| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 | import {	LinearFilter,	LinearMipmapLinearFilter,	MeshBasicMaterial,	NoBlending,	RGBAFormat,	ShaderMaterial,	UniformsUtils,	WebGLRenderTarget} from '../../../build/three.module.js';import { Pass, FullScreenQuad } from './Pass.js';import { CopyShader } from '../shaders/CopyShader.js';import { LuminosityShader } from '../shaders/LuminosityShader.js';import { ToneMapShader } from '../shaders/ToneMapShader.js';/** * Generate a texture that represents the luminosity of the current scene, adapted over time * to simulate the optic nerve responding to the amount of light it is receiving. * Based on a GDC2007 presentation by Wolfgang Engel titled "Post-Processing Pipeline" * * Full-screen tone-mapping shader based on http://www.graphics.cornell.edu/~jaf/publications/sig02_paper.pdf */class AdaptiveToneMappingPass extends Pass {	constructor( adaptive, resolution ) {		super();		this.resolution = ( resolution !== undefined ) ? resolution : 256;		this.needsInit = true;		this.adaptive = adaptive !== undefined ? !! adaptive : true;		this.luminanceRT = null;		this.previousLuminanceRT = null;		this.currentLuminanceRT = null;		if ( CopyShader === undefined ) console.error( 'THREE.AdaptiveToneMappingPass relies on CopyShader' );		const copyShader = CopyShader;		this.copyUniforms = UniformsUtils.clone( copyShader.uniforms );		this.materialCopy = new ShaderMaterial( {			uniforms: this.copyUniforms,			vertexShader: copyShader.vertexShader,			fragmentShader: copyShader.fragmentShader,			blending: NoBlending,			depthTest: false		} );		if ( LuminosityShader === undefined )			console.error( 'THREE.AdaptiveToneMappingPass relies on LuminosityShader' );		this.materialLuminance = new ShaderMaterial( {			uniforms: UniformsUtils.clone( LuminosityShader.uniforms ),			vertexShader: LuminosityShader.vertexShader,			fragmentShader: LuminosityShader.fragmentShader,			blending: NoBlending		} );		this.adaptLuminanceShader = {			defines: {				'MIP_LEVEL_1X1': ( Math.log( this.resolution ) / Math.log( 2.0 ) ).toFixed( 1 )			},			uniforms: {				'lastLum': { value: null },				'currentLum': { value: null },				'minLuminance': { value: 0.01 },				'delta': { value: 0.016 },				'tau': { value: 1.0 }			},			vertexShader:				`varying vec2 vUv;				void main() {					vUv = uv;					gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );				}`,			fragmentShader:				`varying vec2 vUv;				uniform sampler2D lastLum;				uniform sampler2D currentLum;				uniform float minLuminance;				uniform float delta;				uniform float tau;				void main() {					vec4 lastLum = texture2D( lastLum, vUv, MIP_LEVEL_1X1 );					vec4 currentLum = texture2D( currentLum, vUv, MIP_LEVEL_1X1 );					float fLastLum = max( minLuminance, lastLum.r );					float fCurrentLum = max( minLuminance, currentLum.r );					//The adaption seems to work better in extreme lighting differences					//if the input luminance is squared.					fCurrentLum *= fCurrentLum;					// Adapt the luminance using Pattanaik's technique					float fAdaptedLum = fLastLum + (fCurrentLum - fLastLum) * (1.0 - exp(-delta * tau));					// "fAdaptedLum = sqrt(fAdaptedLum);					gl_FragColor.r = fAdaptedLum;				}`		};		this.materialAdaptiveLum = new ShaderMaterial( {			uniforms: UniformsUtils.clone( this.adaptLuminanceShader.uniforms ),			vertexShader: this.adaptLuminanceShader.vertexShader,			fragmentShader: this.adaptLuminanceShader.fragmentShader,			defines: Object.assign( {}, this.adaptLuminanceShader.defines ),			blending: NoBlending		} );		if ( ToneMapShader === undefined )			console.error( 'THREE.AdaptiveToneMappingPass relies on ToneMapShader' );		this.materialToneMap = new ShaderMaterial( {			uniforms: UniformsUtils.clone( ToneMapShader.uniforms ),			vertexShader: ToneMapShader.vertexShader,			fragmentShader: ToneMapShader.fragmentShader,			blending: NoBlending		} );		this.fsQuad = new FullScreenQuad( null );	}	render( renderer, writeBuffer, readBuffer, deltaTime/*, maskActive*/ ) {		if ( this.needsInit ) {			this.reset( renderer );			this.luminanceRT.texture.type = readBuffer.texture.type;			this.previousLuminanceRT.texture.type = readBuffer.texture.type;			this.currentLuminanceRT.texture.type = readBuffer.texture.type;			this.needsInit = false;		}		if ( this.adaptive ) {			//Render the luminance of the current scene into a render target with mipmapping enabled			this.fsQuad.material = this.materialLuminance;			this.materialLuminance.uniforms.tDiffuse.value = readBuffer.texture;			renderer.setRenderTarget( this.currentLuminanceRT );			this.fsQuad.render( renderer );			//Use the new luminance values, the previous luminance and the frame delta to			//adapt the luminance over time.			this.fsQuad.material = this.materialAdaptiveLum;			this.materialAdaptiveLum.uniforms.delta.value = deltaTime;			this.materialAdaptiveLum.uniforms.lastLum.value = this.previousLuminanceRT.texture;			this.materialAdaptiveLum.uniforms.currentLum.value = this.currentLuminanceRT.texture;			renderer.setRenderTarget( this.luminanceRT );			this.fsQuad.render( renderer );			//Copy the new adapted luminance value so that it can be used by the next frame.			this.fsQuad.material = this.materialCopy;			this.copyUniforms.tDiffuse.value = this.luminanceRT.texture;			renderer.setRenderTarget( this.previousLuminanceRT );			this.fsQuad.render( renderer );		}		this.fsQuad.material = this.materialToneMap;		this.materialToneMap.uniforms.tDiffuse.value = readBuffer.texture;		if ( this.renderToScreen ) {			renderer.setRenderTarget( null );			this.fsQuad.render( renderer );		} else {			renderer.setRenderTarget( writeBuffer );			if ( this.clear ) renderer.clear();			this.fsQuad.render( renderer );		}	}	reset() {		// render targets		if ( this.luminanceRT ) {			this.luminanceRT.dispose();		}		if ( this.currentLuminanceRT ) {			this.currentLuminanceRT.dispose();		}		if ( this.previousLuminanceRT ) {			this.previousLuminanceRT.dispose();		}		const pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat }; // was RGB format. changed to RGBA format. see discussion in #8415 / #8450		this.luminanceRT = new WebGLRenderTarget( this.resolution, this.resolution, pars );		this.luminanceRT.texture.name = 'AdaptiveToneMappingPass.l';		this.luminanceRT.texture.generateMipmaps = false;		this.previousLuminanceRT = new WebGLRenderTarget( this.resolution, this.resolution, pars );		this.previousLuminanceRT.texture.name = 'AdaptiveToneMappingPass.pl';		this.previousLuminanceRT.texture.generateMipmaps = false;		// We only need mipmapping for the current luminosity because we want a down-sampled version to sample in our adaptive shader		pars.minFilter = LinearMipmapLinearFilter;		pars.generateMipmaps = true;		this.currentLuminanceRT = new WebGLRenderTarget( this.resolution, this.resolution, pars );		this.currentLuminanceRT.texture.name = 'AdaptiveToneMappingPass.cl';		if ( this.adaptive ) {			this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ] = '';			this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;		}		//Put something in the adaptive luminance texture so that the scene can render initially		this.fsQuad.material = new MeshBasicMaterial( { color: 0x777777 } );		this.materialLuminance.needsUpdate = true;		this.materialAdaptiveLum.needsUpdate = true;		this.materialToneMap.needsUpdate = true;		// renderer.render( this.scene, this.camera, this.luminanceRT );		// renderer.render( this.scene, this.camera, this.previousLuminanceRT );		// renderer.render( this.scene, this.camera, this.currentLuminanceRT );	}	setAdaptive( adaptive ) {		if ( adaptive ) {			this.adaptive = true;			this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ] = '';			this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;		} else {			this.adaptive = false;			delete this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ];			this.materialToneMap.uniforms.luminanceMap.value = null;		}		this.materialToneMap.needsUpdate = true;	}	setAdaptionRate( rate ) {		if ( rate ) {			this.materialAdaptiveLum.uniforms.tau.value = Math.abs( rate );		}	}	setMinLuminance( minLum ) {		if ( minLum ) {			this.materialToneMap.uniforms.minLuminance.value = minLum;			this.materialAdaptiveLum.uniforms.minLuminance.value = minLum;		}	}	setMaxLuminance( maxLum ) {		if ( maxLum ) {			this.materialToneMap.uniforms.maxLuminance.value = maxLum;		}	}	setAverageLuminance( avgLum ) {		if ( avgLum ) {			this.materialToneMap.uniforms.averageLuminance.value = avgLum;		}	}	setMiddleGrey( middleGrey ) {		if ( middleGrey ) {			this.materialToneMap.uniforms.middleGrey.value = middleGrey;		}	}	dispose() {		if ( this.luminanceRT ) {			this.luminanceRT.dispose();		}		if ( this.previousLuminanceRT ) {			this.previousLuminanceRT.dispose();		}		if ( this.currentLuminanceRT ) {			this.currentLuminanceRT.dispose();		}		if ( this.materialLuminance ) {			this.materialLuminance.dispose();		}		if ( this.materialAdaptiveLum ) {			this.materialAdaptiveLum.dispose();		}		if ( this.materialCopy ) {			this.materialCopy.dispose();		}		if ( this.materialToneMap ) {			this.materialToneMap.dispose();		}	}}export { AdaptiveToneMappingPass };
 |