| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067 | /** * @version 1.1.1 * * @desc Load files in LWO3 and LWO2 format on Three.js * * LWO3 format specification: *  https://static.lightwave3d.com/sdk/2019/html/filefmts/lwo3.html * * LWO2 format specification: *  https://static.lightwave3d.com/sdk/2019/html/filefmts/lwo2.html * **/import {	AddOperation,	BackSide,	BufferAttribute,	BufferGeometry,	ClampToEdgeWrapping,	Color,	DoubleSide,	EquirectangularReflectionMapping,	EquirectangularRefractionMapping,	FileLoader,	Float32BufferAttribute,	FrontSide,	LineBasicMaterial,	LineSegments,	Loader,	Mesh,	MeshPhongMaterial,	MeshPhysicalMaterial,	MeshStandardMaterial,	MirroredRepeatWrapping,	Points,	PointsMaterial,	RepeatWrapping,	TextureLoader,	Vector2} from '../../../build/three.module.js';import { IFFParser } from './lwo/IFFParser.js';let _lwoTree;class LWOLoader extends Loader {	constructor( manager, parameters = {} ) {		super( manager );		this.resourcePath = ( parameters.resourcePath !== undefined ) ? parameters.resourcePath : '';	}	load( url, onLoad, onProgress, onError ) {		const scope = this;		const path = ( scope.path === '' ) ? extractParentUrl( url, 'Objects' ) : scope.path;		// give the mesh a default name based on the filename		const modelName = url.split( path ).pop().split( '.' )[ 0 ];		const loader = new FileLoader( this.manager );		loader.setPath( scope.path );		loader.setResponseType( 'arraybuffer' );		loader.load( url, function ( buffer ) {			// console.time( 'Total parsing: ' );			try {				onLoad( scope.parse( buffer, path, modelName ) );			} catch ( e ) {				if ( onError ) {					onError( e );				} else {					console.error( e );				}				scope.manager.itemError( url );			}			// console.timeEnd( 'Total parsing: ' );		}, onProgress, onError );	}	parse( iffBuffer, path, modelName ) {		_lwoTree = new IFFParser().parse( iffBuffer );		// console.log( 'lwoTree', lwoTree );		const textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );		return new LWOTreeParser( textureLoader ).parse( modelName );	}}// Parse the lwoTree objectclass LWOTreeParser {	constructor( textureLoader ) {		this.textureLoader = textureLoader;	}	parse( modelName ) {		this.materials = new MaterialParser( this.textureLoader ).parse();		this.defaultLayerName = modelName;		this.meshes = this.parseLayers();		return {			materials: this.materials,			meshes: this.meshes,		};	}	parseLayers() {		// array of all meshes for building hierarchy		const meshes = [];		// final array containing meshes with scene graph hierarchy set up		const finalMeshes = [];		const geometryParser = new GeometryParser();		const scope = this;		_lwoTree.layers.forEach( function ( layer ) {			const geometry = geometryParser.parse( layer.geometry, layer );			const mesh = scope.parseMesh( geometry, layer );			meshes[ layer.number ] = mesh;			if ( layer.parent === - 1 ) finalMeshes.push( mesh );			else meshes[ layer.parent ].add( mesh );		} );		this.applyPivots( finalMeshes );		return finalMeshes;	}	parseMesh( geometry, layer ) {		let mesh;		const materials = this.getMaterials( geometry.userData.matNames, layer.geometry.type );		this.duplicateUVs( geometry, materials );		if ( layer.geometry.type === 'points' ) mesh = new Points( geometry, materials );		else if ( layer.geometry.type === 'lines' ) mesh = new LineSegments( geometry, materials );		else mesh = new Mesh( geometry, materials );		if ( layer.name ) mesh.name = layer.name;		else mesh.name = this.defaultLayerName + '_layer_' + layer.number;		mesh.userData.pivot = layer.pivot;		return mesh;	}	// TODO: may need to be reversed in z to convert LWO to three.js coordinates	applyPivots( meshes ) {		meshes.forEach( function ( mesh ) {			mesh.traverse( function ( child ) {				const pivot = child.userData.pivot;				child.position.x += pivot[ 0 ];				child.position.y += pivot[ 1 ];				child.position.z += pivot[ 2 ];				if ( child.parent ) {					const parentPivot = child.parent.userData.pivot;					child.position.x -= parentPivot[ 0 ];					child.position.y -= parentPivot[ 1 ];					child.position.z -= parentPivot[ 2 ];				}			} );		} );	}	getMaterials( namesArray, type ) {		const materials = [];		const scope = this;		namesArray.forEach( function ( name, i ) {			materials[ i ] = scope.getMaterialByName( name );		} );		// convert materials to line or point mats if required		if ( type === 'points' || type === 'lines' ) {			materials.forEach( function ( mat, i ) {				const spec = {					color: mat.color,				};				if ( type === 'points' ) {					spec.size = 0.1;					spec.map = mat.map;					materials[ i ] = new PointsMaterial( spec );				} else if ( type === 'lines' ) {					materials[ i ] = new LineBasicMaterial( spec );				}			} );		}		// if there is only one material, return that directly instead of array		const filtered = materials.filter( Boolean );		if ( filtered.length === 1 ) return filtered[ 0 ];		return materials;	}	getMaterialByName( name ) {		return this.materials.filter( function ( m ) {			return m.name === name;		} )[ 0 ];	}	// If the material has an aoMap, duplicate UVs	duplicateUVs( geometry, materials ) {		let duplicateUVs = false;		if ( ! Array.isArray( materials ) ) {			if ( materials.aoMap ) duplicateUVs = true;		} else {			materials.forEach( function ( material ) {				if ( material.aoMap ) duplicateUVs = true;			} );		}		if ( ! duplicateUVs ) return;		geometry.setAttribute( 'uv2', new BufferAttribute( geometry.attributes.uv.array, 2 ) );	}}class MaterialParser {	constructor( textureLoader ) {		this.textureLoader = textureLoader;	}	parse() {		const materials = [];		this.textures = {};		for ( const name in _lwoTree.materials ) {			if ( _lwoTree.format === 'LWO3' ) {				materials.push( this.parseMaterial( _lwoTree.materials[ name ], name, _lwoTree.textures ) );			} else if ( _lwoTree.format === 'LWO2' ) {				materials.push( this.parseMaterialLwo2( _lwoTree.materials[ name ], name, _lwoTree.textures ) );			}		}		return materials;	}	parseMaterial( materialData, name, textures ) {		let params = {			name: name,			side: this.getSide( materialData.attributes ),			flatShading: this.getSmooth( materialData.attributes ),		};		const connections = this.parseConnections( materialData.connections, materialData.nodes );		const maps = this.parseTextureNodes( connections.maps );		this.parseAttributeImageMaps( connections.attributes, textures, maps, materialData.maps );		const attributes = this.parseAttributes( connections.attributes, maps );		this.parseEnvMap( connections, maps, attributes );		params = Object.assign( maps, params );		params = Object.assign( params, attributes );		const materialType = this.getMaterialType( connections.attributes );		return new materialType( params );	}	parseMaterialLwo2( materialData, name/*, textures*/ ) {		let params = {			name: name,			side: this.getSide( materialData.attributes ),			flatShading: this.getSmooth( materialData.attributes ),		};		const attributes = this.parseAttributes( materialData.attributes, {} );		params = Object.assign( params, attributes );		return new MeshPhongMaterial( params );	}	// Note: converting from left to right handed coords by switching x -> -x in vertices, and	// then switching mat FrontSide -> BackSide	// NB: this means that FrontSide and BackSide have been switched!	getSide( attributes ) {		if ( ! attributes.side ) return BackSide;		switch ( attributes.side ) {			case 0:			case 1:				return BackSide;			case 2: return FrontSide;			case 3: return DoubleSide;		}	}	getSmooth( attributes ) {		if ( ! attributes.smooth ) return true;		return ! attributes.smooth;	}	parseConnections( connections, nodes ) {		const materialConnections = {			maps: {}		};		const inputName = connections.inputName;		const inputNodeName = connections.inputNodeName;		const nodeName = connections.nodeName;		const scope = this;		inputName.forEach( function ( name, index ) {			if ( name === 'Material' ) {				const matNode = scope.getNodeByRefName( inputNodeName[ index ], nodes );				materialConnections.attributes = matNode.attributes;				materialConnections.envMap = matNode.fileName;				materialConnections.name = inputNodeName[ index ];			}		} );		nodeName.forEach( function ( name, index ) {			if ( name === materialConnections.name ) {				materialConnections.maps[ inputName[ index ] ] = scope.getNodeByRefName( inputNodeName[ index ], nodes );			}		} );		return materialConnections;	}	getNodeByRefName( refName, nodes ) {		for ( const name in nodes ) {			if ( nodes[ name ].refName === refName ) return nodes[ name ];		}	}	parseTextureNodes( textureNodes ) {		const maps = {};		for ( const name in textureNodes ) {			const node = textureNodes[ name ];			const path = node.fileName;			if ( ! path ) return;			const texture = this.loadTexture( path );			if ( node.widthWrappingMode !== undefined ) texture.wrapS = this.getWrappingType( node.widthWrappingMode );			if ( node.heightWrappingMode !== undefined ) texture.wrapT = this.getWrappingType( node.heightWrappingMode );			switch ( name ) {				case 'Color':					maps.map = texture;					break;				case 'Roughness':					maps.roughnessMap = texture;					maps.roughness = 1;					break;				case 'Specular':					maps.specularMap = texture;					maps.specular = 0xffffff;					break;				case 'Luminous':					maps.emissiveMap = texture;					maps.emissive = 0x808080;					break;				case 'Luminous Color':					maps.emissive = 0x808080;					break;				case 'Metallic':					maps.metalnessMap = texture;					maps.metalness = 1;					break;				case 'Transparency':				case 'Alpha':					maps.alphaMap = texture;					maps.transparent = true;					break;				case 'Normal':					maps.normalMap = texture;					if ( node.amplitude !== undefined ) maps.normalScale = new Vector2( node.amplitude, node.amplitude );					break;				case 'Bump':					maps.bumpMap = texture;					break;			}		}		// LWO BSDF materials can have both spec and rough, but this is not valid in three		if ( maps.roughnessMap && maps.specularMap ) delete maps.specularMap;		return maps;	}	// maps can also be defined on individual material attributes, parse those here	// This occurs on Standard (Phong) surfaces	parseAttributeImageMaps( attributes, textures, maps ) {		for ( const name in attributes ) {			const attribute = attributes[ name ];			if ( attribute.maps ) {				const mapData = attribute.maps[ 0 ];				const path = this.getTexturePathByIndex( mapData.imageIndex, textures );				if ( ! path ) return;				const texture = this.loadTexture( path );				if ( mapData.wrap !== undefined ) texture.wrapS = this.getWrappingType( mapData.wrap.w );				if ( mapData.wrap !== undefined ) texture.wrapT = this.getWrappingType( mapData.wrap.h );				switch ( name ) {					case 'Color':						maps.map = texture;						break;					case 'Diffuse':						maps.aoMap = texture;						break;					case 'Roughness':						maps.roughnessMap = texture;						maps.roughness = 1;						break;					case 'Specular':						maps.specularMap = texture;						maps.specular = 0xffffff;						break;					case 'Luminosity':						maps.emissiveMap = texture;						maps.emissive = 0x808080;						break;					case 'Metallic':						maps.metalnessMap = texture;						maps.metalness = 1;						break;					case 'Transparency':					case 'Alpha':						maps.alphaMap = texture;						maps.transparent = true;						break;					case 'Normal':						maps.normalMap = texture;						break;					case 'Bump':						maps.bumpMap = texture;						break;				}			}		}	}	parseAttributes( attributes, maps ) {		const params = {};		// don't use color data if color map is present		if ( attributes.Color && ! maps.map ) {			params.color = new Color().fromArray( attributes.Color.value );		} else params.color = new Color();		if ( attributes.Transparency && attributes.Transparency.value !== 0 ) {			params.opacity = 1 - attributes.Transparency.value;			params.transparent = true;		}		if ( attributes[ 'Bump Height' ] ) params.bumpScale = attributes[ 'Bump Height' ].value * 0.1;		if ( attributes[ 'Refraction Index' ] ) params.refractionRatio = 0.98 / attributes[ 'Refraction Index' ].value;		this.parsePhysicalAttributes( params, attributes, maps );		this.parseStandardAttributes( params, attributes, maps );		this.parsePhongAttributes( params, attributes, maps );		return params;	}	parsePhysicalAttributes( params, attributes/*, maps*/ ) {		if ( attributes.Clearcoat && attributes.Clearcoat.value > 0 ) {			params.clearcoat = attributes.Clearcoat.value;			if ( attributes[ 'Clearcoat Gloss' ] ) {				params.clearcoatRoughness = 0.5 * ( 1 - attributes[ 'Clearcoat Gloss' ].value );			}		}	}	parseStandardAttributes( params, attributes, maps ) {		if ( attributes.Luminous ) {			params.emissiveIntensity = attributes.Luminous.value;			if ( attributes[ 'Luminous Color' ] && ! maps.emissive ) {				params.emissive = new Color().fromArray( attributes[ 'Luminous Color' ].value );			} else {				params.emissive = new Color( 0x808080 );			}		}		if ( attributes.Roughness && ! maps.roughnessMap ) params.roughness = attributes.Roughness.value;		if ( attributes.Metallic && ! maps.metalnessMap ) params.metalness = attributes.Metallic.value;	}	parsePhongAttributes( params, attributes, maps ) {		if ( attributes.Diffuse ) params.color.multiplyScalar( attributes.Diffuse.value );		if ( attributes.Reflection ) {			params.reflectivity = attributes.Reflection.value;			params.combine = AddOperation;		}		if ( attributes.Luminosity ) {			params.emissiveIntensity = attributes.Luminosity.value;			if ( ! maps.emissiveMap && ! maps.map ) {				params.emissive = params.color;			} else {				params.emissive = new Color( 0x808080 );			}		}		// parse specular if there is no roughness - we will interpret the material as 'Phong' in this case		if ( ! attributes.Roughness && attributes.Specular && ! maps.specularMap ) {			if ( attributes[ 'Color Highlight' ] ) {				params.specular = new Color().setScalar( attributes.Specular.value ).lerp( params.color.clone().multiplyScalar( attributes.Specular.value ), attributes[ 'Color Highlight' ].value );			} else {				params.specular = new Color().setScalar( attributes.Specular.value );			}		}		if ( params.specular && attributes.Glossiness ) params.shininess = 7 + Math.pow( 2, attributes.Glossiness.value * 12 + 2 );	}	parseEnvMap( connections, maps, attributes ) {		if ( connections.envMap ) {			const envMap = this.loadTexture( connections.envMap );			if ( attributes.transparent && attributes.opacity < 0.999 ) {				envMap.mapping = EquirectangularRefractionMapping;				// Reflectivity and refraction mapping don't work well together in Phong materials				if ( attributes.reflectivity !== undefined ) {					delete attributes.reflectivity;					delete attributes.combine;				}				if ( attributes.metalness !== undefined ) {					attributes.metalness = 1; // For most transparent materials metalness should be set to 1 if not otherwise defined. If set to 0 no refraction will be visible				}				attributes.opacity = 1; // transparency fades out refraction, forcing opacity to 1 ensures a closer visual match to the material in Lightwave.			} else envMap.mapping = EquirectangularReflectionMapping;			maps.envMap = envMap;		}	}	// get texture defined at top level by its index	getTexturePathByIndex( index ) {		let fileName = '';		if ( ! _lwoTree.textures ) return fileName;		_lwoTree.textures.forEach( function ( texture ) {			if ( texture.index === index ) fileName = texture.fileName;		} );		return fileName;	}	loadTexture( path ) {		if ( ! path ) return null;		const texture = this.textureLoader.load(			path,			undefined,			undefined,			function () {				console.warn( 'LWOLoader: non-standard resource hierarchy. Use \`resourcePath\` parameter to specify root content directory.' );			}		);		return texture;	}	// 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge	getWrappingType( num ) {		switch ( num ) {			case 0:				console.warn( 'LWOLoader: "Reset" texture wrapping type is not supported in three.js' );				return ClampToEdgeWrapping;			case 1: return RepeatWrapping;			case 2: return MirroredRepeatWrapping;			case 3: return ClampToEdgeWrapping;		}	}	getMaterialType( nodeData ) {		if ( nodeData.Clearcoat && nodeData.Clearcoat.value > 0 ) return MeshPhysicalMaterial;		if ( nodeData.Roughness ) return MeshStandardMaterial;		return MeshPhongMaterial;	}}class GeometryParser {	parse( geoData, layer ) {		const geometry = new BufferGeometry();		geometry.setAttribute( 'position', new Float32BufferAttribute( geoData.points, 3 ) );		const indices = this.splitIndices( geoData.vertexIndices, geoData.polygonDimensions );		geometry.setIndex( indices );		this.parseGroups( geometry, geoData );		geometry.computeVertexNormals();		this.parseUVs( geometry, layer, indices );		this.parseMorphTargets( geometry, layer, indices );		// TODO: z may need to be reversed to account for coordinate system change		geometry.translate( - layer.pivot[ 0 ], - layer.pivot[ 1 ], - layer.pivot[ 2 ] );		// let userData = geometry.userData;		// geometry = geometry.toNonIndexed()		// geometry.userData = userData;		return geometry;	}	// split quads into tris	splitIndices( indices, polygonDimensions ) {		const remappedIndices = [];		let i = 0;		polygonDimensions.forEach( function ( dim ) {			if ( dim < 4 ) {				for ( let k = 0; k < dim; k ++ ) remappedIndices.push( indices[ i + k ] );			} else if ( dim === 4 ) {				remappedIndices.push(					indices[ i ],					indices[ i + 1 ],					indices[ i + 2 ],					indices[ i ],					indices[ i + 2 ],					indices[ i + 3 ]				);			} else if ( dim > 4 ) {				for ( let k = 1; k < dim - 1; k ++ ) {					remappedIndices.push( indices[ i ], indices[ i + k ], indices[ i + k + 1 ] );				}				console.warn( 'LWOLoader: polygons with greater than 4 sides are not supported' );			}			i += dim;		} );		return remappedIndices;	}	// NOTE: currently ignoring poly indices and assuming that they are intelligently ordered	parseGroups( geometry, geoData ) {		const tags = _lwoTree.tags;		const matNames = [];		let elemSize = 3;		if ( geoData.type === 'lines' ) elemSize = 2;		if ( geoData.type === 'points' ) elemSize = 1;		const remappedIndices = this.splitMaterialIndices( geoData.polygonDimensions, geoData.materialIndices );		let indexNum = 0; // create new indices in numerical order		const indexPairs = {}; // original indices mapped to numerical indices		let prevMaterialIndex;		let materialIndex;		let prevStart = 0;		let currentCount = 0;		for ( let i = 0; i < remappedIndices.length; i += 2 ) {			materialIndex = remappedIndices[ i + 1 ];			if ( i === 0 ) matNames[ indexNum ] = tags[ materialIndex ];			if ( prevMaterialIndex === undefined ) prevMaterialIndex = materialIndex;			if ( materialIndex !== prevMaterialIndex ) {				let currentIndex;				if ( indexPairs[ tags[ prevMaterialIndex ] ] ) {					currentIndex = indexPairs[ tags[ prevMaterialIndex ] ];				} else {					currentIndex = indexNum;					indexPairs[ tags[ prevMaterialIndex ] ] = indexNum;					matNames[ indexNum ] = tags[ prevMaterialIndex ];					indexNum ++;				}				geometry.addGroup( prevStart, currentCount, currentIndex );				prevStart += currentCount;				prevMaterialIndex = materialIndex;				currentCount = 0;			}			currentCount += elemSize;		}		// the loop above doesn't add the last group, do that here.		if ( geometry.groups.length > 0 ) {			let currentIndex;			if ( indexPairs[ tags[ materialIndex ] ] ) {				currentIndex = indexPairs[ tags[ materialIndex ] ];			} else {				currentIndex = indexNum;				indexPairs[ tags[ materialIndex ] ] = indexNum;				matNames[ indexNum ] = tags[ materialIndex ];			}			geometry.addGroup( prevStart, currentCount, currentIndex );		}		// Mat names from TAGS chunk, used to build up an array of materials for this geometry		geometry.userData.matNames = matNames;	}	splitMaterialIndices( polygonDimensions, indices ) {		const remappedIndices = [];		polygonDimensions.forEach( function ( dim, i ) {			if ( dim <= 3 ) {				remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] );			} else if ( dim === 4 ) {				remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ], indices[ i * 2 ], indices[ i * 2 + 1 ] );			} else {				 // ignore > 4 for now				for ( let k = 0; k < dim - 2; k ++ ) {					remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] );				}			}		} );		return remappedIndices;	}	// UV maps:	// 1: are defined via index into an array of points, not into a geometry	// - the geometry is also defined by an index into this array, but the indexes may not match	// 2: there can be any number of UV maps for a single geometry. Here these are combined,	// 	with preference given to the first map encountered	// 3: UV maps can be partial - that is, defined for only a part of the geometry	// 4: UV maps can be VMAP or VMAD (discontinuous, to allow for seams). In practice, most	// UV maps are defined as partially VMAP and partially VMAD	// VMADs are currently not supported	parseUVs( geometry, layer ) {		// start by creating a UV map set to zero for the whole geometry		const remappedUVs = Array.from( Array( geometry.attributes.position.count * 2 ), function () {			return 0;		} );		for ( const name in layer.uvs ) {			const uvs = layer.uvs[ name ].uvs;			const uvIndices = layer.uvs[ name ].uvIndices;			uvIndices.forEach( function ( i, j ) {				remappedUVs[ i * 2 ] = uvs[ j * 2 ];				remappedUVs[ i * 2 + 1 ] = uvs[ j * 2 + 1 ];			} );		}		geometry.setAttribute( 'uv', new Float32BufferAttribute( remappedUVs, 2 ) );	}	parseMorphTargets( geometry, layer ) {		let num = 0;		for ( const name in layer.morphTargets ) {			const remappedPoints = geometry.attributes.position.array.slice();			if ( ! geometry.morphAttributes.position ) geometry.morphAttributes.position = [];			const morphPoints = layer.morphTargets[ name ].points;			const morphIndices = layer.morphTargets[ name ].indices;			const type = layer.morphTargets[ name ].type;			morphIndices.forEach( function ( i, j ) {				if ( type === 'relative' ) {					remappedPoints[ i * 3 ] += morphPoints[ j * 3 ];					remappedPoints[ i * 3 + 1 ] += morphPoints[ j * 3 + 1 ];					remappedPoints[ i * 3 + 2 ] += morphPoints[ j * 3 + 2 ];				} else {					remappedPoints[ i * 3 ] = morphPoints[ j * 3 ];					remappedPoints[ i * 3 + 1 ] = morphPoints[ j * 3 + 1 ];					remappedPoints[ i * 3 + 2 ] = morphPoints[ j * 3 + 2 ];				}			} );			geometry.morphAttributes.position[ num ] = new Float32BufferAttribute( remappedPoints, 3 );			geometry.morphAttributes.position[ num ].name = name;			num ++;		}		geometry.morphTargetsRelative = false;	}}// ************** UTILITY FUNCTIONS **************function extractParentUrl( url, dir ) {	const index = url.indexOf( dir );	if ( index === - 1 ) return './';	return url.substr( 0, index );}export { LWOLoader };
 |