| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 | 
							- ( function () {
 
- 	class Refractor extends THREE.Mesh {
 
- 		constructor( geometry, options = {} ) {
 
- 			super( geometry );
 
- 			this.type = 'Refractor';
 
- 			const scope = this;
 
- 			const color = options.color !== undefined ? new THREE.Color( options.color ) : new THREE.Color( 0x7F7F7F );
 
- 			const textureWidth = options.textureWidth || 512;
 
- 			const textureHeight = options.textureHeight || 512;
 
- 			const clipBias = options.clipBias || 0;
 
- 			const shader = options.shader || Refractor.RefractorShader; //
 
- 			const virtualCamera = new THREE.PerspectiveCamera();
 
- 			virtualCamera.matrixAutoUpdate = false;
 
- 			virtualCamera.userData.refractor = true; //
 
- 			const refractorPlane = new THREE.Plane();
 
- 			const textureMatrix = new THREE.Matrix4(); // render target
 
- 			const parameters = {
 
- 				minFilter: THREE.LinearFilter,
 
- 				magFilter: THREE.LinearFilter,
 
- 				format: THREE.RGBFormat
 
- 			};
 
- 			const renderTarget = new THREE.WebGLRenderTarget( textureWidth, textureHeight, parameters );
 
- 			if ( ! THREE.MathUtils.isPowerOfTwo( textureWidth ) || ! THREE.MathUtils.isPowerOfTwo( textureHeight ) ) {
 
- 				renderTarget.texture.generateMipmaps = false;
 
- 			} // material
 
- 			this.material = new THREE.ShaderMaterial( {
 
- 				uniforms: THREE.UniformsUtils.clone( shader.uniforms ),
 
- 				vertexShader: shader.vertexShader,
 
- 				fragmentShader: shader.fragmentShader,
 
- 				transparent: true // ensures, refractors are drawn from farthest to closest
 
- 			} );
 
- 			this.material.uniforms[ 'color' ].value = color;
 
- 			this.material.uniforms[ 'tDiffuse' ].value = renderTarget.texture;
 
- 			this.material.uniforms[ 'textureMatrix' ].value = textureMatrix; // functions
 
- 			const visible = function () {
 
- 				const refractorWorldPosition = new THREE.Vector3();
 
- 				const cameraWorldPosition = new THREE.Vector3();
 
- 				const rotationMatrix = new THREE.Matrix4();
 
- 				const view = new THREE.Vector3();
 
- 				const normal = new THREE.Vector3();
 
- 				return function visible( camera ) {
 
- 					refractorWorldPosition.setFromMatrixPosition( scope.matrixWorld );
 
- 					cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );
 
- 					view.subVectors( refractorWorldPosition, cameraWorldPosition );
 
- 					rotationMatrix.extractRotation( scope.matrixWorld );
 
- 					normal.set( 0, 0, 1 );
 
- 					normal.applyMatrix4( rotationMatrix );
 
- 					return view.dot( normal ) < 0;
 
- 				};
 
- 			}();
 
- 			const updateRefractorPlane = function () {
 
- 				const normal = new THREE.Vector3();
 
- 				const position = new THREE.Vector3();
 
- 				const quaternion = new THREE.Quaternion();
 
- 				const scale = new THREE.Vector3();
 
- 				return function updateRefractorPlane() {
 
- 					scope.matrixWorld.decompose( position, quaternion, scale );
 
- 					normal.set( 0, 0, 1 ).applyQuaternion( quaternion ).normalize(); // flip the normal because we want to cull everything above the plane
 
- 					normal.negate();
 
- 					refractorPlane.setFromNormalAndCoplanarPoint( normal, position );
 
- 				};
 
- 			}();
 
- 			const updateVirtualCamera = function () {
 
- 				const clipPlane = new THREE.Plane();
 
- 				const clipVector = new THREE.Vector4();
 
- 				const q = new THREE.Vector4();
 
- 				return function updateVirtualCamera( camera ) {
 
- 					virtualCamera.matrixWorld.copy( camera.matrixWorld );
 
- 					virtualCamera.matrixWorldInverse.copy( virtualCamera.matrixWorld ).invert();
 
- 					virtualCamera.projectionMatrix.copy( camera.projectionMatrix );
 
- 					virtualCamera.far = camera.far; // used in WebGLBackground
 
- 					// The following code creates an oblique view frustum for clipping.
 
- 					// see: Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping”.
 
- 					// Journal of Game Development, Vol. 1, No. 2 (2005), Charles River Media, pp. 5–16
 
- 					clipPlane.copy( refractorPlane );
 
- 					clipPlane.applyMatrix4( virtualCamera.matrixWorldInverse );
 
- 					clipVector.set( clipPlane.normal.x, clipPlane.normal.y, clipPlane.normal.z, clipPlane.constant ); // calculate the clip-space corner point opposite the clipping plane and
 
- 					// transform it into camera space by multiplying it by the inverse of the projection matrix
 
- 					const projectionMatrix = virtualCamera.projectionMatrix;
 
- 					q.x = ( Math.sign( clipVector.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
 
- 					q.y = ( Math.sign( clipVector.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
 
- 					q.z = - 1.0;
 
- 					q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ]; // calculate the scaled plane vector
 
- 					clipVector.multiplyScalar( 2.0 / clipVector.dot( q ) ); // replacing the third row of the projection matrix
 
- 					projectionMatrix.elements[ 2 ] = clipVector.x;
 
- 					projectionMatrix.elements[ 6 ] = clipVector.y;
 
- 					projectionMatrix.elements[ 10 ] = clipVector.z + 1.0 - clipBias;
 
- 					projectionMatrix.elements[ 14 ] = clipVector.w;
 
- 				};
 
- 			}(); // This will update the texture matrix that is used for projective texture mapping in the shader.
 
- 			// see: http://developer.download.nvidia.com/assets/gamedev/docs/projective_texture_mapping.pdf
 
- 			function updateTextureMatrix( camera ) {
 
- 				// this matrix does range mapping to [ 0, 1 ]
 
- 				textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); // we use "Object Linear Texgen", so we need to multiply the texture matrix T
 
- 				// (matrix above) with the projection and view matrix of the virtual camera
 
- 				// and the model matrix of the refractor
 
- 				textureMatrix.multiply( camera.projectionMatrix );
 
- 				textureMatrix.multiply( camera.matrixWorldInverse );
 
- 				textureMatrix.multiply( scope.matrixWorld );
 
- 			} //
 
- 			function render( renderer, scene, camera ) {
 
- 				scope.visible = false;
 
- 				const currentRenderTarget = renderer.getRenderTarget();
 
- 				const currentXrEnabled = renderer.xr.enabled;
 
- 				const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
 
- 				renderer.xr.enabled = false; // avoid camera modification
 
- 				renderer.shadowMap.autoUpdate = false; // avoid re-computing shadows
 
- 				renderer.setRenderTarget( renderTarget );
 
- 				if ( renderer.autoClear === false ) renderer.clear();
 
- 				renderer.render( scene, virtualCamera );
 
- 				renderer.xr.enabled = currentXrEnabled;
 
- 				renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
 
- 				renderer.setRenderTarget( currentRenderTarget ); // restore viewport
 
- 				const viewport = camera.viewport;
 
- 				if ( viewport !== undefined ) {
 
- 					renderer.state.viewport( viewport );
 
- 				}
 
- 				scope.visible = true;
 
- 			} //
 
- 			this.onBeforeRender = function ( renderer, scene, camera ) {
 
- 				// Render
 
- 				renderTarget.texture.encoding = renderer.outputEncoding; // ensure refractors are rendered only once per frame
 
- 				if ( camera.userData.refractor === true ) return; // avoid rendering when the refractor is viewed from behind
 
- 				if ( ! visible( camera ) === true ) return; // update
 
- 				updateRefractorPlane();
 
- 				updateTextureMatrix( camera );
 
- 				updateVirtualCamera( camera );
 
- 				render( renderer, scene, camera );
 
- 			};
 
- 			this.getRenderTarget = function () {
 
- 				return renderTarget;
 
- 			};
 
- 		}
 
- 	}
 
- 	Refractor.prototype.isRefractor = true;
 
- 	Refractor.RefractorShader = {
 
- 		uniforms: {
 
- 			'color': {
 
- 				value: null
 
- 			},
 
- 			'tDiffuse': {
 
- 				value: null
 
- 			},
 
- 			'textureMatrix': {
 
- 				value: null
 
- 			}
 
- 		},
 
- 		vertexShader:
 
-   /* glsl */
 
-   `
 
- 		uniform mat4 textureMatrix;
 
- 		varying vec4 vUv;
 
- 		void main() {
 
- 			vUv = textureMatrix * vec4( position, 1.0 );
 
- 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
 
- 		}`,
 
- 		fragmentShader:
 
-   /* glsl */
 
-   `
 
- 		uniform vec3 color;
 
- 		uniform sampler2D tDiffuse;
 
- 		varying vec4 vUv;
 
- 		float blendOverlay( float base, float blend ) {
 
- 			return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );
 
- 		}
 
- 		vec3 blendOverlay( vec3 base, vec3 blend ) {
 
- 			return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );
 
- 		}
 
- 		void main() {
 
- 			vec4 base = texture2DProj( tDiffuse, vUv );
 
- 			gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );
 
- 		}`
 
- 	};
 
- 	THREE.Refractor = Refractor;
 
- } )();
 
 
  |