| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 | ( function () {	class Refractor extends THREE.Mesh {		constructor( geometry, options = {} ) {			super( geometry );			this.type = 'Refractor';			const scope = this;			const color = options.color !== undefined ? new THREE.Color( options.color ) : new THREE.Color( 0x7F7F7F );			const textureWidth = options.textureWidth || 512;			const textureHeight = options.textureHeight || 512;			const clipBias = options.clipBias || 0;			const shader = options.shader || Refractor.RefractorShader; //			const virtualCamera = new THREE.PerspectiveCamera();			virtualCamera.matrixAutoUpdate = false;			virtualCamera.userData.refractor = true; //			const refractorPlane = new THREE.Plane();			const textureMatrix = new THREE.Matrix4(); // render target			const parameters = {				minFilter: THREE.LinearFilter,				magFilter: THREE.LinearFilter,				format: THREE.RGBFormat			};			const renderTarget = new THREE.WebGLRenderTarget( textureWidth, textureHeight, parameters );			if ( ! THREE.MathUtils.isPowerOfTwo( textureWidth ) || ! THREE.MathUtils.isPowerOfTwo( textureHeight ) ) {				renderTarget.texture.generateMipmaps = false;			} // material			this.material = new THREE.ShaderMaterial( {				uniforms: THREE.UniformsUtils.clone( shader.uniforms ),				vertexShader: shader.vertexShader,				fragmentShader: shader.fragmentShader,				transparent: true // ensures, refractors are drawn from farthest to closest			} );			this.material.uniforms[ 'color' ].value = color;			this.material.uniforms[ 'tDiffuse' ].value = renderTarget.texture;			this.material.uniforms[ 'textureMatrix' ].value = textureMatrix; // functions			const visible = function () {				const refractorWorldPosition = new THREE.Vector3();				const cameraWorldPosition = new THREE.Vector3();				const rotationMatrix = new THREE.Matrix4();				const view = new THREE.Vector3();				const normal = new THREE.Vector3();				return function visible( camera ) {					refractorWorldPosition.setFromMatrixPosition( scope.matrixWorld );					cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );					view.subVectors( refractorWorldPosition, cameraWorldPosition );					rotationMatrix.extractRotation( scope.matrixWorld );					normal.set( 0, 0, 1 );					normal.applyMatrix4( rotationMatrix );					return view.dot( normal ) < 0;				};			}();			const updateRefractorPlane = function () {				const normal = new THREE.Vector3();				const position = new THREE.Vector3();				const quaternion = new THREE.Quaternion();				const scale = new THREE.Vector3();				return function updateRefractorPlane() {					scope.matrixWorld.decompose( position, quaternion, scale );					normal.set( 0, 0, 1 ).applyQuaternion( quaternion ).normalize(); // flip the normal because we want to cull everything above the plane					normal.negate();					refractorPlane.setFromNormalAndCoplanarPoint( normal, position );				};			}();			const updateVirtualCamera = function () {				const clipPlane = new THREE.Plane();				const clipVector = new THREE.Vector4();				const q = new THREE.Vector4();				return function updateVirtualCamera( camera ) {					virtualCamera.matrixWorld.copy( camera.matrixWorld );					virtualCamera.matrixWorldInverse.copy( virtualCamera.matrixWorld ).invert();					virtualCamera.projectionMatrix.copy( camera.projectionMatrix );					virtualCamera.far = camera.far; // used in WebGLBackground					// The following code creates an oblique view frustum for clipping.					// see: Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping”.					// Journal of Game Development, Vol. 1, No. 2 (2005), Charles River Media, pp. 5–16					clipPlane.copy( refractorPlane );					clipPlane.applyMatrix4( virtualCamera.matrixWorldInverse );					clipVector.set( clipPlane.normal.x, clipPlane.normal.y, clipPlane.normal.z, clipPlane.constant ); // calculate the clip-space corner point opposite the clipping plane and					// transform it into camera space by multiplying it by the inverse of the projection matrix					const projectionMatrix = virtualCamera.projectionMatrix;					q.x = ( Math.sign( clipVector.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];					q.y = ( Math.sign( clipVector.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];					q.z = - 1.0;					q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ]; // calculate the scaled plane vector					clipVector.multiplyScalar( 2.0 / clipVector.dot( q ) ); // replacing the third row of the projection matrix					projectionMatrix.elements[ 2 ] = clipVector.x;					projectionMatrix.elements[ 6 ] = clipVector.y;					projectionMatrix.elements[ 10 ] = clipVector.z + 1.0 - clipBias;					projectionMatrix.elements[ 14 ] = clipVector.w;				};			}(); // This will update the texture matrix that is used for projective texture mapping in the shader.			// see: http://developer.download.nvidia.com/assets/gamedev/docs/projective_texture_mapping.pdf			function updateTextureMatrix( camera ) {				// this matrix does range mapping to [ 0, 1 ]				textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); // we use "Object Linear Texgen", so we need to multiply the texture matrix T				// (matrix above) with the projection and view matrix of the virtual camera				// and the model matrix of the refractor				textureMatrix.multiply( camera.projectionMatrix );				textureMatrix.multiply( camera.matrixWorldInverse );				textureMatrix.multiply( scope.matrixWorld );			} //			function render( renderer, scene, camera ) {				scope.visible = false;				const currentRenderTarget = renderer.getRenderTarget();				const currentXrEnabled = renderer.xr.enabled;				const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;				renderer.xr.enabled = false; // avoid camera modification				renderer.shadowMap.autoUpdate = false; // avoid re-computing shadows				renderer.setRenderTarget( renderTarget );				if ( renderer.autoClear === false ) renderer.clear();				renderer.render( scene, virtualCamera );				renderer.xr.enabled = currentXrEnabled;				renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;				renderer.setRenderTarget( currentRenderTarget ); // restore viewport				const viewport = camera.viewport;				if ( viewport !== undefined ) {					renderer.state.viewport( viewport );				}				scope.visible = true;			} //			this.onBeforeRender = function ( renderer, scene, camera ) {				// Render				renderTarget.texture.encoding = renderer.outputEncoding; // ensure refractors are rendered only once per frame				if ( camera.userData.refractor === true ) return; // avoid rendering when the refractor is viewed from behind				if ( ! visible( camera ) === true ) return; // update				updateRefractorPlane();				updateTextureMatrix( camera );				updateVirtualCamera( camera );				render( renderer, scene, camera );			};			this.getRenderTarget = function () {				return renderTarget;			};		}	}	Refractor.prototype.isRefractor = true;	Refractor.RefractorShader = {		uniforms: {			'color': {				value: null			},			'tDiffuse': {				value: null			},			'textureMatrix': {				value: null			}		},		vertexShader:  /* glsl */  `		uniform mat4 textureMatrix;		varying vec4 vUv;		void main() {			vUv = textureMatrix * vec4( position, 1.0 );			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );		}`,		fragmentShader:  /* glsl */  `		uniform vec3 color;		uniform sampler2D tDiffuse;		varying vec4 vUv;		float blendOverlay( float base, float blend ) {			return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );		}		vec3 blendOverlay( vec3 base, vec3 blend ) {			return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );		}		void main() {			vec4 base = texture2DProj( tDiffuse, vUv );			gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );		}`	};	THREE.Refractor = Refractor;} )();
 |