| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 | ( function () {	const _start = new THREE.Vector3();	const _end = new THREE.Vector3();	const _start4 = new THREE.Vector4();	const _end4 = new THREE.Vector4();	const _ssOrigin = new THREE.Vector4();	const _ssOrigin3 = new THREE.Vector3();	const _mvMatrix = new THREE.Matrix4();	const _line = new THREE.Line3();	const _closestPoint = new THREE.Vector3();	const _box = new THREE.Box3();	const _sphere = new THREE.Sphere();	const _clipToWorldVector = new THREE.Vector4(); // Returns the margin required to expand by in world space given the distance from the camera,	// line width, resolution, and camera projection	function getWorldSpaceHalfWidth( camera, distance, lineWidth, resolution ) {		// transform into clip space, adjust the x and y values by the pixel width offset, then		// transform back into world space to get world offset. Note clip space is [-1, 1] so full		// width does not need to be halved.		_clipToWorldVector.set( 0, 0, - distance, 1.0 ).applyMatrix4( camera.projectionMatrix );		_clipToWorldVector.multiplyScalar( 1.0 / _clipToWorldVector.w );		_clipToWorldVector.x = lineWidth / resolution.width;		_clipToWorldVector.y = lineWidth / resolution.height;		_clipToWorldVector.applyMatrix4( camera.projectionMatrixInverse );		_clipToWorldVector.multiplyScalar( 1.0 / _clipToWorldVector.w );		return Math.abs( Math.max( _clipToWorldVector.x, _clipToWorldVector.y ) );	}	class LineSegments2 extends THREE.Mesh {		constructor( geometry = new THREE.LineSegmentsGeometry(), material = new THREE.LineMaterial( {			color: Math.random() * 0xffffff		} ) ) {			super( geometry, material );			this.type = 'LineSegments2';		} // for backwards-compatability, but could be a method of THREE.LineSegmentsGeometry...		computeLineDistances() {			const geometry = this.geometry;			const instanceStart = geometry.attributes.instanceStart;			const instanceEnd = geometry.attributes.instanceEnd;			const lineDistances = new Float32Array( 2 * instanceStart.count );			for ( let i = 0, j = 0, l = instanceStart.count; i < l; i ++, j += 2 ) {				_start.fromBufferAttribute( instanceStart, i );				_end.fromBufferAttribute( instanceEnd, i );				lineDistances[ j ] = j === 0 ? 0 : lineDistances[ j - 1 ];				lineDistances[ j + 1 ] = lineDistances[ j ] + _start.distanceTo( _end );			}			const instanceDistanceBuffer = new THREE.InstancedInterleavedBuffer( lineDistances, 2, 1 ); // d0, d1			geometry.setAttribute( 'instanceDistanceStart', new THREE.InterleavedBufferAttribute( instanceDistanceBuffer, 1, 0 ) ); // d0			geometry.setAttribute( 'instanceDistanceEnd', new THREE.InterleavedBufferAttribute( instanceDistanceBuffer, 1, 1 ) ); // d1			return this;		}		raycast( raycaster, intersects ) {			if ( raycaster.camera === null ) {				console.error( 'LineSegments2: "Raycaster.camera" needs to be set in order to raycast against LineSegments2.' );			}			const threshold = raycaster.params.Line2 !== undefined ? raycaster.params.Line2.threshold || 0 : 0;			const ray = raycaster.ray;			const camera = raycaster.camera;			const projectionMatrix = camera.projectionMatrix;			const matrixWorld = this.matrixWorld;			const geometry = this.geometry;			const material = this.material;			const resolution = material.resolution;			const lineWidth = material.linewidth + threshold;			const instanceStart = geometry.attributes.instanceStart;			const instanceEnd = geometry.attributes.instanceEnd; // camera forward is negative			const near = - camera.near; //			// check if we intersect the sphere bounds			if ( geometry.boundingSphere === null ) {				geometry.computeBoundingSphere();			}			_sphere.copy( geometry.boundingSphere ).applyMatrix4( matrixWorld );			const distanceToSphere = Math.max( camera.near, _sphere.distanceToPoint( ray.origin ) ); // increase the sphere bounds by the worst case line screen space width			const sphereMargin = getWorldSpaceHalfWidth( camera, distanceToSphere, lineWidth, resolution );			_sphere.radius += sphereMargin;			if ( raycaster.ray.intersectsSphere( _sphere ) === false ) {				return;			} //			// check if we intersect the box bounds			if ( geometry.boundingBox === null ) {				geometry.computeBoundingBox();			}			_box.copy( geometry.boundingBox ).applyMatrix4( matrixWorld );			const distanceToBox = Math.max( camera.near, _box.distanceToPoint( ray.origin ) ); // increase the box bounds by the worst case line screen space width			const boxMargin = getWorldSpaceHalfWidth( camera, distanceToBox, lineWidth, resolution );			_box.max.x += boxMargin;			_box.max.y += boxMargin;			_box.max.z += boxMargin;			_box.min.x -= boxMargin;			_box.min.y -= boxMargin;			_box.min.z -= boxMargin;			if ( raycaster.ray.intersectsBox( _box ) === false ) {				return;			} //			// pick a point 1 unit out along the ray to avoid the ray origin			// sitting at the camera origin which will cause "w" to be 0 when			// applying the projection matrix.			ray.at( 1, _ssOrigin ); // ndc space [ - 1.0, 1.0 ]			_ssOrigin.w = 1;			_ssOrigin.applyMatrix4( camera.matrixWorldInverse );			_ssOrigin.applyMatrix4( projectionMatrix );			_ssOrigin.multiplyScalar( 1 / _ssOrigin.w ); // screen space			_ssOrigin.x *= resolution.x / 2;			_ssOrigin.y *= resolution.y / 2;			_ssOrigin.z = 0;			_ssOrigin3.copy( _ssOrigin );			_mvMatrix.multiplyMatrices( camera.matrixWorldInverse, matrixWorld );			for ( let i = 0, l = instanceStart.count; i < l; i ++ ) {				_start4.fromBufferAttribute( instanceStart, i );				_end4.fromBufferAttribute( instanceEnd, i );				_start4.w = 1;				_end4.w = 1; // camera space				_start4.applyMatrix4( _mvMatrix );				_end4.applyMatrix4( _mvMatrix ); // skip the segment if it's entirely behind the camera				var isBehindCameraNear = _start4.z > near && _end4.z > near;				if ( isBehindCameraNear ) {					continue;				} // trim the segment if it extends behind camera near				if ( _start4.z > near ) {					const deltaDist = _start4.z - _end4.z;					const t = ( _start4.z - near ) / deltaDist;					_start4.lerp( _end4, t );				} else if ( _end4.z > near ) {					const deltaDist = _end4.z - _start4.z;					const t = ( _end4.z - near ) / deltaDist;					_end4.lerp( _start4, t );				} // clip space				_start4.applyMatrix4( projectionMatrix );				_end4.applyMatrix4( projectionMatrix ); // ndc space [ - 1.0, 1.0 ]				_start4.multiplyScalar( 1 / _start4.w );				_end4.multiplyScalar( 1 / _end4.w ); // screen space				_start4.x *= resolution.x / 2;				_start4.y *= resolution.y / 2;				_end4.x *= resolution.x / 2;				_end4.y *= resolution.y / 2; // create 2d segment				_line.start.copy( _start4 );				_line.start.z = 0;				_line.end.copy( _end4 );				_line.end.z = 0; // get closest point on ray to segment				const param = _line.closestPointToPointParameter( _ssOrigin3, true );				_line.at( param, _closestPoint ); // check if the intersection point is within clip space				const zPos = THREE.MathUtils.lerp( _start4.z, _end4.z, param );				const isInClipSpace = zPos >= - 1 && zPos <= 1;				const isInside = _ssOrigin3.distanceTo( _closestPoint ) < lineWidth * 0.5;				if ( isInClipSpace && isInside ) {					_line.start.fromBufferAttribute( instanceStart, i );					_line.end.fromBufferAttribute( instanceEnd, i );					_line.start.applyMatrix4( matrixWorld );					_line.end.applyMatrix4( matrixWorld );					const pointOnLine = new THREE.Vector3();					const point = new THREE.Vector3();					ray.distanceSqToSegment( _line.start, _line.end, point, pointOnLine );					intersects.push( {						point: point,						pointOnLine: pointOnLine,						distance: ray.origin.distanceTo( point ),						object: this,						face: null,						faceIndex: i,						uv: null,						uv2: null					} );				}			}		}	}	LineSegments2.prototype.isLineSegments2 = true;	THREE.LineSegments2 = LineSegments2;} )();
 |