| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 | ( function () {	/** * UnrealBloomPass is inspired by the bloom pass of Unreal Engine. It creates a * mip map chain of bloom textures and blurs them with different radii. Because * of the weighted combination of mips, and because larger blurs are done on * higher mips, this effect provides good quality and performance. * * Reference: * - https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/Bloom/ */	class UnrealBloomPass extends THREE.Pass {		constructor( resolution, strength, radius, threshold ) {			super();			this.strength = strength !== undefined ? strength : 1;			this.radius = radius;			this.threshold = threshold;			this.resolution = resolution !== undefined ? new THREE.Vector2( resolution.x, resolution.y ) : new THREE.Vector2( 256, 256 ); // create color only once here, reuse it later inside the render function			this.clearColor = new THREE.Color( 0, 0, 0 ); // render targets			const pars = {				minFilter: THREE.LinearFilter,				magFilter: THREE.LinearFilter,				format: THREE.RGBAFormat			};			this.renderTargetsHorizontal = [];			this.renderTargetsVertical = [];			this.nMips = 5;			let resx = Math.round( this.resolution.x / 2 );			let resy = Math.round( this.resolution.y / 2 );			this.renderTargetBright = new THREE.WebGLRenderTarget( resx, resy, pars );			this.renderTargetBright.texture.name = 'UnrealBloomPass.bright';			this.renderTargetBright.texture.generateMipmaps = false;			for ( let i = 0; i < this.nMips; i ++ ) {				const renderTargetHorizonal = new THREE.WebGLRenderTarget( resx, resy, pars );				renderTargetHorizonal.texture.name = 'UnrealBloomPass.h' + i;				renderTargetHorizonal.texture.generateMipmaps = false;				this.renderTargetsHorizontal.push( renderTargetHorizonal );				const renderTargetVertical = new THREE.WebGLRenderTarget( resx, resy, pars );				renderTargetVertical.texture.name = 'UnrealBloomPass.v' + i;				renderTargetVertical.texture.generateMipmaps = false;				this.renderTargetsVertical.push( renderTargetVertical );				resx = Math.round( resx / 2 );				resy = Math.round( resy / 2 );			} // luminosity high pass material			if ( THREE.LuminosityHighPassShader === undefined ) console.error( 'THREE.UnrealBloomPass relies on THREE.LuminosityHighPassShader' );			const highPassShader = THREE.LuminosityHighPassShader;			this.highPassUniforms = THREE.UniformsUtils.clone( highPassShader.uniforms );			this.highPassUniforms[ 'luminosityThreshold' ].value = threshold;			this.highPassUniforms[ 'smoothWidth' ].value = 0.01;			this.materialHighPassFilter = new THREE.ShaderMaterial( {				uniforms: this.highPassUniforms,				vertexShader: highPassShader.vertexShader,				fragmentShader: highPassShader.fragmentShader,				defines: {}			} ); // Gaussian Blur Materials			this.separableBlurMaterials = [];			const kernelSizeArray = [ 3, 5, 7, 9, 11 ];			resx = Math.round( this.resolution.x / 2 );			resy = Math.round( this.resolution.y / 2 );			for ( let i = 0; i < this.nMips; i ++ ) {				this.separableBlurMaterials.push( this.getSeperableBlurMaterial( kernelSizeArray[ i ] ) );				this.separableBlurMaterials[ i ].uniforms[ 'texSize' ].value = new THREE.Vector2( resx, resy );				resx = Math.round( resx / 2 );				resy = Math.round( resy / 2 );			} // Composite material			this.compositeMaterial = this.getCompositeMaterial( this.nMips );			this.compositeMaterial.uniforms[ 'blurTexture1' ].value = this.renderTargetsVertical[ 0 ].texture;			this.compositeMaterial.uniforms[ 'blurTexture2' ].value = this.renderTargetsVertical[ 1 ].texture;			this.compositeMaterial.uniforms[ 'blurTexture3' ].value = this.renderTargetsVertical[ 2 ].texture;			this.compositeMaterial.uniforms[ 'blurTexture4' ].value = this.renderTargetsVertical[ 3 ].texture;			this.compositeMaterial.uniforms[ 'blurTexture5' ].value = this.renderTargetsVertical[ 4 ].texture;			this.compositeMaterial.uniforms[ 'bloomStrength' ].value = strength;			this.compositeMaterial.uniforms[ 'bloomRadius' ].value = 0.1;			this.compositeMaterial.needsUpdate = true;			const bloomFactors = [ 1.0, 0.8, 0.6, 0.4, 0.2 ];			this.compositeMaterial.uniforms[ 'bloomFactors' ].value = bloomFactors;			this.bloomTintColors = [ new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ) ];			this.compositeMaterial.uniforms[ 'bloomTintColors' ].value = this.bloomTintColors; // copy material			if ( THREE.CopyShader === undefined ) {				console.error( 'THREE.UnrealBloomPass relies on THREE.CopyShader' );			}			const copyShader = THREE.CopyShader;			this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );			this.copyUniforms[ 'opacity' ].value = 1.0;			this.materialCopy = new THREE.ShaderMaterial( {				uniforms: this.copyUniforms,				vertexShader: copyShader.vertexShader,				fragmentShader: copyShader.fragmentShader,				blending: THREE.AdditiveBlending,				depthTest: false,				depthWrite: false,				transparent: true			} );			this.enabled = true;			this.needsSwap = false;			this._oldClearColor = new THREE.Color();			this.oldClearAlpha = 1;			this.basic = new THREE.MeshBasicMaterial();			this.fsQuad = new THREE.FullScreenQuad( null );		}		dispose() {			for ( let i = 0; i < this.renderTargetsHorizontal.length; i ++ ) {				this.renderTargetsHorizontal[ i ].dispose();			}			for ( let i = 0; i < this.renderTargetsVertical.length; i ++ ) {				this.renderTargetsVertical[ i ].dispose();			}			this.renderTargetBright.dispose();		}		setSize( width, height ) {			let resx = Math.round( width / 2 );			let resy = Math.round( height / 2 );			this.renderTargetBright.setSize( resx, resy );			for ( let i = 0; i < this.nMips; i ++ ) {				this.renderTargetsHorizontal[ i ].setSize( resx, resy );				this.renderTargetsVertical[ i ].setSize( resx, resy );				this.separableBlurMaterials[ i ].uniforms[ 'texSize' ].value = new THREE.Vector2( resx, resy );				resx = Math.round( resx / 2 );				resy = Math.round( resy / 2 );			}		}		render( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {			renderer.getClearColor( this._oldClearColor );			this.oldClearAlpha = renderer.getClearAlpha();			const oldAutoClear = renderer.autoClear;			renderer.autoClear = false;			renderer.setClearColor( this.clearColor, 0 );			if ( maskActive ) renderer.state.buffers.stencil.setTest( false ); // Render input to screen			if ( this.renderToScreen ) {				this.fsQuad.material = this.basic;				this.basic.map = readBuffer.texture;				renderer.setRenderTarget( null );				renderer.clear();				this.fsQuad.render( renderer );			} // 1. Extract Bright Areas			this.highPassUniforms[ 'tDiffuse' ].value = readBuffer.texture;			this.highPassUniforms[ 'luminosityThreshold' ].value = this.threshold;			this.fsQuad.material = this.materialHighPassFilter;			renderer.setRenderTarget( this.renderTargetBright );			renderer.clear();			this.fsQuad.render( renderer ); // 2. Blur All the mips progressively			let inputRenderTarget = this.renderTargetBright;			for ( let i = 0; i < this.nMips; i ++ ) {				this.fsQuad.material = this.separableBlurMaterials[ i ];				this.separableBlurMaterials[ i ].uniforms[ 'colorTexture' ].value = inputRenderTarget.texture;				this.separableBlurMaterials[ i ].uniforms[ 'direction' ].value = UnrealBloomPass.BlurDirectionX;				renderer.setRenderTarget( this.renderTargetsHorizontal[ i ] );				renderer.clear();				this.fsQuad.render( renderer );				this.separableBlurMaterials[ i ].uniforms[ 'colorTexture' ].value = this.renderTargetsHorizontal[ i ].texture;				this.separableBlurMaterials[ i ].uniforms[ 'direction' ].value = UnrealBloomPass.BlurDirectionY;				renderer.setRenderTarget( this.renderTargetsVertical[ i ] );				renderer.clear();				this.fsQuad.render( renderer );				inputRenderTarget = this.renderTargetsVertical[ i ];			} // Composite All the mips			this.fsQuad.material = this.compositeMaterial;			this.compositeMaterial.uniforms[ 'bloomStrength' ].value = this.strength;			this.compositeMaterial.uniforms[ 'bloomRadius' ].value = this.radius;			this.compositeMaterial.uniforms[ 'bloomTintColors' ].value = this.bloomTintColors;			renderer.setRenderTarget( this.renderTargetsHorizontal[ 0 ] );			renderer.clear();			this.fsQuad.render( renderer ); // Blend it additively over the input texture			this.fsQuad.material = this.materialCopy;			this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetsHorizontal[ 0 ].texture;			if ( maskActive ) renderer.state.buffers.stencil.setTest( true );			if ( this.renderToScreen ) {				renderer.setRenderTarget( null );				this.fsQuad.render( renderer );			} else {				renderer.setRenderTarget( readBuffer );				this.fsQuad.render( renderer );			} // Restore renderer settings			renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );			renderer.autoClear = oldAutoClear;		}		getSeperableBlurMaterial( kernelRadius ) {			return new THREE.ShaderMaterial( {				defines: {					'KERNEL_RADIUS': kernelRadius,					'SIGMA': kernelRadius				},				uniforms: {					'colorTexture': {						value: null					},					'texSize': {						value: new THREE.Vector2( 0.5, 0.5 )					},					'direction': {						value: new THREE.Vector2( 0.5, 0.5 )					}				},				vertexShader: `varying vec2 vUv;				void main() {					vUv = uv;					gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );				}`,				fragmentShader: `#include <common>				varying vec2 vUv;				uniform sampler2D colorTexture;				uniform vec2 texSize;				uniform vec2 direction;				float gaussianPdf(in float x, in float sigma) {					return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;				}				void main() {					vec2 invSize = 1.0 / texSize;					float fSigma = float(SIGMA);					float weightSum = gaussianPdf(0.0, fSigma);					vec3 diffuseSum = texture2D( colorTexture, vUv).rgb * weightSum;					for( int i = 1; i < KERNEL_RADIUS; i ++ ) {						float x = float(i);						float w = gaussianPdf(x, fSigma);						vec2 uvOffset = direction * invSize * x;						vec3 sample1 = texture2D( colorTexture, vUv + uvOffset).rgb;						vec3 sample2 = texture2D( colorTexture, vUv - uvOffset).rgb;						diffuseSum += (sample1 + sample2) * w;						weightSum += 2.0 * w;					}					gl_FragColor = vec4(diffuseSum/weightSum, 1.0);				}`			} );		}		getCompositeMaterial( nMips ) {			return new THREE.ShaderMaterial( {				defines: {					'NUM_MIPS': nMips				},				uniforms: {					'blurTexture1': {						value: null					},					'blurTexture2': {						value: null					},					'blurTexture3': {						value: null					},					'blurTexture4': {						value: null					},					'blurTexture5': {						value: null					},					'dirtTexture': {						value: null					},					'bloomStrength': {						value: 1.0					},					'bloomFactors': {						value: null					},					'bloomTintColors': {						value: null					},					'bloomRadius': {						value: 0.0					}				},				vertexShader: `varying vec2 vUv;				void main() {					vUv = uv;					gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );				}`,				fragmentShader: `varying vec2 vUv;				uniform sampler2D blurTexture1;				uniform sampler2D blurTexture2;				uniform sampler2D blurTexture3;				uniform sampler2D blurTexture4;				uniform sampler2D blurTexture5;				uniform sampler2D dirtTexture;				uniform float bloomStrength;				uniform float bloomRadius;				uniform float bloomFactors[NUM_MIPS];				uniform vec3 bloomTintColors[NUM_MIPS];				float lerpBloomFactor(const in float factor) {					float mirrorFactor = 1.2 - factor;					return mix(factor, mirrorFactor, bloomRadius);				}				void main() {					gl_FragColor = bloomStrength * ( lerpBloomFactor(bloomFactors[0]) * vec4(bloomTintColors[0], 1.0) * texture2D(blurTexture1, vUv) +						lerpBloomFactor(bloomFactors[1]) * vec4(bloomTintColors[1], 1.0) * texture2D(blurTexture2, vUv) +						lerpBloomFactor(bloomFactors[2]) * vec4(bloomTintColors[2], 1.0) * texture2D(blurTexture3, vUv) +						lerpBloomFactor(bloomFactors[3]) * vec4(bloomTintColors[3], 1.0) * texture2D(blurTexture4, vUv) +						lerpBloomFactor(bloomFactors[4]) * vec4(bloomTintColors[4], 1.0) * texture2D(blurTexture5, vUv) );				}`			} );		}	}	UnrealBloomPass.BlurDirectionX = new THREE.Vector2( 1.0, 0.0 );	UnrealBloomPass.BlurDirectionY = new THREE.Vector2( 0.0, 1.0 );	THREE.UnrealBloomPass = UnrealBloomPass;} )();
 |