| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 | // http://download.autodesk.com/us/systemdocs/help/2011/lustre/index.html?url=./files/WSc4e151a45a3b785a24c3d9a411df9298473-7ffd.htm,topicNumber=d0e9492import {	Loader,	FileLoader,	DataTexture,	DataTexture3D,	RGBFormat,	UnsignedByteType,	ClampToEdgeWrapping,	LinearFilter,} from '../../../build/three.module.js';export class LUT3dlLoader extends Loader {	load( url, onLoad, onProgress, onError ) {		const loader = new FileLoader( this.manager );		loader.setPath( this.path );		loader.setResponseType( 'text' );		loader.load( url, text => {			try {				onLoad( this.parse( text ) );			} catch ( e ) {				if ( onError ) {					onError( e );				} else {					console.error( e );				}				this.manager.itemError( url );			}		}, onProgress, onError );	}	parse( str ) {		// remove empty lines and comment lints		str = str			.replace( /^#.*?(\n|\r)/gm, '' )			.replace( /^\s*?(\n|\r)/gm, '' )			.trim();		const lines = str.split( /[\n\r]+/g );		// first line is the positions on the grid that are provided by the LUT		const gridLines = lines[ 0 ].trim().split( /\s+/g ).map( e => parseFloat( e ) );		const gridStep = gridLines[ 1 ] - gridLines[ 0 ];		const size = gridLines.length;		for ( let i = 1, l = gridLines.length; i < l; i ++ ) {			if ( gridStep !== ( gridLines[ i ] - gridLines[ i - 1 ] ) ) {				throw new Error( 'LUT3dlLoader: Inconsistent grid size not supported.' );			}		}		const dataArray = new Array( size * size * size * 3 );		let index = 0;		let maxOutputValue = 0.0;		for ( let i = 1, l = lines.length; i < l; i ++ ) {			const line = lines[ i ].trim();			const split = line.split( /\s/g );			const r = parseFloat( split[ 0 ] );			const g = parseFloat( split[ 1 ] );			const b = parseFloat( split[ 2 ] );			maxOutputValue = Math.max( maxOutputValue, r, g, b );			const bLayer = index % size;			const gLayer = Math.floor( index / size ) % size;			const rLayer = Math.floor( index / ( size * size ) ) % size;			// b grows first, then g, then r			const pixelIndex = bLayer * size * size + gLayer * size + rLayer;			dataArray[ 3 * pixelIndex + 0 ] = r;			dataArray[ 3 * pixelIndex + 1 ] = g;			dataArray[ 3 * pixelIndex + 2 ] = b;			index += 1;		}		// Find the apparent bit depth of the stored RGB values and scale the		// values to [ 0, 255 ].		const bits = Math.ceil( Math.log2( maxOutputValue ) );		const maxBitValue = Math.pow( 2.0, bits );		for ( let i = 0, l = dataArray.length; i < l; i ++ ) {			const val = dataArray[ i ];			dataArray[ i ] = 255 * val / maxBitValue;		}		const data = new Uint8Array( dataArray );		const texture = new DataTexture();		texture.image.data = data;		texture.image.width = size;		texture.image.height = size * size;		texture.format = RGBFormat;		texture.type = UnsignedByteType;		texture.magFilter = LinearFilter;		texture.minFilter = LinearFilter;		texture.wrapS = ClampToEdgeWrapping;		texture.wrapT = ClampToEdgeWrapping;		texture.generateMipmaps = false;		const texture3D = new DataTexture3D();		texture3D.image.data = data;		texture3D.image.width = size;		texture3D.image.height = size;		texture3D.image.depth = size;		texture3D.format = RGBFormat;		texture3D.type = UnsignedByteType;		texture3D.magFilter = LinearFilter;		texture3D.minFilter = LinearFilter;		texture3D.wrapS = ClampToEdgeWrapping;		texture3D.wrapT = ClampToEdgeWrapping;		texture3D.wrapR = ClampToEdgeWrapping;		texture3D.generateMipmaps = false;		return {			size,			texture,			texture3D,		};	}}
 |