| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525 | import {	Line3,	Mesh,	Plane,	Vector3} from '../../../build/three.module.js';import { ConvexGeometry } from '../geometries/ConvexGeometry.js';/** * @fileoverview This class can be used to subdivide a convex Geometry object into pieces. * * Usage: * * Use the function prepareBreakableObject to prepare a Mesh object to be broken. * * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane) * * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them. * * Requisites for the object: * *  - Mesh object must have a BufferGeometry (not Geometry) and a Material * *  - Vertex normals must be planar (not smoothed) * *  - The geometry must be convex (this is not checked in the library). You can create convex *  geometries with ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives *  can also be used. * * Note: This lib adds member variables to object's userData member (see prepareBreakableObject function) * Use with caution and read the code when using with other libs. * * @param {double} minSizeForBreak Min size a debris can have to break. * @param {double} smallDelta Max distance to consider that a point belongs to a plane. **/const _v1 = new Vector3();class ConvexObjectBreaker {	constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) {		this.minSizeForBreak = minSizeForBreak;		this.smallDelta = smallDelta;		this.tempLine1 = new Line3();		this.tempPlane1 = new Plane();		this.tempPlane2 = new Plane();		this.tempPlane_Cut = new Plane();		this.tempCM1 = new Vector3();		this.tempCM2 = new Vector3();		this.tempVector3 = new Vector3();		this.tempVector3_2 = new Vector3();		this.tempVector3_3 = new Vector3();		this.tempVector3_P0 = new Vector3();		this.tempVector3_P1 = new Vector3();		this.tempVector3_P2 = new Vector3();		this.tempVector3_N0 = new Vector3();		this.tempVector3_N1 = new Vector3();		this.tempVector3_AB = new Vector3();		this.tempVector3_CB = new Vector3();		this.tempResultObjects = { object1: null, object2: null };		this.segments = [];		const n = 30 * 30;		for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false;	}	prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {		// object is a Object3d (normally a Mesh), must have a BufferGeometry, and it must be convex.		// Its material property is propagated to its children (sub-pieces)		// mass must be > 0		if ( ! object.geometry.isBufferGeometry ) {			console.error( 'THREE.ConvexObjectBreaker.prepareBreakableObject(): Parameter object must have a BufferGeometry.' );		}		const userData = object.userData;		userData.mass = mass;		userData.velocity = velocity.clone();		userData.angularVelocity = angularVelocity.clone();		userData.breakable = breakable;	}	/*	 * @param {int} maxRadialIterations Iterations for radial cuts.	 * @param {int} maxRandomIterations Max random iterations for not-radial cuts	 *	 * Returns the array of pieces	 */	subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {		const debris = [];		const tempPlane1 = this.tempPlane1;		const tempPlane2 = this.tempPlane2;		this.tempVector3.addVectors( pointOfImpact, normal );		tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );		const maxTotalIterations = maxRandomIterations + maxRadialIterations;		const scope = this;		function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {			if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {				debris.push( subObject );				return;			}			let angle = Math.PI;			if ( numIterations === 0 ) {				tempPlane2.normal.copy( tempPlane1.normal );				tempPlane2.constant = tempPlane1.constant;			} else {				if ( numIterations <= maxRadialIterations ) {					angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;					// Rotate tempPlane2 at impact point around normal axis and the angle					scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );					tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );				} else {					angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;					// Rotate tempPlane2 at object position around normal axis and the angle					scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );					scope.tempVector3_3.copy( normal ).add( subObject.position );					tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );				}			}			// Perform the cut			scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );			const obj1 = scope.tempResultObjects.object1;			const obj2 = scope.tempResultObjects.object2;			if ( obj1 ) {				subdivideRadial( obj1, startAngle, angle, numIterations + 1 );			}			if ( obj2 ) {				subdivideRadial( obj2, angle, endAngle, numIterations + 1 );			}		}		subdivideRadial( object, 0, 2 * Math.PI, 0 );		return debris;	}	cutByPlane( object, plane, output ) {		// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.		// object2 can be null if the plane doesn't cut the object.		// object1 can be null only in case of internal error		// Returned value is number of pieces, 0 for error.		const geometry = object.geometry;		const coords = geometry.attributes.position.array;		const normals = geometry.attributes.normal.array;		const numPoints = coords.length / 3;		let numFaces = numPoints / 3;		let indices = geometry.getIndex();		if ( indices ) {			indices = indices.array;			numFaces = indices.length / 3;		}		function getVertexIndex( faceIdx, vert ) {			// vert = 0, 1 or 2.			const idx = faceIdx * 3 + vert;			return indices ? indices[ idx ] : idx;		}		const points1 = [];		const points2 = [];		const delta = this.smallDelta;		// Reset segments mark		const numPointPairs = numPoints * numPoints;		for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;		const p0 = this.tempVector3_P0;		const p1 = this.tempVector3_P1;		const n0 = this.tempVector3_N0;		const n1 = this.tempVector3_N1;		// Iterate through the faces to mark edges shared by coplanar faces		for ( let i = 0; i < numFaces - 1; i ++ ) {			const a1 = getVertexIndex( i, 0 );			const b1 = getVertexIndex( i, 1 );			const c1 = getVertexIndex( i, 2 );			// Assuming all 3 vertices have the same normal			n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );			for ( let j = i + 1; j < numFaces; j ++ ) {				const a2 = getVertexIndex( j, 0 );				const b2 = getVertexIndex( j, 1 );				const c2 = getVertexIndex( j, 2 );				// Assuming all 3 vertices have the same normal				n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );				const coplanar = 1 - n0.dot( n1 ) < delta;				if ( coplanar ) {					if ( a1 === a2 || a1 === b2 || a1 === c2 ) {						if ( b1 === a2 || b1 === b2 || b1 === c2 ) {							this.segments[ a1 * numPoints + b1 ] = true;							this.segments[ b1 * numPoints + a1 ] = true;						}	else {							this.segments[ c1 * numPoints + a1 ] = true;							this.segments[ a1 * numPoints + c1 ] = true;						}					}	else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {						this.segments[ c1 * numPoints + b1 ] = true;						this.segments[ b1 * numPoints + c1 ] = true;					}				}			}		}		// Transform the plane to object local space		const localPlane = this.tempPlane_Cut;		object.updateMatrix();		ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane );		// Iterate through the faces adding points to both pieces		for ( let i = 0; i < numFaces; i ++ ) {			const va = getVertexIndex( i, 0 );			const vb = getVertexIndex( i, 1 );			const vc = getVertexIndex( i, 2 );			for ( let segment = 0; segment < 3; segment ++ ) {				const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc );				const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va );				const segmentState = this.segments[ i0 * numPoints + i1 ];				if ( segmentState ) continue; // The segment already has been processed in another face				// Mark segment as processed (also inverted segment)				this.segments[ i0 * numPoints + i1 ] = true;				this.segments[ i1 * numPoints + i0 ] = true;				p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );				p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] );				// mark: 1 for negative side, 2 for positive side, 3 for coplanar point				let mark0 = 0;				let d = localPlane.distanceToPoint( p0 );				if ( d > delta ) {					mark0 = 2;					points2.push( p0.clone() );				} else if ( d < - delta ) {					mark0 = 1;					points1.push( p0.clone() );				} else {					mark0 = 3;					points1.push( p0.clone() );					points2.push( p0.clone() );				}				// mark: 1 for negative side, 2 for positive side, 3 for coplanar point				let mark1 = 0;				d = localPlane.distanceToPoint( p1 );				if ( d > delta ) {					mark1 = 2;					points2.push( p1.clone() );				} else if ( d < - delta ) {					mark1 = 1;					points1.push( p1.clone() );				}	else {					mark1 = 3;					points1.push( p1.clone() );					points2.push( p1.clone() );				}				if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) {					// Intersection of segment with the plane					this.tempLine1.start.copy( p0 );					this.tempLine1.end.copy( p1 );					let intersection = new Vector3();					intersection = localPlane.intersectLine( this.tempLine1, intersection );					if ( intersection === null ) {						// Shouldn't happen						console.error( 'Internal error: segment does not intersect plane.' );						output.segmentedObject1 = null;						output.segmentedObject2 = null;						return 0;					}					points1.push( intersection );					points2.push( intersection.clone() );				}			}		}		// Calculate debris mass (very fast and imprecise):		const newMass = object.userData.mass * 0.5;		// Calculate debris Center of Mass (again fast and imprecise)		this.tempCM1.set( 0, 0, 0 );		let radius1 = 0;		const numPoints1 = points1.length;		if ( numPoints1 > 0 ) {			for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );			this.tempCM1.divideScalar( numPoints1 );			for ( let i = 0; i < numPoints1; i ++ ) {				const p = points1[ i ];				p.sub( this.tempCM1 );				radius1 = Math.max( radius1, p.x, p.y, p.z );			}			this.tempCM1.add( object.position );		}		this.tempCM2.set( 0, 0, 0 );		let radius2 = 0;		const numPoints2 = points2.length;		if ( numPoints2 > 0 ) {			for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );			this.tempCM2.divideScalar( numPoints2 );			for ( let i = 0; i < numPoints2; i ++ ) {				const p = points2[ i ];				p.sub( this.tempCM2 );				radius2 = Math.max( radius2, p.x, p.y, p.z );			}			this.tempCM2.add( object.position );		}		let object1 = null;		let object2 = null;		let numObjects = 0;		if ( numPoints1 > 4 ) {			object1 = new Mesh( new ConvexGeometry( points1 ), object.material );			object1.position.copy( this.tempCM1 );			object1.quaternion.copy( object.quaternion );			this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );			numObjects ++;		}		if ( numPoints2 > 4 ) {			object2 = new Mesh( new ConvexGeometry( points2 ), object.material );			object2.position.copy( this.tempCM2 );			object2.quaternion.copy( object.quaternion );			this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );			numObjects ++;		}		output.object1 = object1;		output.object2 = object2;		return numObjects;	}	static transformFreeVector( v, m ) {		// input:		// vector interpreted as a free vector		// THREE.Matrix4 orthogonal matrix (matrix without scale)		const x = v.x, y = v.y, z = v.z;		const e = m.elements;		v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;		v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;		v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;		return v;	}	static transformFreeVectorInverse( v, m ) {		// input:		// vector interpreted as a free vector		// THREE.Matrix4 orthogonal matrix (matrix without scale)		const x = v.x, y = v.y, z = v.z;		const e = m.elements;		v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;		v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;		v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;		return v;	}	static transformTiedVectorInverse( v, m ) {		// input:		// vector interpreted as a tied (ordinary) vector		// THREE.Matrix4 orthogonal matrix (matrix without scale)		const x = v.x, y = v.y, z = v.z;		const e = m.elements;		v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];		v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];		v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];		return v;	}	static transformPlaneToLocalSpace( plane, m, resultPlane ) {		resultPlane.normal.copy( plane.normal );		resultPlane.constant = plane.constant;		const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );		ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m );		// recalculate constant (like in setFromNormalAndCoplanarPoint)		resultPlane.constant = - referencePoint.dot( resultPlane.normal );	}}export { ConvexObjectBreaker };
 |