| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 | import {	Curve,	Vector3,	Vector4} from '../../../build/three.module.js';import * as NURBSUtils from '../curves/NURBSUtils.js';/** * NURBS curve object * * Derives from Curve, overriding getPoint and getTangent. * * Implementation is based on (x, y [, z=0 [, w=1]]) control points with w=weight. * **/class NURBSCurve extends Curve {	constructor(		degree,		knots /* array of reals */,		controlPoints /* array of Vector(2|3|4) */,		startKnot /* index in knots */,		endKnot /* index in knots */	) {		super();		this.degree = degree;		this.knots = knots;		this.controlPoints = [];		// Used by periodic NURBS to remove hidden spans		this.startKnot = startKnot || 0;		this.endKnot = endKnot || ( this.knots.length - 1 );		for ( let i = 0; i < controlPoints.length; ++ i ) {			// ensure Vector4 for control points			const point = controlPoints[ i ];			this.controlPoints[ i ] = new Vector4( point.x, point.y, point.z, point.w );		}	}	getPoint( t, optionalTarget = new Vector3() ) {		const point = optionalTarget;		const u = this.knots[ this.startKnot ] + t * ( this.knots[ this.endKnot ] - this.knots[ this.startKnot ] ); // linear mapping t->u		// following results in (wx, wy, wz, w) homogeneous point		const hpoint = NURBSUtils.calcBSplinePoint( this.degree, this.knots, this.controlPoints, u );		if ( hpoint.w !== 1.0 ) {			// project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1)			hpoint.divideScalar( hpoint.w );		}		return point.set( hpoint.x, hpoint.y, hpoint.z );	}	getTangent( t, optionalTarget = new Vector3() ) {		const tangent = optionalTarget;		const u = this.knots[ 0 ] + t * ( this.knots[ this.knots.length - 1 ] - this.knots[ 0 ] );		const ders = NURBSUtils.calcNURBSDerivatives( this.degree, this.knots, this.controlPoints, u, 1 );		tangent.copy( ders[ 1 ] ).normalize();		return tangent;	}}export { NURBSCurve };
 |