| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | ( function () {	/** * Work based on : * http://slayvin.net : Flat mirror for three.js * http://www.adelphi.edu/~stemkoski : An implementation of water shader based on the flat mirror * http://29a.ch/ && http://29a.ch/slides/2012/webglwater/ : Water shader explanations in WebGL */	class Water extends THREE.Mesh {		constructor( geometry, options = {} ) {			super( geometry );			const scope = this;			const textureWidth = options.textureWidth !== undefined ? options.textureWidth : 512;			const textureHeight = options.textureHeight !== undefined ? options.textureHeight : 512;			const clipBias = options.clipBias !== undefined ? options.clipBias : 0.0;			const alpha = options.alpha !== undefined ? options.alpha : 1.0;			const time = options.time !== undefined ? options.time : 0.0;			const normalSampler = options.waterNormals !== undefined ? options.waterNormals : null;			const sunDirection = options.sunDirection !== undefined ? options.sunDirection : new THREE.Vector3( 0.70707, 0.70707, 0.0 );			const sunColor = new THREE.Color( options.sunColor !== undefined ? options.sunColor : 0xffffff );			const waterColor = new THREE.Color( options.waterColor !== undefined ? options.waterColor : 0x7F7F7F );			const eye = options.eye !== undefined ? options.eye : new THREE.Vector3( 0, 0, 0 );			const distortionScale = options.distortionScale !== undefined ? options.distortionScale : 20.0;			const side = options.side !== undefined ? options.side : THREE.FrontSide;			const fog = options.fog !== undefined ? options.fog : false; //			const mirrorPlane = new THREE.Plane();			const normal = new THREE.Vector3();			const mirrorWorldPosition = new THREE.Vector3();			const cameraWorldPosition = new THREE.Vector3();			const rotationMatrix = new THREE.Matrix4();			const lookAtPosition = new THREE.Vector3( 0, 0, - 1 );			const clipPlane = new THREE.Vector4();			const view = new THREE.Vector3();			const target = new THREE.Vector3();			const q = new THREE.Vector4();			const textureMatrix = new THREE.Matrix4();			const mirrorCamera = new THREE.PerspectiveCamera();			const parameters = {				minFilter: THREE.LinearFilter,				magFilter: THREE.LinearFilter,				format: THREE.RGBFormat			};			const renderTarget = new THREE.WebGLRenderTarget( textureWidth, textureHeight, parameters );			if ( ! THREE.MathUtils.isPowerOfTwo( textureWidth ) || ! THREE.MathUtils.isPowerOfTwo( textureHeight ) ) {				renderTarget.texture.generateMipmaps = false;			}			const mirrorShader = {				uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ 'fog' ], THREE.UniformsLib[ 'lights' ], {					'normalSampler': {						value: null					},					'mirrorSampler': {						value: null					},					'alpha': {						value: 1.0					},					'time': {						value: 0.0					},					'size': {						value: 1.0					},					'distortionScale': {						value: 20.0					},					'textureMatrix': {						value: new THREE.Matrix4()					},					'sunColor': {						value: new THREE.Color( 0x7F7F7F )					},					'sunDirection': {						value: new THREE.Vector3( 0.70707, 0.70707, 0 )					},					'eye': {						value: new THREE.Vector3()					},					'waterColor': {						value: new THREE.Color( 0x555555 )					}				} ] ),				vertexShader:      /* glsl */      `				uniform mat4 textureMatrix;				uniform float time;				varying vec4 mirrorCoord;				varying vec4 worldPosition;				#include <common>				#include <fog_pars_vertex>				#include <shadowmap_pars_vertex>				#include <logdepthbuf_pars_vertex>				void main() {					mirrorCoord = modelMatrix * vec4( position, 1.0 );					worldPosition = mirrorCoord.xyzw;					mirrorCoord = textureMatrix * mirrorCoord;					vec4 mvPosition =  modelViewMatrix * vec4( position, 1.0 );					gl_Position = projectionMatrix * mvPosition;				#include <beginnormal_vertex>				#include <defaultnormal_vertex>				#include <logdepthbuf_vertex>				#include <fog_vertex>				#include <shadowmap_vertex>			}`,				fragmentShader:      /* glsl */      `				uniform sampler2D mirrorSampler;				uniform float alpha;				uniform float time;				uniform float size;				uniform float distortionScale;				uniform sampler2D normalSampler;				uniform vec3 sunColor;				uniform vec3 sunDirection;				uniform vec3 eye;				uniform vec3 waterColor;				varying vec4 mirrorCoord;				varying vec4 worldPosition;				vec4 getNoise( vec2 uv ) {					vec2 uv0 = ( uv / 103.0 ) + vec2(time / 17.0, time / 29.0);					vec2 uv1 = uv / 107.0-vec2( time / -19.0, time / 31.0 );					vec2 uv2 = uv / vec2( 8907.0, 9803.0 ) + vec2( time / 101.0, time / 97.0 );					vec2 uv3 = uv / vec2( 1091.0, 1027.0 ) - vec2( time / 109.0, time / -113.0 );					vec4 noise = texture2D( normalSampler, uv0 ) +						texture2D( normalSampler, uv1 ) +						texture2D( normalSampler, uv2 ) +						texture2D( normalSampler, uv3 );					return noise * 0.5 - 1.0;				}				void sunLight( const vec3 surfaceNormal, const vec3 eyeDirection, float shiny, float spec, float diffuse, inout vec3 diffuseColor, inout vec3 specularColor ) {					vec3 reflection = normalize( reflect( -sunDirection, surfaceNormal ) );					float direction = max( 0.0, dot( eyeDirection, reflection ) );					specularColor += pow( direction, shiny ) * sunColor * spec;					diffuseColor += max( dot( sunDirection, surfaceNormal ), 0.0 ) * sunColor * diffuse;				}				#include <common>				#include <packing>				#include <bsdfs>				#include <fog_pars_fragment>				#include <logdepthbuf_pars_fragment>				#include <lights_pars_begin>				#include <shadowmap_pars_fragment>				#include <shadowmask_pars_fragment>				void main() {					#include <logdepthbuf_fragment>					vec4 noise = getNoise( worldPosition.xz * size );					vec3 surfaceNormal = normalize( noise.xzy * vec3( 1.5, 1.0, 1.5 ) );					vec3 diffuseLight = vec3(0.0);					vec3 specularLight = vec3(0.0);					vec3 worldToEye = eye-worldPosition.xyz;					vec3 eyeDirection = normalize( worldToEye );					sunLight( surfaceNormal, eyeDirection, 100.0, 2.0, 0.5, diffuseLight, specularLight );					float distance = length(worldToEye);					vec2 distortion = surfaceNormal.xz * ( 0.001 + 1.0 / distance ) * distortionScale;					vec3 reflectionSample = vec3( texture2D( mirrorSampler, mirrorCoord.xy / mirrorCoord.w + distortion ) );					float theta = max( dot( eyeDirection, surfaceNormal ), 0.0 );					float rf0 = 0.3;					float reflectance = rf0 + ( 1.0 - rf0 ) * pow( ( 1.0 - theta ), 5.0 );					vec3 scatter = max( 0.0, dot( surfaceNormal, eyeDirection ) ) * waterColor;					vec3 albedo = mix( ( sunColor * diffuseLight * 0.3 + scatter ) * getShadowMask(), ( vec3( 0.1 ) + reflectionSample * 0.9 + reflectionSample * specularLight ), reflectance);					vec3 outgoingLight = albedo;					gl_FragColor = vec4( outgoingLight, alpha );					#include <tonemapping_fragment>					#include <fog_fragment>				}`			};			const material = new THREE.ShaderMaterial( {				fragmentShader: mirrorShader.fragmentShader,				vertexShader: mirrorShader.vertexShader,				uniforms: THREE.UniformsUtils.clone( mirrorShader.uniforms ),				lights: true,				side: side,				fog: fog			} );			material.uniforms[ 'mirrorSampler' ].value = renderTarget.texture;			material.uniforms[ 'textureMatrix' ].value = textureMatrix;			material.uniforms[ 'alpha' ].value = alpha;			material.uniforms[ 'time' ].value = time;			material.uniforms[ 'normalSampler' ].value = normalSampler;			material.uniforms[ 'sunColor' ].value = sunColor;			material.uniforms[ 'waterColor' ].value = waterColor;			material.uniforms[ 'sunDirection' ].value = sunDirection;			material.uniforms[ 'distortionScale' ].value = distortionScale;			material.uniforms[ 'eye' ].value = eye;			scope.material = material;			scope.onBeforeRender = function ( renderer, scene, camera ) {				mirrorWorldPosition.setFromMatrixPosition( scope.matrixWorld );				cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );				rotationMatrix.extractRotation( scope.matrixWorld );				normal.set( 0, 0, 1 );				normal.applyMatrix4( rotationMatrix );				view.subVectors( mirrorWorldPosition, cameraWorldPosition ); // Avoid rendering when mirror is facing away				if ( view.dot( normal ) > 0 ) return;				view.reflect( normal ).negate();				view.add( mirrorWorldPosition );				rotationMatrix.extractRotation( camera.matrixWorld );				lookAtPosition.set( 0, 0, - 1 );				lookAtPosition.applyMatrix4( rotationMatrix );				lookAtPosition.add( cameraWorldPosition );				target.subVectors( mirrorWorldPosition, lookAtPosition );				target.reflect( normal ).negate();				target.add( mirrorWorldPosition );				mirrorCamera.position.copy( view );				mirrorCamera.up.set( 0, 1, 0 );				mirrorCamera.up.applyMatrix4( rotationMatrix );				mirrorCamera.up.reflect( normal );				mirrorCamera.lookAt( target );				mirrorCamera.far = camera.far; // Used in WebGLBackground				mirrorCamera.updateMatrixWorld();				mirrorCamera.projectionMatrix.copy( camera.projectionMatrix ); // Update the texture matrix				textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 );				textureMatrix.multiply( mirrorCamera.projectionMatrix );				textureMatrix.multiply( mirrorCamera.matrixWorldInverse ); // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html				// Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf				mirrorPlane.setFromNormalAndCoplanarPoint( normal, mirrorWorldPosition );				mirrorPlane.applyMatrix4( mirrorCamera.matrixWorldInverse );				clipPlane.set( mirrorPlane.normal.x, mirrorPlane.normal.y, mirrorPlane.normal.z, mirrorPlane.constant );				const projectionMatrix = mirrorCamera.projectionMatrix;				q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];				q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];				q.z = - 1.0;				q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ]; // Calculate the scaled plane vector				clipPlane.multiplyScalar( 2.0 / clipPlane.dot( q ) ); // Replacing the third row of the projection matrix				projectionMatrix.elements[ 2 ] = clipPlane.x;				projectionMatrix.elements[ 6 ] = clipPlane.y;				projectionMatrix.elements[ 10 ] = clipPlane.z + 1.0 - clipBias;				projectionMatrix.elements[ 14 ] = clipPlane.w;				eye.setFromMatrixPosition( camera.matrixWorld ); // Render				const currentRenderTarget = renderer.getRenderTarget();				const currentXrEnabled = renderer.xr.enabled;				const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;				scope.visible = false;				renderer.xr.enabled = false; // Avoid camera modification and recursion				renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows				renderer.setRenderTarget( renderTarget );				renderer.state.buffers.depth.setMask( true ); // make sure the depth buffer is writable so it can be properly cleared, see #18897				if ( renderer.autoClear === false ) renderer.clear();				renderer.render( scene, mirrorCamera );				scope.visible = true;				renderer.xr.enabled = currentXrEnabled;				renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;				renderer.setRenderTarget( currentRenderTarget ); // Restore viewport				const viewport = camera.viewport;				if ( viewport !== undefined ) {					renderer.state.viewport( viewport );				}			};		}	}	Water.prototype.isWater = true;	THREE.Water = Water;} )();
 |