123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 |
- ( function () {
- /**
- * References:
- * http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
- * https://learnopengl.com/Advanced-Lighting/SSAO
- * https://github.com/McNopper/OpenGL/blob/master/Example28/shader/ssao.frag.glsl
- */
- const SSAOShader = {
- defines: {
- 'PERSPECTIVE_CAMERA': 1,
- 'KERNEL_SIZE': 32
- },
- uniforms: {
- 'tDiffuse': {
- value: null
- },
- 'tNormal': {
- value: null
- },
- 'tDepth': {
- value: null
- },
- 'tNoise': {
- value: null
- },
- 'kernel': {
- value: null
- },
- 'cameraNear': {
- value: null
- },
- 'cameraFar': {
- value: null
- },
- 'resolution': {
- value: new THREE.Vector2()
- },
- 'cameraProjectionMatrix': {
- value: new THREE.Matrix4()
- },
- 'cameraInverseProjectionMatrix': {
- value: new THREE.Matrix4()
- },
- 'kernelRadius': {
- value: 8
- },
- 'minDistance': {
- value: 0.005
- },
- 'maxDistance': {
- value: 0.05
- }
- },
- vertexShader:
- /* glsl */
- `
- varying vec2 vUv;
- void main() {
- vUv = uv;
- gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
- }`,
- fragmentShader:
- /* glsl */
- `
- uniform sampler2D tDiffuse;
- uniform sampler2D tNormal;
- uniform sampler2D tDepth;
- uniform sampler2D tNoise;
- uniform vec3 kernel[ KERNEL_SIZE ];
- uniform vec2 resolution;
- uniform float cameraNear;
- uniform float cameraFar;
- uniform mat4 cameraProjectionMatrix;
- uniform mat4 cameraInverseProjectionMatrix;
- uniform float kernelRadius;
- uniform float minDistance; // avoid artifacts caused by neighbour fragments with minimal depth difference
- uniform float maxDistance; // avoid the influence of fragments which are too far away
- varying vec2 vUv;
- #include <packing>
- float getDepth( const in vec2 screenPosition ) {
- return texture2D( tDepth, screenPosition ).x;
- }
- float getLinearDepth( const in vec2 screenPosition ) {
- #if PERSPECTIVE_CAMERA == 1
- float fragCoordZ = texture2D( tDepth, screenPosition ).x;
- float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
- return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
- #else
- return texture2D( tDepth, screenPosition ).x;
- #endif
- }
- float getViewZ( const in float depth ) {
- #if PERSPECTIVE_CAMERA == 1
- return perspectiveDepthToViewZ( depth, cameraNear, cameraFar );
- #else
- return orthographicDepthToViewZ( depth, cameraNear, cameraFar );
- #endif
- }
- vec3 getViewPosition( const in vec2 screenPosition, const in float depth, const in float viewZ ) {
- float clipW = cameraProjectionMatrix[2][3] * viewZ + cameraProjectionMatrix[3][3];
- vec4 clipPosition = vec4( ( vec3( screenPosition, depth ) - 0.5 ) * 2.0, 1.0 );
- clipPosition *= clipW; // unprojection.
- return ( cameraInverseProjectionMatrix * clipPosition ).xyz;
- }
- vec3 getViewNormal( const in vec2 screenPosition ) {
- return unpackRGBToNormal( texture2D( tNormal, screenPosition ).xyz );
- }
- void main() {
- float depth = getDepth( vUv );
- float viewZ = getViewZ( depth );
- vec3 viewPosition = getViewPosition( vUv, depth, viewZ );
- vec3 viewNormal = getViewNormal( vUv );
- vec2 noiseScale = vec2( resolution.x / 4.0, resolution.y / 4.0 );
- vec3 random = texture2D( tNoise, vUv * noiseScale ).xyz;
- // compute matrix used to reorient a kernel vector
- vec3 tangent = normalize( random - viewNormal * dot( random, viewNormal ) );
- vec3 bitangent = cross( viewNormal, tangent );
- mat3 kernelMatrix = mat3( tangent, bitangent, viewNormal );
- float occlusion = 0.0;
- for ( int i = 0; i < KERNEL_SIZE; i ++ ) {
- vec3 sampleVector = kernelMatrix * kernel[ i ]; // reorient sample vector in view space
- vec3 samplePoint = viewPosition + ( sampleVector * kernelRadius ); // calculate sample point
- vec4 samplePointNDC = cameraProjectionMatrix * vec4( samplePoint, 1.0 ); // project point and calculate NDC
- samplePointNDC /= samplePointNDC.w;
- vec2 samplePointUv = samplePointNDC.xy * 0.5 + 0.5; // compute uv coordinates
- float realDepth = getLinearDepth( samplePointUv ); // get linear depth from depth texture
- float sampleDepth = viewZToOrthographicDepth( samplePoint.z, cameraNear, cameraFar ); // compute linear depth of the sample view Z value
- float delta = sampleDepth - realDepth;
- if ( delta > minDistance && delta < maxDistance ) { // if fragment is before sample point, increase occlusion
- occlusion += 1.0;
- }
- }
- occlusion = clamp( occlusion / float( KERNEL_SIZE ), 0.0, 1.0 );
- gl_FragColor = vec4( vec3( 1.0 - occlusion ), 1.0 );
- }`
- };
- const SSAODepthShader = {
- defines: {
- 'PERSPECTIVE_CAMERA': 1
- },
- uniforms: {
- 'tDepth': {
- value: null
- },
- 'cameraNear': {
- value: null
- },
- 'cameraFar': {
- value: null
- }
- },
- vertexShader: `varying vec2 vUv;
- void main() {
- vUv = uv;
- gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
- }`,
- fragmentShader: `uniform sampler2D tDepth;
- uniform float cameraNear;
- uniform float cameraFar;
- varying vec2 vUv;
- #include <packing>
- float getLinearDepth( const in vec2 screenPosition ) {
- #if PERSPECTIVE_CAMERA == 1
- float fragCoordZ = texture2D( tDepth, screenPosition ).x;
- float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
- return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
- #else
- return texture2D( tDepth, screenPosition ).x;
- #endif
- }
- void main() {
- float depth = getLinearDepth( vUv );
- gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );
- }`
- };
- const SSAOBlurShader = {
- uniforms: {
- 'tDiffuse': {
- value: null
- },
- 'resolution': {
- value: new THREE.Vector2()
- }
- },
- vertexShader: `varying vec2 vUv;
- void main() {
- vUv = uv;
- gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
- }`,
- fragmentShader: `uniform sampler2D tDiffuse;
- uniform vec2 resolution;
- varying vec2 vUv;
- void main() {
- vec2 texelSize = ( 1.0 / resolution );
- float result = 0.0;
- for ( int i = - 2; i <= 2; i ++ ) {
- for ( int j = - 2; j <= 2; j ++ ) {
- vec2 offset = ( vec2( float( i ), float( j ) ) ) * texelSize;
- result += texture2D( tDiffuse, vUv + offset ).r;
- }
- }
- gl_FragColor = vec4( vec3( result / ( 5.0 * 5.0 ) ), 1.0 );
- }`
- };
- THREE.SSAOBlurShader = SSAOBlurShader;
- THREE.SSAODepthShader = SSAODepthShader;
- THREE.SSAOShader = SSAOShader;
- } )();
|