| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 | ( function () {	// http://download.autodesk.com/us/systemdocs/help/2011/lustre/index.html?url=./files/WSc4e151a45a3b785a24c3d9a411df9298473-7ffd.htm,topicNumber=d0e9492	class LUT3dlLoader extends THREE.Loader {		load( url, onLoad, onProgress, onError ) {			const loader = new THREE.FileLoader( this.manager );			loader.setPath( this.path );			loader.setResponseType( 'text' );			loader.load( url, text => {				try {					onLoad( this.parse( text ) );				} catch ( e ) {					if ( onError ) {						onError( e );					} else {						console.error( e );					}					this.manager.itemError( url );				}			}, onProgress, onError );		}		parse( str ) {			// remove empty lines and comment lints			str = str.replace( /^#.*?(\n|\r)/gm, '' ).replace( /^\s*?(\n|\r)/gm, '' ).trim();			const lines = str.split( /[\n\r]+/g ); // first line is the positions on the grid that are provided by the LUT			const gridLines = lines[ 0 ].trim().split( /\s+/g ).map( e => parseFloat( e ) );			const gridStep = gridLines[ 1 ] - gridLines[ 0 ];			const size = gridLines.length;			for ( let i = 1, l = gridLines.length; i < l; i ++ ) {				if ( gridStep !== gridLines[ i ] - gridLines[ i - 1 ] ) {					throw new Error( 'LUT3dlLoader: Inconsistent grid size not supported.' );				}			}			const dataArray = new Array( size * size * size * 3 );			let index = 0;			let maxOutputValue = 0.0;			for ( let i = 1, l = lines.length; i < l; i ++ ) {				const line = lines[ i ].trim();				const split = line.split( /\s/g );				const r = parseFloat( split[ 0 ] );				const g = parseFloat( split[ 1 ] );				const b = parseFloat( split[ 2 ] );				maxOutputValue = Math.max( maxOutputValue, r, g, b );				const bLayer = index % size;				const gLayer = Math.floor( index / size ) % size;				const rLayer = Math.floor( index / ( size * size ) ) % size; // b grows first, then g, then r				const pixelIndex = bLayer * size * size + gLayer * size + rLayer;				dataArray[ 3 * pixelIndex + 0 ] = r;				dataArray[ 3 * pixelIndex + 1 ] = g;				dataArray[ 3 * pixelIndex + 2 ] = b;				index += 1;			} // Find the apparent bit depth of the stored RGB values and scale the			// values to [ 0, 255 ].			const bits = Math.ceil( Math.log2( maxOutputValue ) );			const maxBitValue = Math.pow( 2.0, bits );			for ( let i = 0, l = dataArray.length; i < l; i ++ ) {				const val = dataArray[ i ];				dataArray[ i ] = 255 * val / maxBitValue;			}			const data = new Uint8Array( dataArray );			const texture = new THREE.DataTexture();			texture.image.data = data;			texture.image.width = size;			texture.image.height = size * size;			texture.format = THREE.RGBFormat;			texture.type = THREE.UnsignedByteType;			texture.magFilter = THREE.LinearFilter;			texture.minFilter = THREE.LinearFilter;			texture.wrapS = THREE.ClampToEdgeWrapping;			texture.wrapT = THREE.ClampToEdgeWrapping;			texture.generateMipmaps = false;			const texture3D = new THREE.DataTexture3D();			texture3D.image.data = data;			texture3D.image.width = size;			texture3D.image.height = size;			texture3D.image.depth = size;			texture3D.format = THREE.RGBFormat;			texture3D.type = THREE.UnsignedByteType;			texture3D.magFilter = THREE.LinearFilter;			texture3D.minFilter = THREE.LinearFilter;			texture3D.wrapS = THREE.ClampToEdgeWrapping;			texture3D.wrapT = THREE.ClampToEdgeWrapping;			texture3D.wrapR = THREE.ClampToEdgeWrapping;			texture3D.generateMipmaps = false;			return {				size,				texture,				texture3D			};		}	}	THREE.LUT3dlLoader = LUT3dlLoader;} )();
 |