcher = EventDispatcher;	exports.ExtrudeBufferGeometry = ExtrudeGeometry;	exports.ExtrudeGeometry = ExtrudeGeometry;	exports.FaceColors = FaceColors;	exports.FileLoader = FileLoader;	exports.FlatShading = FlatShading;	exports.Float16BufferAttribute = Float16BufferAttribute;	exports.Float32Attribute = Float32Attribute;	exports.Float32BufferAttribute = Float32BufferAttribute;	exports.Float64Attribute = Float64Attribute;	exports.Float64BufferAttribute = Float64BufferAttribute;	exports.FloatType = FloatType;	exports.Fog = Fog;	exports.FogExp2 = FogExp2;	exports.Font = Font;	exports.FontLoader = FontLoader;	exports.FrontSide = FrontSide;	exports.Frustum = Frustum;	exports.GLBufferAttribute = GLBufferAttribute;	exports.GLSL1 = GLSL1;	exports.GLSL3 = GLSL3;	exports.GammaEncoding = GammaEncoding;	exports.GreaterDepth = GreaterDepth;	exports.GreaterEqualDepth = GreaterEqualDepth;	exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc;	exports.GreaterStencilFunc = GreaterStencilFunc;	exports.GridHelper = GridHelper;	exports.Group = Group;	exports.HalfFloatType = HalfFloatType;	exports.HemisphereLight = HemisphereLight;	exports.HemisphereLightHelper = HemisphereLightHelper;	exports.HemisphereLightProbe = HemisphereLightProbe;	exports.IcosahedronBufferGeometry = IcosahedronGeometry;	exports.IcosahedronGeometry = IcosahedronGeometry;	exports.ImageBitmapLoader = ImageBitmapLoader;	exports.ImageLoader = ImageLoader;	exports.ImageUtils = ImageUtils;	exports.ImmediateRenderObject = ImmediateRenderObject;	exports.IncrementStencilOp = IncrementStencilOp;	exports.IncrementWrapStencilOp = IncrementWrapStencilOp;	exports.InstancedBufferAttribute = InstancedBufferAttribute;	exports.InstancedBufferGeometry = InstancedBufferGeometry;	exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;	exports.InstancedMesh = InstancedMesh;	exports.Int16Attribute = Int16Attribute;	exports.Int16BufferAttribute = Int16BufferAttribute;	exports.Int32Attribute = Int32Attribute;	exports.Int32BufferAttribute = Int32BufferAttribute;	exports.Int8Attribute = Int8Attribute;	exports.Int8BufferAttribute = Int8BufferAttribute;	exports.IntType = IntType;	exports.InterleavedBuffer = InterleavedBuffer;	exports.InterleavedBufferAttribute = InterleavedBufferAttribute;	exports.Interpolant = Interpolant;	exports.InterpolateDiscrete = InterpolateDiscrete;	exports.InterpolateLinear = InterpolateLinear;	exports.InterpolateSmooth = InterpolateSmooth;	exports.InvertStencilOp = InvertStencilOp;	exports.JSONLoader = JSONLoader;	exports.KeepStencilOp = KeepStencilOp;	exports.KeyframeTrack = KeyframeTrack;	exports.LOD = LOD;	exports.LatheBufferGeometry = LatheGeometry;	exports.LatheGeometry = LatheGeometry;	exports.Layers = Layers;	exports.LensFlare = LensFlare;	exports.LessDepth = LessDepth;	exports.LessEqualDepth = LessEqualDepth;	exports.LessEqualStencilFunc = LessEqualStencilFunc;	exports.LessStencilFunc = LessStencilFunc;	exports.Light = Light;	exports.LightProbe = LightProbe;	exports.Line = Line;	exports.Line3 = Line3;	exports.LineBasicMaterial = LineBasicMaterial;	exports.LineCurve = LineCurve;	exports.LineCurve3 = LineCurve3;	exports.LineDashedMaterial = LineDashedMaterial;	exports.LineLoop = LineLoop;	exports.LinePieces = LinePieces;	exports.LineSegments = LineSegments;	exports.LineStrip = LineStrip;	exports.LinearEncoding = LinearEncoding;	exports.LinearFilter = LinearFilter;	exports.LinearInterpolant = LinearInterpolant;	exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;	exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;	exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter;	exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter;	exports.LinearToneMapping = LinearToneMapping;	exports.Loader = Loader;	exports.LoaderUtils = LoaderUtils;	exports.LoadingManager = LoadingManager;	exports.LoopOnce = LoopOnce;	exports.LoopPingPong = LoopPingPong;	exports.LoopRepeat = LoopRepeat;	exports.LuminanceAlphaFormat = LuminanceAlphaFormat;	exports.LuminanceFormat = LuminanceFormat;	exports.MOUSE = MOUSE;	exports.Material = Material;	exports.MaterialLoader = MaterialLoader;	exports.Math = MathUtils;	exports.MathUtils = MathUtils;	exports.Matrix3 = Matrix3;	exports.Matrix4 = Matrix4;	exports.MaxEquation = MaxEquation;	exports.Mesh = Mesh;	exports.MeshBasicMaterial = MeshBasicMaterial;	exports.MeshDepthMaterial = MeshDepthMaterial;	exports.MeshDistanceMaterial = MeshDistanceMaterial;	exports.MeshFaceMaterial = MeshFaceMaterial;	exports.MeshLambertMaterial = MeshLambertMaterial;	exports.MeshMatcapMaterial = MeshMatcapMaterial;	exports.MeshNormalMaterial = MeshNormalMaterial;	exports.MeshPhongMaterial = MeshPhongMaterial;	exports.MeshPhysicalMaterial = MeshPhysicalMaterial;	exports.MeshStandardMaterial = MeshStandardMaterial;	exports.MeshToonMaterial = MeshToonMaterial;	exports.MinEquation = MinEquation;	exports.MirroredRepeatWrapping = MirroredRepeatWrapping;	exports.MixOperation = MixOperation;	exports.MultiMaterial = MultiMaterial;	exports.MultiplyBlending = MultiplyBlending;	exports.MultiplyOperation = MultiplyOperation;	exports.NearestFilter = NearestFilter;	exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;	exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;	exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter;	exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter;	exports.NeverDepth = NeverDepth;	exports.NeverStencilFunc = NeverStencilFunc;	exports.NoBlending = NoBlending;	exports.NoColors = NoColors;	exports.NoToneMapping = NoToneMapping;	exports.NormalAnimationBlendMode = NormalAnimationBlendMode;	exports.NormalBlending = NormalBlending;	exports.NotEqualDepth = NotEqualDepth;	exports.NotEqualStencilFunc = NotEqualStencilFunc;	exports.NumberKeyframeTrack = NumberKeyframeTrack;	exports.Object3D = Object3D;	exports.ObjectLoader = ObjectLoader;	exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap;	exports.OctahedronBufferGeometry = OctahedronGeometry;	exports.OctahedronGeometry = OctahedronGeometry;	exports.OneFactor = OneFactor;	exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;	exports.OneMinusDstColorFactor = OneMinusDstColorFactor;	exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;	exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;	exports.OrthographicCamera = OrthographicCamera;	exports.PCFShadowMap = PCFShadowMap;	exports.PCFSoftShadowMap = PCFSoftShadowMap;	exports.PMREMGenerator = PMREMGenerator;	exports.ParametricGeometry = ParametricGeometry;	exports.Particle = Particle;	exports.ParticleBasicMaterial = ParticleBasicMaterial;	exports.ParticleSystem = ParticleSystem;	exports.ParticleSystemMaterial = ParticleSystemMaterial;	exports.Path = Path;	exports.PerspectiveCamera = PerspectiveCamera;	exports.Plane = Plane;	exports.PlaneBufferGeometry = PlaneGeometry;	exports.PlaneGeometry = PlaneGeometry;	exports.PlaneHelper = PlaneHelper;	exports.PointCloud = PointCloud;	exports.PointCloudMaterial = PointCloudMaterial;	exports.PointLight = PointLight;	exports.PointLightHelper = PointLightHelper;	exports.Points = Points;	exports.PointsMaterial = PointsMaterial;	exports.PolarGridHelper = PolarGridHelper;	exports.PolyhedronBufferGeometry = PolyhedronGeometry;	exports.PolyhedronGeometry = PolyhedronGeometry;	exports.PositionalAudio = PositionalAudio;	exports.PropertyBinding = PropertyBinding;	exports.PropertyMixer = PropertyMixer;	exports.QuadraticBezierCurve = QuadraticBezierCurve;	exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;	exports.Quaternion = Quaternion;	exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;	exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;	exports.REVISION = REVISION;	exports.RGBADepthPacking = RGBADepthPacking;	exports.RGBAFormat = RGBAFormat;	exports.RGBAIntegerFormat = RGBAIntegerFormat;	exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format;	exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format;	exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format;	exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format;	exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format;	exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format;	exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format;	exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format;	exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format;	exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format;	exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format;	exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format;	exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format;	exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format;	exports.RGBA_BPTC_Format = RGBA_BPTC_Format;	exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format;	exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;	exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;	exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;	exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;	exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;	exports.RGBDEncoding = RGBDEncoding;	exports.RGBEEncoding = RGBEEncoding;	exports.RGBEFormat = RGBEFormat;	exports.RGBFormat = RGBFormat;	exports.RGBIntegerFormat = RGBIntegerFormat;	exports.RGBM16Encoding = RGBM16Encoding;	exports.RGBM7Encoding = RGBM7Encoding;	exports.RGB_ETC1_Format = RGB_ETC1_Format;	exports.RGB_ETC2_Format = RGB_ETC2_Format;	exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;	exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;	exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;	exports.RGFormat = RGFormat;	exports.RGIntegerFormat = RGIntegerFormat;	exports.RawShaderMaterial = RawShaderMaterial;	exports.Ray = Ray;	exports.Raycaster = Raycaster;	exports.RectAreaLight = RectAreaLight;	exports.RedFormat = RedFormat;	exports.RedIntegerFormat = RedIntegerFormat;	exports.ReinhardToneMapping = ReinhardToneMapping;	exports.RepeatWrapping = RepeatWrapping;	exports.ReplaceStencilOp = ReplaceStencilOp;	exports.ReverseSubtractEquation = ReverseSubtractEquation;	exports.RingBufferGeometry = RingGeometry;	exports.RingGeometry = RingGeometry;	exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format;	exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format;	exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format;	exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format;	exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format;	exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format;	exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format;	exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format;	exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format;	exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format;	exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format;	exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format;	exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format;	exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format;	exports.Scene = Scene;	exports.SceneUtils = SceneUtils;	exports.ShaderChunk = ShaderChunk;	exports.ShaderLib = ShaderLib;	exports.ShaderMaterial = ShaderMaterial;	exports.ShadowMaterial = ShadowMaterial;	exports.Shape = Shape;	exports.ShapeBufferGeometry = ShapeGeometry;	exports.ShapeGeometry = ShapeGeometry;	exports.ShapePath = ShapePath;	exports.ShapeUtils = ShapeUtils;	exports.ShortType = ShortType;	exports.Skeleton = Skeleton;	exports.SkeletonHelper = SkeletonHelper;	exports.SkinnedMesh = SkinnedMesh;	exports.SmoothShading = SmoothShading;	exports.Sphere = Sphere;	exports.SphereBufferGeometry = SphereGeometry;	exports.SphereGeometry = SphereGeometry;	exports.Spherical = Spherical;	exports.SphericalHarmonics3 = SphericalHarmonics3;	exports.SplineCurve = SplineCurve;	exports.SpotLight = SpotLight;	exports.SpotLightHelper = SpotLightHelper;	exports.Sprite = Sprite;	exports.SpriteMaterial = SpriteMaterial;	exports.SrcAlphaFactor = SrcAlphaFactor;	exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;	exports.SrcColorFactor = SrcColorFactor;	exports.StaticCopyUsage = StaticCopyUsage;	exports.StaticDrawUsage = StaticDrawUsage;	exports.StaticReadUsage = StaticReadUsage;	exports.StereoCamera = StereoCamera;	exports.StreamCopyUsage = StreamCopyUsage;	exports.StreamDrawUsage = StreamDrawUsage;	exports.StreamReadUsage = StreamReadUsage;	exports.StringKeyframeTrack = StringKeyframeTrack;	exports.SubtractEquation = SubtractEquation;	exports.SubtractiveBlending = SubtractiveBlending;	exports.TOUCH = TOUCH;	exports.TangentSpaceNormalMap = TangentSpaceNormalMap;	exports.TetrahedronBufferGeometry = TetrahedronGeometry;	exports.TetrahedronGeometry = TetrahedronGeometry;	exports.TextGeometry = TextGeometry;	exports.Texture = Texture;	exports.TextureLoader = TextureLoader;	exports.TorusBufferGeometry = TorusGeometry;	exports.TorusGeometry = TorusGeometry;	exports.TorusKnotBufferGeometry = TorusKnotGeometry;	exports.TorusKnotGeometry = TorusKnotGeometry;	exports.Triangle = Triangle;	exports.TriangleFanDrawMode = TriangleFanDrawMode;	exports.TriangleStripDrawMode = TriangleStripDrawMode;	exports.TrianglesDrawMode = TrianglesDrawMode;	exports.TubeBufferGeometry = TubeGeometry;	exports.TubeGeometry = TubeGeometry;	exports.UVMapping = UVMapping;	exports.Uint16Attribute = Uint16Attribute;	exports.Uint16BufferAttribute = Uint16BufferAttribute;	exports.Uint32Attribute = Uint32Attribute;	exports.Uint32BufferAttribute = Uint32BufferAttribute;	exports.Uint8Attribute = Uint8Attribute;	exports.Uint8BufferAttribute = Uint8BufferAttribute;	exports.Uint8ClampedAttribute = Uint8ClampedAttribute;	exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;	exports.Uniform = Uniform;	exports.UniformsLib = UniformsLib;	exports.UniformsUtils = UniformsUtils;	exports.UnsignedByteType = UnsignedByteType;	exports.UnsignedInt248Type = UnsignedInt248Type;	exports.UnsignedIntType = UnsignedIntType;	exports.UnsignedShort4444Type = UnsignedShort4444Type;	exports.UnsignedShort5551Type = UnsignedShort5551Type;	exports.UnsignedShort565Type = UnsignedShort565Type;	exports.UnsignedShortType = UnsignedShortType;	exports.VSMShadowMap = VSMShadowMap;	exports.Vector2 = Vector2;	exports.Vector3 = Vector3;	exports.Vector4 = Vector4;	exports.VectorKeyframeTrack = VectorKeyframeTrack;	exports.Vertex = Vertex;	exports.VertexColors = VertexColors;	exports.VideoTexture = VideoTexture;	exports.WebGL1Renderer = WebGL1Renderer;	exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget;	exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets;	exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget;	exports.WebGLRenderTarget = WebGLRenderTarget;	exports.WebGLRenderTargetCube = WebGLRenderTargetCube;	exports.WebGLRenderer = WebGLRenderer;	exports.WebGLUtils = WebGLUtils;	exports.WireframeGeometry = WireframeGeometry;	exports.WireframeHelper = WireframeHelper;	exports.WrapAroundEnding = WrapAroundEnding;	exports.XHRLoader = XHRLoader;	exports.ZeroCurvatureEnding = ZeroCurvatureEnding;	exports.ZeroFactor = ZeroFactor;	exports.ZeroSlopeEnding = ZeroSlopeEnding;	exports.ZeroStencilOp = ZeroStencilOp;	exports.sRGBEncoding = sRGBEncoding;	Object.defineProperty(exports, '__esModule', { value: true });}));
 |