| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 | ( function () {	class LightProbeGenerator {		// https://www.ppsloan.org/publications/StupidSH36.pdf		static fromCubeTexture( cubeTexture ) {			let totalWeight = 0;			const coord = new THREE.Vector3();			const dir = new THREE.Vector3();			const color = new THREE.Color();			const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];			const sh = new THREE.SphericalHarmonics3();			const shCoefficients = sh.coefficients;			for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {				const image = cubeTexture.image[ faceIndex ];				const width = image.width;				const height = image.height;				const canvas = document.createElement( 'canvas' );				canvas.width = width;				canvas.height = height;				const context = canvas.getContext( '2d' );				context.drawImage( image, 0, 0, width, height );				const imageData = context.getImageData( 0, 0, width, height );				const data = imageData.data;				const imageWidth = imageData.width; // assumed to be square				const pixelSize = 2 / imageWidth;				for ( let i = 0, il = data.length; i < il; i += 4 ) {					// RGBA assumed					// pixel color					color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 ); // convert to linear color space					convertColorToLinear( color, cubeTexture.encoding ); // pixel coordinate on unit cube					const pixelIndex = i / 4;					const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;					const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;					switch ( faceIndex ) {						case 0:							coord.set( - 1, row, - col );							break;						case 1:							coord.set( 1, row, col );							break;						case 2:							coord.set( - col, 1, - row );							break;						case 3:							coord.set( - col, - 1, row );							break;						case 4:							coord.set( - col, row, 1 );							break;						case 5:							coord.set( col, row, - 1 );							break;					} // weight assigned to this pixel					const lengthSq = coord.lengthSq();					const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );					totalWeight += weight; // direction vector to this pixel					dir.copy( coord ).normalize(); // evaluate SH basis functions in direction dir					THREE.SphericalHarmonics3.getBasisAt( dir, shBasis ); // accummuulate					for ( let j = 0; j < 9; j ++ ) {						shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;						shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;						shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;					}				}			} // normalize			const norm = 4 * Math.PI / totalWeight;			for ( let j = 0; j < 9; j ++ ) {				shCoefficients[ j ].x *= norm;				shCoefficients[ j ].y *= norm;				shCoefficients[ j ].z *= norm;			}			return new THREE.LightProbe( sh );		}		static fromCubeRenderTarget( renderer, cubeRenderTarget ) {			// The renderTarget must be set to RGBA in order to make readRenderTargetPixels works			let totalWeight = 0;			const coord = new THREE.Vector3();			const dir = new THREE.Vector3();			const color = new THREE.Color();			const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];			const sh = new THREE.SphericalHarmonics3();			const shCoefficients = sh.coefficients;			for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {				const imageWidth = cubeRenderTarget.width; // assumed to be square				const data = new Uint8Array( imageWidth * imageWidth * 4 );				renderer.readRenderTargetPixels( cubeRenderTarget, 0, 0, imageWidth, imageWidth, data, faceIndex );				const pixelSize = 2 / imageWidth;				for ( let i = 0, il = data.length; i < il; i += 4 ) {					// RGBA assumed					// pixel color					color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 ); // convert to linear color space					convertColorToLinear( color, cubeRenderTarget.texture.encoding ); // pixel coordinate on unit cube					const pixelIndex = i / 4;					const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;					const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;					switch ( faceIndex ) {						case 0:							coord.set( 1, row, - col );							break;						case 1:							coord.set( - 1, row, col );							break;						case 2:							coord.set( col, 1, - row );							break;						case 3:							coord.set( col, - 1, row );							break;						case 4:							coord.set( col, row, 1 );							break;						case 5:							coord.set( - col, row, - 1 );							break;					} // weight assigned to this pixel					const lengthSq = coord.lengthSq();					const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );					totalWeight += weight; // direction vector to this pixel					dir.copy( coord ).normalize(); // evaluate SH basis functions in direction dir					THREE.SphericalHarmonics3.getBasisAt( dir, shBasis ); // accummuulate					for ( let j = 0; j < 9; j ++ ) {						shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;						shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;						shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;					}				}			} // normalize			const norm = 4 * Math.PI / totalWeight;			for ( let j = 0; j < 9; j ++ ) {				shCoefficients[ j ].x *= norm;				shCoefficients[ j ].y *= norm;				shCoefficients[ j ].z *= norm;			}			return new THREE.LightProbe( sh );		}	}	function convertColorToLinear( color, encoding ) {		switch ( encoding ) {			case THREE.sRGBEncoding:				color.convertSRGBToLinear();				break;			case THREE.LinearEncoding:				break;			default:				console.warn( 'WARNING: LightProbeGenerator convertColorToLinear() encountered an unsupported encoding.' );				break;		}		return color;	}	THREE.LightProbeGenerator = LightProbeGenerator;} )();
 |