| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487 | import {	Vector3,	Vector4} from '../../../build/three.module.js';/** * NURBS utils * * See NURBSCurve and NURBSSurface. **//************************************************************** *	NURBS Utils **************************************************************//*Finds knot vector span.p : degreeu : parametric valueU : knot vectorreturns the span*/function findSpan( p, u, U ) {	const n = U.length - p - 1;	if ( u >= U[ n ] ) {		return n - 1;	}	if ( u <= U[ p ] ) {		return p;	}	let low = p;	let high = n;	let mid = Math.floor( ( low + high ) / 2 );	while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {		if ( u < U[ mid ] ) {			high = mid;		} else {			low = mid;		}		mid = Math.floor( ( low + high ) / 2 );	}	return mid;}/*Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2span : span in which u liesu    : parametric pointp    : degreeU    : knot vectorreturns array[p+1] with basis functions values.*/function calcBasisFunctions( span, u, p, U ) {	const N = [];	const left = [];	const right = [];	N[ 0 ] = 1.0;	for ( let j = 1; j <= p; ++ j ) {		left[ j ] = u - U[ span + 1 - j ];		right[ j ] = U[ span + j ] - u;		let saved = 0.0;		for ( let r = 0; r < j; ++ r ) {			const rv = right[ r + 1 ];			const lv = left[ j - r ];			const temp = N[ r ] / ( rv + lv );			N[ r ] = saved + rv * temp;			saved = lv * temp;		}		N[ j ] = saved;	}	return N;}/*Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.p : degree of B-SplineU : knot vectorP : control points (x, y, z, w)u : parametric pointreturns point for given u*/function calcBSplinePoint( p, U, P, u ) {	const span = findSpan( p, u, U );	const N = calcBasisFunctions( span, u, p, U );	const C = new Vector4( 0, 0, 0, 0 );	for ( let j = 0; j <= p; ++ j ) {		const point = P[ span - p + j ];		const Nj = N[ j ];		const wNj = point.w * Nj;		C.x += point.x * wNj;		C.y += point.y * wNj;		C.z += point.z * wNj;		C.w += point.w * Nj;	}	return C;}/*Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.span : span in which u liesu    : parametric pointp    : degreen    : number of derivatives to calculateU    : knot vectorreturns array[n+1][p+1] with basis functions derivatives*/function calcBasisFunctionDerivatives( span, u, p, n, U ) {	const zeroArr = [];	for ( let i = 0; i <= p; ++ i )		zeroArr[ i ] = 0.0;	const ders = [];	for ( let i = 0; i <= n; ++ i )		ders[ i ] = zeroArr.slice( 0 );	const ndu = [];	for ( let i = 0; i <= p; ++ i )		ndu[ i ] = zeroArr.slice( 0 );	ndu[ 0 ][ 0 ] = 1.0;	const left = zeroArr.slice( 0 );	const right = zeroArr.slice( 0 );	for ( let j = 1; j <= p; ++ j ) {		left[ j ] = u - U[ span + 1 - j ];		right[ j ] = U[ span + j ] - u;		let saved = 0.0;		for ( let r = 0; r < j; ++ r ) {			const rv = right[ r + 1 ];			const lv = left[ j - r ];			ndu[ j ][ r ] = rv + lv;			const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];			ndu[ r ][ j ] = saved + rv * temp;			saved = lv * temp;		}		ndu[ j ][ j ] = saved;	}	for ( let j = 0; j <= p; ++ j ) {		ders[ 0 ][ j ] = ndu[ j ][ p ];	}	for ( let r = 0; r <= p; ++ r ) {		let s1 = 0;		let s2 = 1;		const a = [];		for ( let i = 0; i <= p; ++ i ) {			a[ i ] = zeroArr.slice( 0 );		}		a[ 0 ][ 0 ] = 1.0;		for ( let k = 1; k <= n; ++ k ) {			let d = 0.0;			const rk = r - k;			const pk = p - k;			if ( r >= k ) {				a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];				d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];			}			const j1 = ( rk >= - 1 ) ? 1 : - rk;			const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;			for ( let j = j1; j <= j2; ++ j ) {				a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];				d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];			}			if ( r <= pk ) {				a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];				d += a[ s2 ][ k ] * ndu[ r ][ pk ];			}			ders[ k ][ r ] = d;			const j = s1;			s1 = s2;			s2 = j;		}	}	let r = p;	for ( let k = 1; k <= n; ++ k ) {		for ( let j = 0; j <= p; ++ j ) {			ders[ k ][ j ] *= r;		}		r *= p - k;	}	return ders;}/*	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.	p  : degree	U  : knot vector	P  : control points	u  : Parametric points	nd : number of derivatives	returns array[d+1] with derivatives	*/function calcBSplineDerivatives( p, U, P, u, nd ) {	const du = nd < p ? nd : p;	const CK = [];	const span = findSpan( p, u, U );	const nders = calcBasisFunctionDerivatives( span, u, p, du, U );	const Pw = [];	for ( let i = 0; i < P.length; ++ i ) {		const point = P[ i ].clone();		const w = point.w;		point.x *= w;		point.y *= w;		point.z *= w;		Pw[ i ] = point;	}	for ( let k = 0; k <= du; ++ k ) {		const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );		for ( let j = 1; j <= p; ++ j ) {			point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );		}		CK[ k ] = point;	}	for ( let k = du + 1; k <= nd + 1; ++ k ) {		CK[ k ] = new Vector4( 0, 0, 0 );	}	return CK;}/*Calculate "K over I"returns k!/(i!(k-i)!)*/function calcKoverI( k, i ) {	let nom = 1;	for ( let j = 2; j <= k; ++ j ) {		nom *= j;	}	let denom = 1;	for ( let j = 2; j <= i; ++ j ) {		denom *= j;	}	for ( let j = 2; j <= k - i; ++ j ) {		denom *= j;	}	return nom / denom;}/*Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.Pders : result of function calcBSplineDerivativesreturns array with derivatives for rational curve.*/function calcRationalCurveDerivatives( Pders ) {	const nd = Pders.length;	const Aders = [];	const wders = [];	for ( let i = 0; i < nd; ++ i ) {		const point = Pders[ i ];		Aders[ i ] = new Vector3( point.x, point.y, point.z );		wders[ i ] = point.w;	}	const CK = [];	for ( let k = 0; k < nd; ++ k ) {		const v = Aders[ k ].clone();		for ( let i = 1; i <= k; ++ i ) {			v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );		}		CK[ k ] = v.divideScalar( wders[ 0 ] );	}	return CK;}/*Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.p  : degreeU  : knot vectorP  : control points in homogeneous spaceu  : parametric pointsnd : number of derivativesreturns array with derivatives.*/function calcNURBSDerivatives( p, U, P, u, nd ) {	const Pders = calcBSplineDerivatives( p, U, P, u, nd );	return calcRationalCurveDerivatives( Pders );}/*Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.p1, p2 : degrees of B-Spline surfaceU1, U2 : knot vectorsP      : control points (x, y, z, w)u, v   : parametric valuesreturns point for given (u, v)*/function calcSurfacePoint( p, q, U, V, P, u, v, target ) {	const uspan = findSpan( p, u, U );	const vspan = findSpan( q, v, V );	const Nu = calcBasisFunctions( uspan, u, p, U );	const Nv = calcBasisFunctions( vspan, v, q, V );	const temp = [];	for ( let l = 0; l <= q; ++ l ) {		temp[ l ] = new Vector4( 0, 0, 0, 0 );		for ( let k = 0; k <= p; ++ k ) {			const point = P[ uspan - p + k ][ vspan - q + l ].clone();			const w = point.w;			point.x *= w;			point.y *= w;			point.z *= w;			temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );		}	}	const Sw = new Vector4( 0, 0, 0, 0 );	for ( let l = 0; l <= q; ++ l ) {		Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );	}	Sw.divideScalar( Sw.w );	target.set( Sw.x, Sw.y, Sw.z );}export {	findSpan,	calcBasisFunctions,	calcBSplinePoint,	calcBasisFunctionDerivatives,	calcBSplineDerivatives,	calcKoverI,	calcRationalCurveDerivatives,	calcNURBSDerivatives,	calcSurfacePoint,};
 |