123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 |
- ( function () {
- /**
- * GPUComputationRenderer, based on SimulationRenderer by zz85
- *
- * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
- * for each compute element (texel)
- *
- * Each variable has a fragment shader that defines the computation made to obtain the variable in question.
- * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
- * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
- *
- * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
- * as inputs to render the textures of the next frame.
- *
- * The render targets of the variables can be used as input textures for your visualization shaders.
- *
- * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
- * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
- *
- * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
- * #DEFINE resolution vec2( 1024.0, 1024.0 )
- *
- * -------------
- *
- * Basic use:
- *
- * // Initialization...
- *
- * // Create computation renderer
- * const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
- *
- * // Create initial state float textures
- * const pos0 = gpuCompute.createTexture();
- * const vel0 = gpuCompute.createTexture();
- * // and fill in here the texture data...
- *
- * // Add texture variables
- * const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
- * const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
- *
- * // Add variable dependencies
- * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
- * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
- *
- * // Add custom uniforms
- * velVar.material.uniforms.time = { value: 0.0 };
- *
- * // Check for completeness
- * const error = gpuCompute.init();
- * if ( error !== null ) {
- * console.error( error );
- * }
- *
- *
- * // In each frame...
- *
- * // Compute!
- * gpuCompute.compute();
- *
- * // Update texture uniforms in your visualization materials with the gpu renderer output
- * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
- *
- * // Do your rendering
- * renderer.render( myScene, myCamera );
- *
- * -------------
- *
- * Also, you can use utility functions to create THREE.ShaderMaterial and perform computations (rendering between textures)
- * Note that the shaders can have multiple input textures.
- *
- * const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
- * const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
- *
- * const inputTexture = gpuCompute.createTexture();
- *
- * // Fill in here inputTexture...
- *
- * myFilter1.uniforms.theTexture.value = inputTexture;
- *
- * const myRenderTarget = gpuCompute.createRenderTarget();
- * myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
- *
- * const outputRenderTarget = gpuCompute.createRenderTarget();
- *
- * // Now use the output texture where you want:
- * myMaterial.uniforms.map.value = outputRenderTarget.texture;
- *
- * // And compute each frame, before rendering to screen:
- * gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
- * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
- *
- *
- *
- * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
- * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
- * @param {WebGLRenderer} renderer The renderer
- */
- class GPUComputationRenderer {
- constructor( sizeX, sizeY, renderer ) {
- this.variables = [];
- this.currentTextureIndex = 0;
- let dataType = THREE.FloatType;
- const scene = new THREE.Scene();
- const camera = new THREE.Camera();
- camera.position.z = 1;
- const passThruUniforms = {
- passThruTexture: {
- value: null
- }
- };
- const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
- const mesh = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), passThruShader );
- scene.add( mesh );
- this.setDataType = function ( type ) {
- dataType = type;
- return this;
- };
- this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {
- const material = this.createShaderMaterial( computeFragmentShader );
- const variable = {
- name: variableName,
- initialValueTexture: initialValueTexture,
- material: material,
- dependencies: null,
- renderTargets: [],
- wrapS: null,
- wrapT: null,
- minFilter: THREE.NearestFilter,
- magFilter: THREE.NearestFilter
- };
- this.variables.push( variable );
- return variable;
- };
- this.setVariableDependencies = function ( variable, dependencies ) {
- variable.dependencies = dependencies;
- };
- this.init = function () {
- if ( renderer.capabilities.isWebGL2 === false && renderer.extensions.has( 'OES_texture_float' ) === false ) {
- return 'No OES_texture_float support for float textures.';
- }
- if ( renderer.capabilities.maxVertexTextures === 0 ) {
- return 'No support for vertex shader textures.';
- }
- for ( let i = 0; i < this.variables.length; i ++ ) {
- const variable = this.variables[ i ]; // Creates rendertargets and initialize them with input texture
- variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
- variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
- this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
- this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] ); // Adds dependencies uniforms to the THREE.ShaderMaterial
- const material = variable.material;
- const uniforms = material.uniforms;
- if ( variable.dependencies !== null ) {
- for ( let d = 0; d < variable.dependencies.length; d ++ ) {
- const depVar = variable.dependencies[ d ];
- if ( depVar.name !== variable.name ) {
- // Checks if variable exists
- let found = false;
- for ( let j = 0; j < this.variables.length; j ++ ) {
- if ( depVar.name === this.variables[ j ].name ) {
- found = true;
- break;
- }
- }
- if ( ! found ) {
- return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;
- }
- }
- uniforms[ depVar.name ] = {
- value: null
- };
- material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;
- }
- }
- }
- this.currentTextureIndex = 0;
- return null;
- };
- this.compute = function () {
- const currentTextureIndex = this.currentTextureIndex;
- const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
- for ( let i = 0, il = this.variables.length; i < il; i ++ ) {
- const variable = this.variables[ i ]; // Sets texture dependencies uniforms
- if ( variable.dependencies !== null ) {
- const uniforms = variable.material.uniforms;
- for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {
- const depVar = variable.dependencies[ d ];
- uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
- }
- } // Performs the computation for this variable
- this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
- }
- this.currentTextureIndex = nextTextureIndex;
- };
- this.getCurrentRenderTarget = function ( variable ) {
- return variable.renderTargets[ this.currentTextureIndex ];
- };
- this.getAlternateRenderTarget = function ( variable ) {
- return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
- };
- function addResolutionDefine( materialShader ) {
- materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';
- }
- this.addResolutionDefine = addResolutionDefine; // The following functions can be used to compute things manually
- function createShaderMaterial( computeFragmentShader, uniforms ) {
- uniforms = uniforms || {};
- const material = new THREE.ShaderMaterial( {
- uniforms: uniforms,
- vertexShader: getPassThroughVertexShader(),
- fragmentShader: computeFragmentShader
- } );
- addResolutionDefine( material );
- return material;
- }
- this.createShaderMaterial = createShaderMaterial;
- this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
- sizeXTexture = sizeXTexture || sizeX;
- sizeYTexture = sizeYTexture || sizeY;
- wrapS = wrapS || THREE.ClampToEdgeWrapping;
- wrapT = wrapT || THREE.ClampToEdgeWrapping;
- minFilter = minFilter || THREE.NearestFilter;
- magFilter = magFilter || THREE.NearestFilter;
- const renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {
- wrapS: wrapS,
- wrapT: wrapT,
- minFilter: minFilter,
- magFilter: magFilter,
- format: THREE.RGBAFormat,
- type: dataType,
- depthBuffer: false
- } );
- return renderTarget;
- };
- this.createTexture = function () {
- const data = new Float32Array( sizeX * sizeY * 4 );
- return new THREE.DataTexture( data, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );
- };
- this.renderTexture = function ( input, output ) {
- // Takes a texture, and render out in rendertarget
- // input = Texture
- // output = RenderTarget
- passThruUniforms.passThruTexture.value = input;
- this.doRenderTarget( passThruShader, output );
- passThruUniforms.passThruTexture.value = null;
- };
- this.doRenderTarget = function ( material, output ) {
- const currentRenderTarget = renderer.getRenderTarget();
- mesh.material = material;
- renderer.setRenderTarget( output );
- renderer.render( scene, camera );
- mesh.material = passThruShader;
- renderer.setRenderTarget( currentRenderTarget );
- }; // Shaders
- function getPassThroughVertexShader() {
- return 'void main() {\n' + '\n' + ' gl_Position = vec4( position, 1.0 );\n' + '\n' + '}\n';
- }
- function getPassThroughFragmentShader() {
- return 'uniform sampler2D passThruTexture;\n' + '\n' + 'void main() {\n' + '\n' + ' vec2 uv = gl_FragCoord.xy / resolution.xy;\n' + '\n' + ' gl_FragColor = texture2D( passThruTexture, uv );\n' + '\n' + '}\n';
- }
- }
- }
- THREE.GPUComputationRenderer = GPUComputationRenderer;
- } )();
|