| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934 | import {	Box2,	BufferGeometry,	FileLoader,	Float32BufferAttribute,	Loader,	Matrix3,	Path,	Shape,	ShapePath,	ShapeUtils,	Vector2,	Vector3} from '../../../build/three.module.js';class SVGLoader extends Loader {	constructor( manager ) {		super( manager );		// Default dots per inch		this.defaultDPI = 90;		// Accepted units: 'mm', 'cm', 'in', 'pt', 'pc', 'px'		this.defaultUnit = 'px';	}	load( url, onLoad, onProgress, onError ) {		const scope = this;		const loader = new FileLoader( scope.manager );		loader.setPath( scope.path );		loader.setRequestHeader( scope.requestHeader );		loader.setWithCredentials( scope.withCredentials );		loader.load( url, function ( text ) {			try {				onLoad( scope.parse( text ) );			} catch ( e ) {				if ( onError ) {					onError( e );				} else {					console.error( e );				}				scope.manager.itemError( url );			}		}, onProgress, onError );	}	parse( text ) {		const scope = this;		function parseNode( node, style ) {			if ( node.nodeType !== 1 ) return;			const transform = getNodeTransform( node );			let traverseChildNodes = true;			let path = null;			switch ( node.nodeName ) {				case 'svg':					break;				case 'style':					parseCSSStylesheet( node );					break;				case 'g':					style = parseStyle( node, style );					break;				case 'path':					style = parseStyle( node, style );					if ( node.hasAttribute( 'd' ) ) path = parsePathNode( node );					break;				case 'rect':					style = parseStyle( node, style );					path = parseRectNode( node );					break;				case 'polygon':					style = parseStyle( node, style );					path = parsePolygonNode( node );					break;				case 'polyline':					style = parseStyle( node, style );					path = parsePolylineNode( node );					break;				case 'circle':					style = parseStyle( node, style );					path = parseCircleNode( node );					break;				case 'ellipse':					style = parseStyle( node, style );					path = parseEllipseNode( node );					break;				case 'line':					style = parseStyle( node, style );					path = parseLineNode( node );					break;				case 'defs':					traverseChildNodes = false;					break;				case 'use':					style = parseStyle( node, style );					const usedNodeId = node.href.baseVal.substring( 1 );					const usedNode = node.viewportElement.getElementById( usedNodeId );					if ( usedNode ) {						parseNode( usedNode, style );					} else {						console.warn( 'SVGLoader: \'use node\' references non-existent node id: ' + usedNodeId );					}					break;				default:					// console.log( node );			}			if ( path ) {				if ( style.fill !== undefined && style.fill !== 'none' ) {					path.color.setStyle( style.fill );				}				transformPath( path, currentTransform );				paths.push( path );				path.userData = { node: node, style: style };			}			if ( traverseChildNodes ) {				const nodes = node.childNodes;				for ( let i = 0; i < nodes.length; i ++ ) {					parseNode( nodes[ i ], style );				}			}			if ( transform ) {				transformStack.pop();				if ( transformStack.length > 0 ) {					currentTransform.copy( transformStack[ transformStack.length - 1 ] );				} else {					currentTransform.identity();				}			}		}		function parsePathNode( node ) {			const path = new ShapePath();			const point = new Vector2();			const control = new Vector2();			const firstPoint = new Vector2();			let isFirstPoint = true;			let doSetFirstPoint = false;			const d = node.getAttribute( 'd' );			// console.log( d );			const commands = d.match( /[a-df-z][^a-df-z]*/ig );			for ( let i = 0, l = commands.length; i < l; i ++ ) {				const command = commands[ i ];				const type = command.charAt( 0 );				const data = command.substr( 1 ).trim();				if ( isFirstPoint === true ) {					doSetFirstPoint = true;					isFirstPoint = false;				}				let numbers;				switch ( type ) {					case 'M':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {							point.x = numbers[ j + 0 ];							point.y = numbers[ j + 1 ];							control.x = point.x;							control.y = point.y;							if ( j === 0 ) {								path.moveTo( point.x, point.y );							} else {								path.lineTo( point.x, point.y );							}							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'H':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {							point.x = numbers[ j ];							control.x = point.x;							control.y = point.y;							path.lineTo( point.x, point.y );							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'V':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {							point.y = numbers[ j ];							control.x = point.x;							control.y = point.y;							path.lineTo( point.x, point.y );							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'L':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {							point.x = numbers[ j + 0 ];							point.y = numbers[ j + 1 ];							control.x = point.x;							control.y = point.y;							path.lineTo( point.x, point.y );							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'C':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {							path.bezierCurveTo(								numbers[ j + 0 ],								numbers[ j + 1 ],								numbers[ j + 2 ],								numbers[ j + 3 ],								numbers[ j + 4 ],								numbers[ j + 5 ]							);							control.x = numbers[ j + 2 ];							control.y = numbers[ j + 3 ];							point.x = numbers[ j + 4 ];							point.y = numbers[ j + 5 ];							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'S':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {							path.bezierCurveTo(								getReflection( point.x, control.x ),								getReflection( point.y, control.y ),								numbers[ j + 0 ],								numbers[ j + 1 ],								numbers[ j + 2 ],								numbers[ j + 3 ]							);							control.x = numbers[ j + 0 ];							control.y = numbers[ j + 1 ];							point.x = numbers[ j + 2 ];							point.y = numbers[ j + 3 ];							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'Q':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {							path.quadraticCurveTo(								numbers[ j + 0 ],								numbers[ j + 1 ],								numbers[ j + 2 ],								numbers[ j + 3 ]							);							control.x = numbers[ j + 0 ];							control.y = numbers[ j + 1 ];							point.x = numbers[ j + 2 ];							point.y = numbers[ j + 3 ];							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'T':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {							const rx = getReflection( point.x, control.x );							const ry = getReflection( point.y, control.y );							path.quadraticCurveTo(								rx,								ry,								numbers[ j + 0 ],								numbers[ j + 1 ]							);							control.x = rx;							control.y = ry;							point.x = numbers[ j + 0 ];							point.y = numbers[ j + 1 ];							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'A':						numbers = parseFloats( data, [ 3, 4 ], 7 );						for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {							// skip command if start point == end point							if ( numbers[ j + 5 ] == point.x && numbers[ j + 6 ] == point.y ) continue;							const start = point.clone();							point.x = numbers[ j + 5 ];							point.y = numbers[ j + 6 ];							control.x = point.x;							control.y = point.y;							parseArcCommand(								path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point							);							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'm':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {							point.x += numbers[ j + 0 ];							point.y += numbers[ j + 1 ];							control.x = point.x;							control.y = point.y;							if ( j === 0 ) {								path.moveTo( point.x, point.y );							} else {								path.lineTo( point.x, point.y );							}							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'h':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {							point.x += numbers[ j ];							control.x = point.x;							control.y = point.y;							path.lineTo( point.x, point.y );							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'v':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {							point.y += numbers[ j ];							control.x = point.x;							control.y = point.y;							path.lineTo( point.x, point.y );							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'l':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {							point.x += numbers[ j + 0 ];							point.y += numbers[ j + 1 ];							control.x = point.x;							control.y = point.y;							path.lineTo( point.x, point.y );							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'c':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {							path.bezierCurveTo(								point.x + numbers[ j + 0 ],								point.y + numbers[ j + 1 ],								point.x + numbers[ j + 2 ],								point.y + numbers[ j + 3 ],								point.x + numbers[ j + 4 ],								point.y + numbers[ j + 5 ]							);							control.x = point.x + numbers[ j + 2 ];							control.y = point.y + numbers[ j + 3 ];							point.x += numbers[ j + 4 ];							point.y += numbers[ j + 5 ];							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 's':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {							path.bezierCurveTo(								getReflection( point.x, control.x ),								getReflection( point.y, control.y ),								point.x + numbers[ j + 0 ],								point.y + numbers[ j + 1 ],								point.x + numbers[ j + 2 ],								point.y + numbers[ j + 3 ]							);							control.x = point.x + numbers[ j + 0 ];							control.y = point.y + numbers[ j + 1 ];							point.x += numbers[ j + 2 ];							point.y += numbers[ j + 3 ];							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'q':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {							path.quadraticCurveTo(								point.x + numbers[ j + 0 ],								point.y + numbers[ j + 1 ],								point.x + numbers[ j + 2 ],								point.y + numbers[ j + 3 ]							);							control.x = point.x + numbers[ j + 0 ];							control.y = point.y + numbers[ j + 1 ];							point.x += numbers[ j + 2 ];							point.y += numbers[ j + 3 ];							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 't':						numbers = parseFloats( data );						for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {							const rx = getReflection( point.x, control.x );							const ry = getReflection( point.y, control.y );							path.quadraticCurveTo(								rx,								ry,								point.x + numbers[ j + 0 ],								point.y + numbers[ j + 1 ]							);							control.x = rx;							control.y = ry;							point.x = point.x + numbers[ j + 0 ];							point.y = point.y + numbers[ j + 1 ];							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'a':						numbers = parseFloats( data, [ 3, 4 ], 7 );						for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {							// skip command if no displacement							if ( numbers[ j + 5 ] == 0 && numbers[ j + 6 ] == 0 ) continue;							const start = point.clone();							point.x += numbers[ j + 5 ];							point.y += numbers[ j + 6 ];							control.x = point.x;							control.y = point.y;							parseArcCommand(								path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point							);							if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );						}						break;					case 'Z':					case 'z':						path.currentPath.autoClose = true;						if ( path.currentPath.curves.length > 0 ) {							// Reset point to beginning of Path							point.copy( firstPoint );							path.currentPath.currentPoint.copy( point );							isFirstPoint = true;						}						break;					default:						console.warn( command );				}				// console.log( type, parseFloats( data ), parseFloats( data ).length  )				doSetFirstPoint = false;			}			return path;		}		function parseCSSStylesheet( node ) {			if ( ! node.sheet || ! node.sheet.cssRules || ! node.sheet.cssRules.length ) return;			for ( let i = 0; i < node.sheet.cssRules.length; i ++ ) {				const stylesheet = node.sheet.cssRules[ i ];				if ( stylesheet.type !== 1 ) continue;				const selectorList = stylesheet.selectorText					.split( /,/gm )					.filter( Boolean )					.map( i => i.trim() );				for ( let j = 0; j < selectorList.length; j ++ ) {					stylesheets[ selectorList[ j ] ] = Object.assign(						stylesheets[ selectorList[ j ] ] || {},						stylesheet.style					);				}			}		}		/**		 * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes		 * https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion		 * From		 * rx ry x-axis-rotation large-arc-flag sweep-flag x y		 * To		 * aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation		 */		function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) {			if ( rx == 0 || ry == 0 ) {				// draw a line if either of the radii == 0				path.lineTo( end.x, end.y );				return;			}			x_axis_rotation = x_axis_rotation * Math.PI / 180;			// Ensure radii are positive			rx = Math.abs( rx );			ry = Math.abs( ry );			// Compute (x1', y1')			const dx2 = ( start.x - end.x ) / 2.0;			const dy2 = ( start.y - end.y ) / 2.0;			const x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2;			const y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2;			// Compute (cx', cy')			let rxs = rx * rx;			let rys = ry * ry;			const x1ps = x1p * x1p;			const y1ps = y1p * y1p;			// Ensure radii are large enough			const cr = x1ps / rxs + y1ps / rys;			if ( cr > 1 ) {				// scale up rx,ry equally so cr == 1				const s = Math.sqrt( cr );				rx = s * rx;				ry = s * ry;				rxs = rx * rx;				rys = ry * ry;			}			const dq = ( rxs * y1ps + rys * x1ps );			const pq = ( rxs * rys - dq ) / dq;			let q = Math.sqrt( Math.max( 0, pq ) );			if ( large_arc_flag === sweep_flag ) q = - q;			const cxp = q * rx * y1p / ry;			const cyp = - q * ry * x1p / rx;			// Step 3: Compute (cx, cy) from (cx', cy')			const cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2;			const cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2;			// Step 4: Compute θ1 and Δθ			const theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry );			const delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 );			path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation );		}		function svgAngle( ux, uy, vx, vy ) {			const dot = ux * vx + uy * vy;			const len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy );			let ang = Math.acos( Math.max( - 1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear			if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang;			return ang;		}		/*		* According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute		* rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough		*/		function parseRectNode( node ) {			const x = parseFloatWithUnits( node.getAttribute( 'x' ) || 0 );			const y = parseFloatWithUnits( node.getAttribute( 'y' ) || 0 );			const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || node.getAttribute( 'ry' ) || 0 );			const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || node.getAttribute( 'rx' ) || 0 );			const w = parseFloatWithUnits( node.getAttribute( 'width' ) );			const h = parseFloatWithUnits( node.getAttribute( 'height' ) );			// Ellipse arc to Bezier approximation Coefficient (Inversed). See:			// https://spencermortensen.com/articles/bezier-circle/			const bci = 1 - 0.551915024494;			const path = new ShapePath();			// top left			path.moveTo( x + rx, y );			// top right			path.lineTo( x + w - rx, y );			if ( rx !== 0 || ry !== 0 ) {				path.bezierCurveTo(					x + w - rx * bci,					y,					x + w,					y + ry * bci,					x + w,					y + ry				);			}			// bottom right			path.lineTo( x + w, y + h - ry );			if ( rx !== 0 || ry !== 0 ) {				path.bezierCurveTo(					x + w,					y + h - ry * bci,					x + w - rx * bci,					y + h,					x + w - rx,					y + h				);			}			// bottom left			path.lineTo( x + rx, y + h );			if ( rx !== 0 || ry !== 0 ) {				path.bezierCurveTo(					x + rx * bci,					y + h,					x,					y + h - ry * bci,					x,					y + h - ry				);			}			// back to top left			path.lineTo( x, y + ry );			if ( rx !== 0 || ry !== 0 ) {				path.bezierCurveTo( x, y + ry * bci, x + rx * bci, y, x + rx, y );			}			return path;		}		function parsePolygonNode( node ) {			function iterator( match, a, b ) {				const x = parseFloatWithUnits( a );				const y = parseFloatWithUnits( b );				if ( index === 0 ) {					path.moveTo( x, y );				} else {					path.lineTo( x, y );				}				index ++;			}			const regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g;			const path = new ShapePath();			let index = 0;			node.getAttribute( 'points' ).replace( regex, iterator );			path.currentPath.autoClose = true;			return path;		}		function parsePolylineNode( node ) {			function iterator( match, a, b ) {				const x = parseFloatWithUnits( a );				const y = parseFloatWithUnits( b );				if ( index === 0 ) {					path.moveTo( x, y );				} else {					path.lineTo( x, y );				}				index ++;			}			const regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g;			const path = new ShapePath();			let index = 0;			node.getAttribute( 'points' ).replace( regex, iterator );			path.currentPath.autoClose = false;			return path;		}		function parseCircleNode( node ) {			const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );			const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );			const r = parseFloatWithUnits( node.getAttribute( 'r' ) || 0 );			const subpath = new Path();			subpath.absarc( x, y, r, 0, Math.PI * 2 );			const path = new ShapePath();			path.subPaths.push( subpath );			return path;		}		function parseEllipseNode( node ) {			const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );			const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );			const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || 0 );			const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || 0 );			const subpath = new Path();			subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 );			const path = new ShapePath();			path.subPaths.push( subpath );			return path;		}		function parseLineNode( node ) {			const x1 = parseFloatWithUnits( node.getAttribute( 'x1' ) || 0 );			const y1 = parseFloatWithUnits( node.getAttribute( 'y1' ) || 0 );			const x2 = parseFloatWithUnits( node.getAttribute( 'x2' ) || 0 );			const y2 = parseFloatWithUnits( node.getAttribute( 'y2' ) || 0 );			const path = new ShapePath();			path.moveTo( x1, y1 );			path.lineTo( x2, y2 );			path.currentPath.autoClose = false;			return path;		}		//		function parseStyle( node, style ) {			style = Object.assign( {}, style ); // clone style			let stylesheetStyles = {};			if ( node.hasAttribute( 'class' ) ) {				const classSelectors = node.getAttribute( 'class' )					.split( /\s/ )					.filter( Boolean )					.map( i => i.trim() );				for ( let i = 0; i < classSelectors.length; i ++ ) {					stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '.' + classSelectors[ i ] ] );				}			}			if ( node.hasAttribute( 'id' ) ) {				stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '#' + node.getAttribute( 'id' ) ] );			}			function addStyle( svgName, jsName, adjustFunction ) {				if ( adjustFunction === undefined ) adjustFunction = function copy( v ) {					if ( v.startsWith( 'url' ) ) console.warn( 'SVGLoader: url access in attributes is not implemented.' );					return v;				};				if ( node.hasAttribute( svgName ) ) style[ jsName ] = adjustFunction( node.getAttribute( svgName ) );				if ( stylesheetStyles[ svgName ] ) style[ jsName ] = adjustFunction( stylesheetStyles[ svgName ] );				if ( node.style && node.style[ svgName ] !== '' ) style[ jsName ] = adjustFunction( node.style[ svgName ] );			}			function clamp( v ) {				return Math.max( 0, Math.min( 1, parseFloatWithUnits( v ) ) );			}			function positive( v ) {				return Math.max( 0, parseFloatWithUnits( v ) );			}			addStyle( 'fill', 'fill' );			addStyle( 'fill-opacity', 'fillOpacity', clamp );			addStyle( 'fill-rule', 'fillRule' );			addStyle( 'opacity', 'opacity', clamp );			addStyle( 'stroke', 'stroke' );			addStyle( 'stroke-opacity', 'strokeOpacity', clamp );			addStyle( 'stroke-width', 'strokeWidth', positive );			addStyle( 'stroke-linejoin', 'strokeLineJoin' );			addStyle( 'stroke-linecap', 'strokeLineCap' );			addStyle( 'stroke-miterlimit', 'strokeMiterLimit', positive );			addStyle( 'visibility', 'visibility' );			return style;		}		// http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes		function getReflection( a, b ) {			return a - ( b - a );		}		// from https://github.com/ppvg/svg-numbers (MIT License)		function parseFloats( input, flags, stride ) {			if ( typeof input !== 'string' ) {				throw new TypeError( 'Invalid input: ' + typeof input );			}			// Character groups			const RE = {				SEPARATOR: /[ \t\r\n\,.\-+]/,				WHITESPACE: /[ \t\r\n]/,				DIGIT: /[\d]/,				SIGN: /[-+]/,				POINT: /\./,				COMMA: /,/,				EXP: /e/i,				FLAGS: /[01]/			};			// States			const SEP = 0;			const INT = 1;			const FLOAT = 2;			const EXP = 3;			let state = SEP;			let seenComma = true;			let number = '', exponent = '';			const result = [];			function throwSyntaxError( current, i, partial ) {				const error = new SyntaxError( 'Unexpected character "' + current + '" at index ' + i + '.' );				error.partial = partial;				throw error;			}			function newNumber() {				if ( number !== '' ) {					if ( exponent === '' ) result.push( Number( number ) );					else result.push( Number( number ) * Math.pow( 10, Number( exponent ) ) );				}				number = '';				exponent = '';			}			let current;			const length = input.length;			for ( let i = 0; i < length; i ++ ) {				current = input[ i ];				// check for flags				if ( Array.isArray( flags ) && flags.includes( result.length % stride ) && RE.FLAGS.test( current ) ) {					state = INT;					number = current;					newNumber();					continue;				}				// parse until next number				if ( state === SEP ) {					// eat whitespace					if ( RE.WHITESPACE.test( current ) ) {						continue;					}					// start new number					if ( RE.DIGIT.test( current ) || RE.SIGN.test( current ) ) {						state = INT;						number = current;						continue;					}					if ( RE.POINT.test( current ) ) {						state = FLOAT;						number = current;						continue;					}					// throw on double commas (e.g. "1, , 2")					if ( RE.COMMA.test( current ) ) {						if ( seenComma ) {							throwSyntaxError( current, i, result );						}						seenComma = true;					}				}				// parse integer part				if ( state === INT ) {					if ( RE.DIGIT.test( current ) ) {						number += current;						continue;					}					if ( RE.POINT.test( current ) ) {						number += current;						state = FLOAT;						continue;					}					if ( RE.EXP.test( current ) ) {						state = EXP;						continue;					}					// throw on double signs ("-+1"), but not on sign as separator ("-1-2")					if ( RE.SIGN.test( current )							&& number.length === 1							&& RE.SIGN.test( number[ 0 ] ) ) {						throwSyntaxError( current, i, result );					}				}				// parse decimal part				if ( state === FLOAT ) {					if ( RE.DIGIT.test( current ) ) {						number += current;						continue;					}					if ( RE.EXP.test( current ) ) {						state = EXP;						continue;					}					// throw on double decimal points (e.g. "1..2")					if ( RE.POINT.test( current ) && number[ number.length - 1 ] === '.' ) {						throwSyntaxError( current, i, result );					}				}				// parse exponent part				if ( state === EXP ) {					if ( RE.DIGIT.test( current ) ) {						exponent += current;						continue;					}					if ( RE.SIGN.test( current ) ) {						if ( exponent === '' ) {							exponent += current;							continue;						}						if ( exponent.length === 1 && RE.SIGN.test( exponent ) ) {							throwSyntaxError( current, i, result );						}					}				}				// end of number				if ( RE.WHITESPACE.test( current ) ) {					newNumber();					state = SEP;					seenComma = false;				} else if ( RE.COMMA.test( current ) ) {					newNumber();					state = SEP;					seenComma = true;				} else if ( RE.SIGN.test( current ) ) {					newNumber();					state = INT;					number = current;				} else if ( RE.POINT.test( current ) ) {					newNumber();					state = FLOAT;					number = current;				} else {					throwSyntaxError( current, i, result );				}			}			// add the last number found (if any)			newNumber();			return result;		}		// Units		const units = [ 'mm', 'cm', 'in', 'pt', 'pc', 'px' ];		// Conversion: [ fromUnit ][ toUnit ] (-1 means dpi dependent)		const unitConversion = {			'mm': {				'mm': 1,				'cm': 0.1,				'in': 1 / 25.4,				'pt': 72 / 25.4,				'pc': 6 / 25.4,				'px': - 1			},			'cm': {				'mm': 10,				'cm': 1,				'in': 1 / 2.54,				'pt': 72 / 2.54,				'pc': 6 / 2.54,				'px': - 1			},			'in': {				'mm': 25.4,				'cm': 2.54,				'in': 1,				'pt': 72,				'pc': 6,				'px': - 1			},			'pt': {				'mm': 25.4 / 72,				'cm': 2.54 / 72,				'in': 1 / 72,				'pt': 1,				'pc': 6 / 72,				'px': - 1			},			'pc': {				'mm': 25.4 / 6,				'cm': 2.54 / 6,				'in': 1 / 6,				'pt': 72 / 6,				'pc': 1,				'px': - 1			},			'px': {				'px': 1			}		};		function parseFloatWithUnits( string ) {			let theUnit = 'px';			if ( typeof string === 'string' || string instanceof String ) {				for ( let i = 0, n = units.length; i < n; i ++ ) {					const u = units[ i ];					if ( string.endsWith( u ) ) {						theUnit = u;						string = string.substring( 0, string.length - u.length );						break;					}				}			}			let scale = undefined;			if ( theUnit === 'px' && scope.defaultUnit !== 'px' ) {				// Conversion scale from  pixels to inches, then to default units				scale = unitConversion[ 'in' ][ scope.defaultUnit ] / scope.defaultDPI;			} else {				scale = unitConversion[ theUnit ][ scope.defaultUnit ];				if ( scale < 0 ) {					// Conversion scale to pixels					scale = unitConversion[ theUnit ][ 'in' ] * scope.defaultDPI;				}			}			return scale * parseFloat( string );		}		// Transforms		function getNodeTransform( node ) {			if ( ! ( node.hasAttribute( 'transform' ) || ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) ) ) {				return null;			}			const transform = parseNodeTransform( node );			if ( transformStack.length > 0 ) {				transform.premultiply( transformStack[ transformStack.length - 1 ] );			}			currentTransform.copy( transform );			transformStack.push( transform );			return transform;		}		function parseNodeTransform( node ) {			const transform = new Matrix3();			const currentTransform = tempTransform0;			if ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) {				const tx = parseFloatWithUnits( node.getAttribute( 'x' ) );				const ty = parseFloatWithUnits( node.getAttribute( 'y' ) );				transform.translate( tx, ty );			}			if ( node.hasAttribute( 'transform' ) ) {				const transformsTexts = node.getAttribute( 'transform' ).split( ')' );				for ( let tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex -- ) {					const transformText = transformsTexts[ tIndex ].trim();					if ( transformText === '' ) continue;					const openParPos = transformText.indexOf( '(' );					const closeParPos = transformText.length;					if ( openParPos > 0 && openParPos < closeParPos ) {						const transformType = transformText.substr( 0, openParPos );						const array = parseFloats( transformText.substr( openParPos + 1, closeParPos - openParPos - 1 ) );						currentTransform.identity();						switch ( transformType ) {							case 'translate':								if ( array.length >= 1 ) {									const tx = array[ 0 ];									let ty = tx;									if ( array.length >= 2 ) {										ty = array[ 1 ];									}									currentTransform.translate( tx, ty );								}								break;							case 'rotate':								if ( array.length >= 1 ) {									let angle = 0;									let cx = 0;									let cy = 0;									// Angle									angle = - array[ 0 ] * Math.PI / 180;									if ( array.length >= 3 ) {										// Center x, y										cx = array[ 1 ];										cy = array[ 2 ];									}									// Rotate around center (cx, cy)									tempTransform1.identity().translate( - cx, - cy );									tempTransform2.identity().rotate( angle );									tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 );									tempTransform1.identity().translate( cx, cy );									currentTransform.multiplyMatrices( tempTransform1, tempTransform3 );								}								break;							case 'scale':								if ( array.length >= 1 ) {									const scaleX = array[ 0 ];									let scaleY = scaleX;									if ( array.length >= 2 ) {										scaleY = array[ 1 ];									}									currentTransform.scale( scaleX, scaleY );								}								break;							case 'skewX':								if ( array.length === 1 ) {									currentTransform.set(										1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0,										0, 1, 0,										0, 0, 1									);								}								break;							case 'skewY':								if ( array.length === 1 ) {									currentTransform.set(										1, 0, 0,										Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0,										0, 0, 1									);								}								break;							case 'matrix':								if ( array.length === 6 ) {									currentTransform.set(										array[ 0 ], array[ 2 ], array[ 4 ],										array[ 1 ], array[ 3 ], array[ 5 ],										0, 0, 1									);								}								break;						}					}					transform.premultiply( currentTransform );				}			}			return transform;		}		function transformPath( path, m ) {			function transfVec2( v2 ) {				tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m );				v2.set( tempV3.x, tempV3.y );			}			const isRotated = isTransformRotated( m );			const subPaths = path.subPaths;			for ( let i = 0, n = subPaths.length; i < n; i ++ ) {				const subPath = subPaths[ i ];				const curves = subPath.curves;				for ( let j = 0; j < curves.length; j ++ ) {					const curve = curves[ j ];					if ( curve.isLineCurve ) {						transfVec2( curve.v1 );						transfVec2( curve.v2 );					} else if ( curve.isCubicBezierCurve ) {						transfVec2( curve.v0 );						transfVec2( curve.v1 );						transfVec2( curve.v2 );						transfVec2( curve.v3 );					} else if ( curve.isQuadraticBezierCurve ) {						transfVec2( curve.v0 );						transfVec2( curve.v1 );						transfVec2( curve.v2 );					} else if ( curve.isEllipseCurve ) {						if ( isRotated ) {							console.warn( 'SVGLoader: Elliptic arc or ellipse rotation or skewing is not implemented.' );						}						tempV2.set( curve.aX, curve.aY );						transfVec2( tempV2 );						curve.aX = tempV2.x;						curve.aY = tempV2.y;						curve.xRadius *= getTransformScaleX( m );						curve.yRadius *= getTransformScaleY( m );					}				}			}		}		function isTransformRotated( m ) {			return m.elements[ 1 ] !== 0 || m.elements[ 3 ] !== 0;		}		function getTransformScaleX( m ) {			const te = m.elements;			return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] );		}		function getTransformScaleY( m ) {			const te = m.elements;			return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] );		}		//		const paths = [];		const stylesheets = {};		const transformStack = [];		const tempTransform0 = new Matrix3();		const tempTransform1 = new Matrix3();		const tempTransform2 = new Matrix3();		const tempTransform3 = new Matrix3();		const tempV2 = new Vector2();		const tempV3 = new Vector3();		const currentTransform = new Matrix3();		const xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml		parseNode( xml.documentElement, {			fill: '#000',			fillOpacity: 1,			strokeOpacity: 1,			strokeWidth: 1,			strokeLineJoin: 'miter',			strokeLineCap: 'butt',			strokeMiterLimit: 4		} );		const data = { paths: paths, xml: xml.documentElement };		// console.log( paths );		return data;	}	static createShapes( shapePath ) {		// Param shapePath: a shapepath as returned by the parse function of this class		// Returns Shape object		const BIGNUMBER = 999999999;		const IntersectionLocationType = {			ORIGIN: 0,			DESTINATION: 1,			BETWEEN: 2,			LEFT: 3,			RIGHT: 4,			BEHIND: 5,			BEYOND: 6		};		const classifyResult = {			loc: IntersectionLocationType.ORIGIN,			t: 0		};		function findEdgeIntersection( a0, a1, b0, b1 ) {			const x1 = a0.x;			const x2 = a1.x;			const x3 = b0.x;			const x4 = b1.x;			const y1 = a0.y;			const y2 = a1.y;			const y3 = b0.y;			const y4 = b1.y;			const nom1 = ( x4 - x3 ) * ( y1 - y3 ) - ( y4 - y3 ) * ( x1 - x3 );			const nom2 = ( x2 - x1 ) * ( y1 - y3 ) - ( y2 - y1 ) * ( x1 - x3 );			const denom = ( y4 - y3 ) * ( x2 - x1 ) - ( x4 - x3 ) * ( y2 - y1 );			const t1 = nom1 / denom;			const t2 = nom2 / denom;			if ( ( ( denom === 0 ) && ( nom1 !== 0 ) ) || ( t1 <= 0 ) || ( t1 >= 1 ) || ( t2 < 0 ) || ( t2 > 1 ) ) {				//1. lines are parallel or edges don't intersect				return null;			} else if ( ( nom1 === 0 ) && ( denom === 0 ) ) {				//2. lines are colinear				//check if endpoints of edge2 (b0-b1) lies on edge1 (a0-a1)				for ( let i = 0; i < 2; i ++ ) {					classifyPoint( i === 0 ? b0 : b1, a0, a1 );					//find position of this endpoints relatively to edge1					if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {						const point = ( i === 0 ? b0 : b1 );						return { x: point.x, y: point.y, t: classifyResult.t };					} else if ( classifyResult.loc == IntersectionLocationType.BETWEEN ) {						const x = + ( ( x1 + classifyResult.t * ( x2 - x1 ) ).toPrecision( 10 ) );						const y = + ( ( y1 + classifyResult.t * ( y2 - y1 ) ).toPrecision( 10 ) );						return { x: x, y: y, t: classifyResult.t, };					}				}				return null;			} else {				//3. edges intersect				for ( let i = 0; i < 2; i ++ ) {					classifyPoint( i === 0 ? b0 : b1, a0, a1 );					if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {						const point = ( i === 0 ? b0 : b1 );						return { x: point.x, y: point.y, t: classifyResult.t };					}				}				const x = + ( ( x1 + t1 * ( x2 - x1 ) ).toPrecision( 10 ) );				const y = + ( ( y1 + t1 * ( y2 - y1 ) ).toPrecision( 10 ) );				return { x: x, y: y, t: t1 };			}		}		function classifyPoint( p, edgeStart, edgeEnd ) {			const ax = edgeEnd.x - edgeStart.x;			const ay = edgeEnd.y - edgeStart.y;			const bx = p.x - edgeStart.x;			const by = p.y - edgeStart.y;			const sa = ax * by - bx * ay;			if ( ( p.x === edgeStart.x ) && ( p.y === edgeStart.y ) ) {				classifyResult.loc = IntersectionLocationType.ORIGIN;				classifyResult.t = 0;				return;			}			if ( ( p.x === edgeEnd.x ) && ( p.y === edgeEnd.y ) ) {				classifyResult.loc = IntersectionLocationType.DESTINATION;				classifyResult.t = 1;				return;			}			if ( sa < - Number.EPSILON ) {				classifyResult.loc = IntersectionLocationType.LEFT;				return;			}			if ( sa > Number.EPSILON ) {				classifyResult.loc = IntersectionLocationType.RIGHT;				return;			}			if ( ( ( ax * bx ) < 0 ) || ( ( ay * by ) < 0 ) ) {				classifyResult.loc = IntersectionLocationType.BEHIND;				return;			}			if ( ( Math.sqrt( ax * ax + ay * ay ) ) < ( Math.sqrt( bx * bx + by * by ) ) ) {				classifyResult.loc = IntersectionLocationType.BEYOND;				return;			}			let t;			if ( ax !== 0 ) {				t = bx / ax;			} else {				t = by / ay;			}			classifyResult.loc = IntersectionLocationType.BETWEEN;			classifyResult.t = t;		}		function getIntersections( path1, path2 ) {			const intersectionsRaw = [];			const intersections = [];			for ( let index = 1; index < path1.length; index ++ ) {				const path1EdgeStart = path1[ index - 1 ];				const path1EdgeEnd = path1[ index ];				for ( let index2 = 1; index2 < path2.length; index2 ++ ) {					const path2EdgeStart = path2[ index2 - 1 ];					const path2EdgeEnd = path2[ index2 ];					const intersection = findEdgeIntersection( path1EdgeStart, path1EdgeEnd, path2EdgeStart, path2EdgeEnd );					if ( intersection !== null && intersectionsRaw.find( i => i.t <= intersection.t + Number.EPSILON && i.t >= intersection.t - Number.EPSILON ) === undefined ) {						intersectionsRaw.push( intersection );						intersections.push( new Vector2( intersection.x, intersection.y ) );					}				}			}			return intersections;		}		function getScanlineIntersections( scanline, boundingBox, paths ) {			const center = new Vector2();			boundingBox.getCenter( center );			const allIntersections = [];			paths.forEach( path => {				// check if the center of the bounding box is in the bounding box of the paths.				// this is a pruning method to limit the search of intersections in paths that can't envelop of the current path.				// if a path envelops another path. The center of that oter path, has to be inside the bounding box of the enveloping path.				if ( path.boundingBox.containsPoint( center ) ) {					const intersections = getIntersections( scanline, path.points );					intersections.forEach( p => {						allIntersections.push( { identifier: path.identifier, isCW: path.isCW, point: p } );					} );				}			} );			allIntersections.sort( ( i1, i2 ) => {				return i1.point.x - i2.point.x;			} );			return allIntersections;		}		function isHoleTo( simplePath, allPaths, scanlineMinX, scanlineMaxX, _fillRule ) {			if ( _fillRule === null || _fillRule === undefined || _fillRule === '' ) {				_fillRule = 'nonzero';			}			const centerBoundingBox = new Vector2();			simplePath.boundingBox.getCenter( centerBoundingBox );			const scanline = [ new Vector2( scanlineMinX, centerBoundingBox.y ), new Vector2( scanlineMaxX, centerBoundingBox.y ) ];			const scanlineIntersections = getScanlineIntersections( scanline, simplePath.boundingBox, allPaths );			scanlineIntersections.sort( ( i1, i2 ) => {				return i1.point.x - i2.point.x;			} );			const baseIntersections = [];			const otherIntersections = [];			scanlineIntersections.forEach( i => {				if ( i.identifier === simplePath.identifier ) {					baseIntersections.push( i );				} else {					otherIntersections.push( i );				}			} );			const firstXOfPath = baseIntersections[ 0 ].point.x;			// build up the path hierarchy			const stack = [];			let i = 0;			while ( i < otherIntersections.length && otherIntersections[ i ].point.x < firstXOfPath ) {				if ( stack.length > 0 && stack[ stack.length - 1 ] === otherIntersections[ i ].identifier ) {					stack.pop();				} else {					stack.push( otherIntersections[ i ].identifier );				}				i ++;			}			stack.push( simplePath.identifier );			if ( _fillRule === 'evenodd' ) {				const isHole = stack.length % 2 === 0 ? true : false;				const isHoleFor = stack[ stack.length - 2 ];				return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor };			} else if ( _fillRule === 'nonzero' ) {				// check if path is a hole by counting the amount of paths with alternating rotations it has to cross.				let isHole = true;				let isHoleFor = null;				let lastCWValue = null;				for ( let i = 0; i < stack.length; i ++ ) {					const identifier = stack[ i ];					if ( isHole ) {						lastCWValue = allPaths[ identifier ].isCW;						isHole = false;						isHoleFor = identifier;					} else if ( lastCWValue !== allPaths[ identifier ].isCW ) {						lastCWValue = allPaths[ identifier ].isCW;						isHole = true;					}				}				return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor };			} else {				console.warn( 'fill-rule: "' + _fillRule + '" is currently not implemented.' );			}		}		// check for self intersecting paths		// TODO		// check intersecting paths		// TODO		// prepare paths for hole detection		let identifier = 0;		let scanlineMinX = BIGNUMBER;		let scanlineMaxX = - BIGNUMBER;		let simplePaths = shapePath.subPaths.map( p => {			const points = p.getPoints();			let maxY = - BIGNUMBER;			let minY = BIGNUMBER;			let maxX = - BIGNUMBER;			let minX = BIGNUMBER;	      	//points.forEach(p => p.y *= -1);			for ( let i = 0; i < points.length; i ++ ) {				const p = points[ i ];				if ( p.y > maxY ) {					maxY = p.y;				}				if ( p.y < minY ) {					minY = p.y;				}				if ( p.x > maxX ) {					maxX = p.x;				}				if ( p.x < minX ) {					minX = p.x;				}			}			//			if ( scanlineMaxX <= maxX ) {				scanlineMaxX = maxX + 1;			}			if ( scanlineMinX >= minX ) {				scanlineMinX = minX - 1;			}			return { curves: p.curves, points: points, isCW: ShapeUtils.isClockWise( points ), identifier: identifier ++, boundingBox: new Box2( new Vector2( minX, minY ), new Vector2( maxX, maxY ) ) };		} );		simplePaths = simplePaths.filter( sp => sp.points.length > 1 );		// check if path is solid or a hole		const isAHole = simplePaths.map( p => isHoleTo( p, simplePaths, scanlineMinX, scanlineMaxX, shapePath.userData.style.fillRule ) );		const shapesToReturn = [];		simplePaths.forEach( p => {			const amIAHole = isAHole[ p.identifier ];			if ( ! amIAHole.isHole ) {				const shape = new Shape();				shape.curves = p.curves;				const holes = isAHole.filter( h => h.isHole && h.for === p.identifier );				holes.forEach( h => {					const hole = simplePaths[ h.identifier ];					const path = new Path();					path.curves = hole.curves;					shape.holes.push( path );				} );				shapesToReturn.push( shape );			}		} );		return shapesToReturn;	}	static getStrokeStyle( width, color, lineJoin, lineCap, miterLimit ) {		// Param width: Stroke width		// Param color: As returned by THREE.Color.getStyle()		// Param lineJoin: One of "round", "bevel", "miter" or "miter-limit"		// Param lineCap: One of "round", "square" or "butt"		// Param miterLimit: Maximum join length, in multiples of the "width" parameter (join is truncated if it exceeds that distance)		// Returns style object		width = width !== undefined ? width : 1;		color = color !== undefined ? color : '#000';		lineJoin = lineJoin !== undefined ? lineJoin : 'miter';		lineCap = lineCap !== undefined ? lineCap : 'butt';		miterLimit = miterLimit !== undefined ? miterLimit : 4;		return {			strokeColor: color,			strokeWidth: width,			strokeLineJoin: lineJoin,			strokeLineCap: lineCap,			strokeMiterLimit: miterLimit		};	}	static pointsToStroke( points, style, arcDivisions, minDistance ) {		// Generates a stroke with some witdh around the given path.		// The path can be open or closed (last point equals to first point)		// Param points: Array of Vector2D (the path). Minimum 2 points.		// Param style: Object with SVG properties as returned by SVGLoader.getStrokeStyle(), or SVGLoader.parse() in the path.userData.style object		// Params arcDivisions: Arc divisions for round joins and endcaps. (Optional)		// Param minDistance: Points closer to this distance will be merged. (Optional)		// Returns BufferGeometry with stroke triangles (In plane z = 0). UV coordinates are generated ('u' along path. 'v' across it, from left to right)		const vertices = [];		const normals = [];		const uvs = [];		if ( SVGLoader.pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs ) === 0 ) {			return null;		}		const geometry = new BufferGeometry();		geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );		geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );		geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );		return geometry;	}	static pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs, vertexOffset ) {		// This function can be called to update existing arrays or buffers.		// Accepts same parameters as pointsToStroke, plus the buffers and optional offset.		// Param vertexOffset: Offset vertices to start writing in the buffers (3 elements/vertex for vertices and normals, and 2 elements/vertex for uvs)		// Returns number of written vertices / normals / uvs pairs		// if 'vertices' parameter is undefined no triangles will be generated, but the returned vertices count will still be valid (useful to preallocate the buffers)		// 'normals' and 'uvs' buffers are optional		const tempV2_1 = new Vector2();		const tempV2_2 = new Vector2();		const tempV2_3 = new Vector2();		const tempV2_4 = new Vector2();		const tempV2_5 = new Vector2();		const tempV2_6 = new Vector2();		const tempV2_7 = new Vector2();		const lastPointL = new Vector2();		const lastPointR = new Vector2();		const point0L = new Vector2();		const point0R = new Vector2();		const currentPointL = new Vector2();		const currentPointR = new Vector2();		const nextPointL = new Vector2();		const nextPointR = new Vector2();		const innerPoint = new Vector2();		const outerPoint = new Vector2();		arcDivisions = arcDivisions !== undefined ? arcDivisions : 12;		minDistance = minDistance !== undefined ? minDistance : 0.001;		vertexOffset = vertexOffset !== undefined ? vertexOffset : 0;		// First ensure there are no duplicated points		points = removeDuplicatedPoints( points );		const numPoints = points.length;		if ( numPoints < 2 ) return 0;		const isClosed = points[ 0 ].equals( points[ numPoints - 1 ] );		let currentPoint;		let previousPoint = points[ 0 ];		let nextPoint;		const strokeWidth2 = style.strokeWidth / 2;		const deltaU = 1 / ( numPoints - 1 );		let u0 = 0, u1;		let innerSideModified;		let joinIsOnLeftSide;		let isMiter;		let initialJoinIsOnLeftSide = false;		let numVertices = 0;		let currentCoordinate = vertexOffset * 3;		let currentCoordinateUV = vertexOffset * 2;		// Get initial left and right stroke points		getNormal( points[ 0 ], points[ 1 ], tempV2_1 ).multiplyScalar( strokeWidth2 );		lastPointL.copy( points[ 0 ] ).sub( tempV2_1 );		lastPointR.copy( points[ 0 ] ).add( tempV2_1 );		point0L.copy( lastPointL );		point0R.copy( lastPointR );		for ( let iPoint = 1; iPoint < numPoints; iPoint ++ ) {			currentPoint = points[ iPoint ];			// Get next point			if ( iPoint === numPoints - 1 ) {				if ( isClosed ) {					// Skip duplicated initial point					nextPoint = points[ 1 ];				} else nextPoint = undefined;			} else {				nextPoint = points[ iPoint + 1 ];			}			// Normal of previous segment in tempV2_1			const normal1 = tempV2_1;			getNormal( previousPoint, currentPoint, normal1 );			tempV2_3.copy( normal1 ).multiplyScalar( strokeWidth2 );			currentPointL.copy( currentPoint ).sub( tempV2_3 );			currentPointR.copy( currentPoint ).add( tempV2_3 );			u1 = u0 + deltaU;			innerSideModified = false;			if ( nextPoint !== undefined ) {				// Normal of next segment in tempV2_2				getNormal( currentPoint, nextPoint, tempV2_2 );				tempV2_3.copy( tempV2_2 ).multiplyScalar( strokeWidth2 );				nextPointL.copy( currentPoint ).sub( tempV2_3 );				nextPointR.copy( currentPoint ).add( tempV2_3 );				joinIsOnLeftSide = true;				tempV2_3.subVectors( nextPoint, previousPoint );				if ( normal1.dot( tempV2_3 ) < 0 ) {					joinIsOnLeftSide = false;				}				if ( iPoint === 1 ) initialJoinIsOnLeftSide = joinIsOnLeftSide;				tempV2_3.subVectors( nextPoint, currentPoint );				tempV2_3.normalize();				const dot = Math.abs( normal1.dot( tempV2_3 ) );				// If path is straight, don't create join				if ( dot !== 0 ) {					// Compute inner and outer segment intersections					const miterSide = strokeWidth2 / dot;					tempV2_3.multiplyScalar( - miterSide );					tempV2_4.subVectors( currentPoint, previousPoint );					tempV2_5.copy( tempV2_4 ).setLength( miterSide ).add( tempV2_3 );					innerPoint.copy( tempV2_5 ).negate();					const miterLength2 = tempV2_5.length();					const segmentLengthPrev = tempV2_4.length();					tempV2_4.divideScalar( segmentLengthPrev );					tempV2_6.subVectors( nextPoint, currentPoint );					const segmentLengthNext = tempV2_6.length();					tempV2_6.divideScalar( segmentLengthNext );					// Check that previous and next segments doesn't overlap with the innerPoint of intersection					if ( tempV2_4.dot( innerPoint ) < segmentLengthPrev && tempV2_6.dot( innerPoint ) < segmentLengthNext ) {						innerSideModified = true;					}					outerPoint.copy( tempV2_5 ).add( currentPoint );					innerPoint.add( currentPoint );					isMiter = false;					if ( innerSideModified ) {						if ( joinIsOnLeftSide ) {							nextPointR.copy( innerPoint );							currentPointR.copy( innerPoint );						} else {							nextPointL.copy( innerPoint );							currentPointL.copy( innerPoint );						}					} else {						// The segment triangles are generated here if there was overlapping						makeSegmentTriangles();					}					switch ( style.strokeLineJoin ) {						case 'bevel':							makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );							break;						case 'round':							// Segment triangles							createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );							// Join triangles							if ( joinIsOnLeftSide ) {								makeCircularSector( currentPoint, currentPointL, nextPointL, u1, 0 );							} else {								makeCircularSector( currentPoint, nextPointR, currentPointR, u1, 1 );							}							break;						case 'miter':						case 'miter-clip':						default:							const miterFraction = ( strokeWidth2 * style.strokeMiterLimit ) / miterLength2;							if ( miterFraction < 1 ) {								// The join miter length exceeds the miter limit								if ( style.strokeLineJoin !== 'miter-clip' ) {									makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );									break;								} else {									// Segment triangles									createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );									// Miter-clip join triangles									if ( joinIsOnLeftSide ) {										tempV2_6.subVectors( outerPoint, currentPointL ).multiplyScalar( miterFraction ).add( currentPointL );										tempV2_7.subVectors( outerPoint, nextPointL ).multiplyScalar( miterFraction ).add( nextPointL );										addVertex( currentPointL, u1, 0 );										addVertex( tempV2_6, u1, 0 );										addVertex( currentPoint, u1, 0.5 );										addVertex( currentPoint, u1, 0.5 );										addVertex( tempV2_6, u1, 0 );										addVertex( tempV2_7, u1, 0 );										addVertex( currentPoint, u1, 0.5 );										addVertex( tempV2_7, u1, 0 );										addVertex( nextPointL, u1, 0 );									} else {										tempV2_6.subVectors( outerPoint, currentPointR ).multiplyScalar( miterFraction ).add( currentPointR );										tempV2_7.subVectors( outerPoint, nextPointR ).multiplyScalar( miterFraction ).add( nextPointR );										addVertex( currentPointR, u1, 1 );										addVertex( tempV2_6, u1, 1 );										addVertex( currentPoint, u1, 0.5 );										addVertex( currentPoint, u1, 0.5 );										addVertex( tempV2_6, u1, 1 );										addVertex( tempV2_7, u1, 1 );										addVertex( currentPoint, u1, 0.5 );										addVertex( tempV2_7, u1, 1 );										addVertex( nextPointR, u1, 1 );									}								}							} else {								// Miter join segment triangles								if ( innerSideModified ) {									// Optimized segment + join triangles									if ( joinIsOnLeftSide ) {										addVertex( lastPointR, u0, 1 );										addVertex( lastPointL, u0, 0 );										addVertex( outerPoint, u1, 0 );										addVertex( lastPointR, u0, 1 );										addVertex( outerPoint, u1, 0 );										addVertex( innerPoint, u1, 1 );									} else {										addVertex( lastPointR, u0, 1 );										addVertex( lastPointL, u0, 0 );										addVertex( outerPoint, u1, 1 );										addVertex( lastPointL, u0, 0 );										addVertex( innerPoint, u1, 0 );										addVertex( outerPoint, u1, 1 );									}									if ( joinIsOnLeftSide ) {										nextPointL.copy( outerPoint );									} else {										nextPointR.copy( outerPoint );									}								} else {									// Add extra miter join triangles									if ( joinIsOnLeftSide ) {										addVertex( currentPointL, u1, 0 );										addVertex( outerPoint, u1, 0 );										addVertex( currentPoint, u1, 0.5 );										addVertex( currentPoint, u1, 0.5 );										addVertex( outerPoint, u1, 0 );										addVertex( nextPointL, u1, 0 );									} else {										addVertex( currentPointR, u1, 1 );										addVertex( outerPoint, u1, 1 );										addVertex( currentPoint, u1, 0.5 );										addVertex( currentPoint, u1, 0.5 );										addVertex( outerPoint, u1, 1 );										addVertex( nextPointR, u1, 1 );									}								}								isMiter = true;							}							break;					}				} else {					// The segment triangles are generated here when two consecutive points are collinear					makeSegmentTriangles();				}			} else {				// The segment triangles are generated here if it is the ending segment				makeSegmentTriangles();			}			if ( ! isClosed && iPoint === numPoints - 1 ) {				// Start line endcap				addCapGeometry( points[ 0 ], point0L, point0R, joinIsOnLeftSide, true, u0 );			}			// Increment loop variables			u0 = u1;			previousPoint = currentPoint;			lastPointL.copy( nextPointL );			lastPointR.copy( nextPointR );		}		if ( ! isClosed ) {			// Ending line endcap			addCapGeometry( currentPoint, currentPointL, currentPointR, joinIsOnLeftSide, false, u1 );		} else if ( innerSideModified && vertices ) {			// Modify path first segment vertices to adjust to the segments inner and outer intersections			let lastOuter = outerPoint;			let lastInner = innerPoint;			if ( initialJoinIsOnLeftSide !== joinIsOnLeftSide ) {				lastOuter = innerPoint;				lastInner = outerPoint;			}			if ( joinIsOnLeftSide ) {				if ( isMiter || initialJoinIsOnLeftSide ) {					lastInner.toArray( vertices, 0 * 3 );					lastInner.toArray( vertices, 3 * 3 );					if ( isMiter ) {						lastOuter.toArray( vertices, 1 * 3 );					}				}			} else {				if ( isMiter || ! initialJoinIsOnLeftSide ) {					lastInner.toArray( vertices, 1 * 3 );					lastInner.toArray( vertices, 3 * 3 );					if ( isMiter ) {						lastOuter.toArray( vertices, 0 * 3 );					}				}			}		}		return numVertices;		// -- End of algorithm		// -- Functions		function getNormal( p1, p2, result ) {			result.subVectors( p2, p1 );			return result.set( - result.y, result.x ).normalize();		}		function addVertex( position, u, v ) {			if ( vertices ) {				vertices[ currentCoordinate ] = position.x;				vertices[ currentCoordinate + 1 ] = position.y;				vertices[ currentCoordinate + 2 ] = 0;				if ( normals ) {					normals[ currentCoordinate ] = 0;					normals[ currentCoordinate + 1 ] = 0;					normals[ currentCoordinate + 2 ] = 1;				}				currentCoordinate += 3;				if ( uvs ) {					uvs[ currentCoordinateUV ] = u;					uvs[ currentCoordinateUV + 1 ] = v;					currentCoordinateUV += 2;				}			}			numVertices += 3;		}		function makeCircularSector( center, p1, p2, u, v ) {			// param p1, p2: Points in the circle arc.			// p1 and p2 are in clockwise direction.			tempV2_1.copy( p1 ).sub( center ).normalize();			tempV2_2.copy( p2 ).sub( center ).normalize();			let angle = Math.PI;			const dot = tempV2_1.dot( tempV2_2 );			if ( Math.abs( dot ) < 1 ) angle = Math.abs( Math.acos( dot ) );			angle /= arcDivisions;			tempV2_3.copy( p1 );			for ( let i = 0, il = arcDivisions - 1; i < il; i ++ ) {				tempV2_4.copy( tempV2_3 ).rotateAround( center, angle );				addVertex( tempV2_3, u, v );				addVertex( tempV2_4, u, v );				addVertex( center, u, 0.5 );				tempV2_3.copy( tempV2_4 );			}			addVertex( tempV2_4, u, v );			addVertex( p2, u, v );			addVertex( center, u, 0.5 );		}		function makeSegmentTriangles() {			addVertex( lastPointR, u0, 1 );			addVertex( lastPointL, u0, 0 );			addVertex( currentPointL, u1, 0 );			addVertex( lastPointR, u0, 1 );			addVertex( currentPointL, u1, 1 );			addVertex( currentPointR, u1, 0 );		}		function makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u ) {			if ( innerSideModified ) {				// Optimized segment + bevel triangles				if ( joinIsOnLeftSide ) {					// Path segments triangles					addVertex( lastPointR, u0, 1 );					addVertex( lastPointL, u0, 0 );					addVertex( currentPointL, u1, 0 );					addVertex( lastPointR, u0, 1 );					addVertex( currentPointL, u1, 0 );					addVertex( innerPoint, u1, 1 );					// Bevel join triangle					addVertex( currentPointL, u, 0 );					addVertex( nextPointL, u, 0 );					addVertex( innerPoint, u, 0.5 );				} else {					// Path segments triangles					addVertex( lastPointR, u0, 1 );					addVertex( lastPointL, u0, 0 );					addVertex( currentPointR, u1, 1 );					addVertex( lastPointL, u0, 0 );					addVertex( innerPoint, u1, 0 );					addVertex( currentPointR, u1, 1 );					// Bevel join triangle					addVertex( currentPointR, u, 1 );					addVertex( nextPointR, u, 0 );					addVertex( innerPoint, u, 0.5 );				}			} else {				// Bevel join triangle. The segment triangles are done in the main loop				if ( joinIsOnLeftSide ) {					addVertex( currentPointL, u, 0 );					addVertex( nextPointL, u, 0 );					addVertex( currentPoint, u, 0.5 );				} else {					addVertex( currentPointR, u, 1 );					addVertex( nextPointR, u, 0 );					addVertex( currentPoint, u, 0.5 );				}			}		}		function createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ) {			if ( innerSideModified ) {				if ( joinIsOnLeftSide ) {					addVertex( lastPointR, u0, 1 );					addVertex( lastPointL, u0, 0 );					addVertex( currentPointL, u1, 0 );					addVertex( lastPointR, u0, 1 );					addVertex( currentPointL, u1, 0 );					addVertex( innerPoint, u1, 1 );					addVertex( currentPointL, u0, 0 );					addVertex( currentPoint, u1, 0.5 );					addVertex( innerPoint, u1, 1 );					addVertex( currentPoint, u1, 0.5 );					addVertex( nextPointL, u0, 0 );					addVertex( innerPoint, u1, 1 );				} else {					addVertex( lastPointR, u0, 1 );					addVertex( lastPointL, u0, 0 );					addVertex( currentPointR, u1, 1 );					addVertex( lastPointL, u0, 0 );					addVertex( innerPoint, u1, 0 );					addVertex( currentPointR, u1, 1 );					addVertex( currentPointR, u0, 1 );					addVertex( innerPoint, u1, 0 );					addVertex( currentPoint, u1, 0.5 );					addVertex( currentPoint, u1, 0.5 );					addVertex( innerPoint, u1, 0 );					addVertex( nextPointR, u0, 1 );				}			}		}		function addCapGeometry( center, p1, p2, joinIsOnLeftSide, start, u ) {			// param center: End point of the path			// param p1, p2: Left and right cap points			switch ( style.strokeLineCap ) {				case 'round':					if ( start ) {						makeCircularSector( center, p2, p1, u, 0.5 );					} else {						makeCircularSector( center, p1, p2, u, 0.5 );					}					break;				case 'square':					if ( start ) {						tempV2_1.subVectors( p1, center );						tempV2_2.set( tempV2_1.y, - tempV2_1.x );						tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );						tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );						// Modify already existing vertices						if ( joinIsOnLeftSide ) {							tempV2_3.toArray( vertices, 1 * 3 );							tempV2_4.toArray( vertices, 0 * 3 );							tempV2_4.toArray( vertices, 3 * 3 );						} else {							tempV2_3.toArray( vertices, 1 * 3 );							tempV2_3.toArray( vertices, 3 * 3 );							tempV2_4.toArray( vertices, 0 * 3 );						}					} else {						tempV2_1.subVectors( p2, center );						tempV2_2.set( tempV2_1.y, - tempV2_1.x );						tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );						tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );						const vl = vertices.length;						// Modify already existing vertices						if ( joinIsOnLeftSide ) {							tempV2_3.toArray( vertices, vl - 1 * 3 );							tempV2_4.toArray( vertices, vl - 2 * 3 );							tempV2_4.toArray( vertices, vl - 4 * 3 );						} else {							tempV2_3.toArray( vertices, vl - 2 * 3 );							tempV2_4.toArray( vertices, vl - 1 * 3 );							tempV2_4.toArray( vertices, vl - 4 * 3 );						}					}					break;				case 'butt':				default:					// Nothing to do here					break;			}		}		function removeDuplicatedPoints( points ) {			// Creates a new array if necessary with duplicated points removed.			// This does not remove duplicated initial and ending points of a closed path.			let dupPoints = false;			for ( let i = 1, n = points.length - 1; i < n; i ++ ) {				if ( points[ i ].distanceTo( points[ i + 1 ] ) < minDistance ) {					dupPoints = true;					break;				}			}			if ( ! dupPoints ) return points;			const newPoints = [];			newPoints.push( points[ 0 ] );			for ( let i = 1, n = points.length - 1; i < n; i ++ ) {				if ( points[ i ].distanceTo( points[ i + 1 ] ) >= minDistance ) {					newPoints.push( points[ i ] );				}			}			newPoints.push( points[ points.length - 1 ] );			return newPoints;		}	}}export { SVGLoader };
 |