| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 | ( function () {	/** * You can use this geometry to create a decal mesh, that serves different kinds of purposes. * e.g. adding unique details to models, performing dynamic visual environmental changes or covering seams. * * Constructor parameter: * * mesh — Any mesh object * position — Position of the decal projector * orientation — Orientation of the decal projector * size — Size of the decal projector * * reference: http://blog.wolfire.com/2009/06/how-to-project-decals/ * */	class DecalGeometry extends THREE.BufferGeometry {		constructor( mesh, position, orientation, size ) {			super(); // buffers			const vertices = [];			const normals = [];			const uvs = []; // helpers			const plane = new THREE.Vector3(); // this matrix represents the transformation of the decal projector			const projectorMatrix = new THREE.Matrix4();			projectorMatrix.makeRotationFromEuler( orientation );			projectorMatrix.setPosition( position );			const projectorMatrixInverse = new THREE.Matrix4();			projectorMatrixInverse.copy( projectorMatrix ).invert(); // generate buffers			generate(); // build geometry			this.setAttribute( 'position', new THREE.Float32BufferAttribute( vertices, 3 ) );			this.setAttribute( 'normal', new THREE.Float32BufferAttribute( normals, 3 ) );			this.setAttribute( 'uv', new THREE.Float32BufferAttribute( uvs, 2 ) );			function generate() {				let decalVertices = [];				const vertex = new THREE.Vector3();				const normal = new THREE.Vector3(); // handle different geometry types				if ( mesh.geometry.isGeometry === true ) {					console.error( 'THREE.DecalGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' );					return;				}				const geometry = mesh.geometry;				const positionAttribute = geometry.attributes.position;				const normalAttribute = geometry.attributes.normal; // first, create an array of 'DecalVertex' objects				// three consecutive 'DecalVertex' objects represent a single face				//				// this data structure will be later used to perform the clipping				if ( geometry.index !== null ) {					// indexed THREE.BufferGeometry					const index = geometry.index;					for ( let i = 0; i < index.count; i ++ ) {						vertex.fromBufferAttribute( positionAttribute, index.getX( i ) );						normal.fromBufferAttribute( normalAttribute, index.getX( i ) );						pushDecalVertex( decalVertices, vertex, normal );					}				} else {					// non-indexed THREE.BufferGeometry					for ( let i = 0; i < positionAttribute.count; i ++ ) {						vertex.fromBufferAttribute( positionAttribute, i );						normal.fromBufferAttribute( normalAttribute, i );						pushDecalVertex( decalVertices, vertex, normal );					}				} // second, clip the geometry so that it doesn't extend out from the projector				decalVertices = clipGeometry( decalVertices, plane.set( 1, 0, 0 ) );				decalVertices = clipGeometry( decalVertices, plane.set( - 1, 0, 0 ) );				decalVertices = clipGeometry( decalVertices, plane.set( 0, 1, 0 ) );				decalVertices = clipGeometry( decalVertices, plane.set( 0, - 1, 0 ) );				decalVertices = clipGeometry( decalVertices, plane.set( 0, 0, 1 ) );				decalVertices = clipGeometry( decalVertices, plane.set( 0, 0, - 1 ) ); // third, generate final vertices, normals and uvs				for ( let i = 0; i < decalVertices.length; i ++ ) {					const decalVertex = decalVertices[ i ]; // create texture coordinates (we are still in projector space)					uvs.push( 0.5 + decalVertex.position.x / size.x, 0.5 + decalVertex.position.y / size.y ); // transform the vertex back to world space					decalVertex.position.applyMatrix4( projectorMatrix ); // now create vertex and normal buffer data					vertices.push( decalVertex.position.x, decalVertex.position.y, decalVertex.position.z );					normals.push( decalVertex.normal.x, decalVertex.normal.y, decalVertex.normal.z );				}			}			function pushDecalVertex( decalVertices, vertex, normal ) {				// transform the vertex to world space, then to projector space				vertex.applyMatrix4( mesh.matrixWorld );				vertex.applyMatrix4( projectorMatrixInverse );				normal.transformDirection( mesh.matrixWorld );				decalVertices.push( new DecalVertex( vertex.clone(), normal.clone() ) );			}			function clipGeometry( inVertices, plane ) {				const outVertices = [];				const s = 0.5 * Math.abs( size.dot( plane ) ); // a single iteration clips one face,				// which consists of three consecutive 'DecalVertex' objects				for ( let i = 0; i < inVertices.length; i += 3 ) {					let total = 0;					let nV1;					let nV2;					let nV3;					let nV4;					const d1 = inVertices[ i + 0 ].position.dot( plane ) - s;					const d2 = inVertices[ i + 1 ].position.dot( plane ) - s;					const d3 = inVertices[ i + 2 ].position.dot( plane ) - s;					const v1Out = d1 > 0;					const v2Out = d2 > 0;					const v3Out = d3 > 0; // calculate, how many vertices of the face lie outside of the clipping plane					total = ( v1Out ? 1 : 0 ) + ( v2Out ? 1 : 0 ) + ( v3Out ? 1 : 0 );					switch ( total ) {						case 0:						{							// the entire face lies inside of the plane, no clipping needed							outVertices.push( inVertices[ i ] );							outVertices.push( inVertices[ i + 1 ] );							outVertices.push( inVertices[ i + 2 ] );							break;						}						case 1:						{							// one vertex lies outside of the plane, perform clipping							if ( v1Out ) {								nV1 = inVertices[ i + 1 ];								nV2 = inVertices[ i + 2 ];								nV3 = clip( inVertices[ i ], nV1, plane, s );								nV4 = clip( inVertices[ i ], nV2, plane, s );							}							if ( v2Out ) {								nV1 = inVertices[ i ];								nV2 = inVertices[ i + 2 ];								nV3 = clip( inVertices[ i + 1 ], nV1, plane, s );								nV4 = clip( inVertices[ i + 1 ], nV2, plane, s );								outVertices.push( nV3 );								outVertices.push( nV2.clone() );								outVertices.push( nV1.clone() );								outVertices.push( nV2.clone() );								outVertices.push( nV3.clone() );								outVertices.push( nV4 );								break;							}							if ( v3Out ) {								nV1 = inVertices[ i ];								nV2 = inVertices[ i + 1 ];								nV3 = clip( inVertices[ i + 2 ], nV1, plane, s );								nV4 = clip( inVertices[ i + 2 ], nV2, plane, s );							}							outVertices.push( nV1.clone() );							outVertices.push( nV2.clone() );							outVertices.push( nV3 );							outVertices.push( nV4 );							outVertices.push( nV3.clone() );							outVertices.push( nV2.clone() );							break;						}						case 2:						{							// two vertices lies outside of the plane, perform clipping							if ( ! v1Out ) {								nV1 = inVertices[ i ].clone();								nV2 = clip( nV1, inVertices[ i + 1 ], plane, s );								nV3 = clip( nV1, inVertices[ i + 2 ], plane, s );								outVertices.push( nV1 );								outVertices.push( nV2 );								outVertices.push( nV3 );							}							if ( ! v2Out ) {								nV1 = inVertices[ i + 1 ].clone();								nV2 = clip( nV1, inVertices[ i + 2 ], plane, s );								nV3 = clip( nV1, inVertices[ i ], plane, s );								outVertices.push( nV1 );								outVertices.push( nV2 );								outVertices.push( nV3 );							}							if ( ! v3Out ) {								nV1 = inVertices[ i + 2 ].clone();								nV2 = clip( nV1, inVertices[ i ], plane, s );								nV3 = clip( nV1, inVertices[ i + 1 ], plane, s );								outVertices.push( nV1 );								outVertices.push( nV2 );								outVertices.push( nV3 );							}							break;						}						case 3:						{							// the entire face lies outside of the plane, so let's discard the corresponding vertices							break;						}					}				}				return outVertices;			}			function clip( v0, v1, p, s ) {				const d0 = v0.position.dot( p ) - s;				const d1 = v1.position.dot( p ) - s;				const s0 = d0 / ( d0 - d1 );				const v = new DecalVertex( new THREE.Vector3( v0.position.x + s0 * ( v1.position.x - v0.position.x ), v0.position.y + s0 * ( v1.position.y - v0.position.y ), v0.position.z + s0 * ( v1.position.z - v0.position.z ) ), new THREE.Vector3( v0.normal.x + s0 * ( v1.normal.x - v0.normal.x ), v0.normal.y + s0 * ( v1.normal.y - v0.normal.y ), v0.normal.z + s0 * ( v1.normal.z - v0.normal.z ) ) ); // need to clip more values (texture coordinates)? do it this way:				// intersectpoint.value = a.value + s * ( b.value - a.value );				return v;			}		}	} // helper	class DecalVertex {		constructor( position, normal ) {			this.position = position;			this.normal = normal;		}		clone() {			return new this.constructor( this.position.clone(), this.normal.clone() );		}	}	THREE.DecalGeometry = DecalGeometry;	THREE.DecalVertex = DecalVertex;} )();
 |