123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485 |
- ( function () {
- /**
- * @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
- *
- * Usage:
- *
- * Use the function prepareBreakableObject to prepare a THREE.Mesh object to be broken.
- *
- * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
- *
- * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
- *
- * Requisites for the object:
- *
- * - THREE.Mesh object must have a BufferGeometry (not Geometry) and a Material
- *
- * - Vertex normals must be planar (not smoothed)
- *
- * - The geometry must be convex (this is not checked in the library). You can create convex
- * geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
- * can also be used.
- *
- * Note: This lib adds member variables to object's userData member (see prepareBreakableObject function)
- * Use with caution and read the code when using with other libs.
- *
- * @param {double} minSizeForBreak Min size a debris can have to break.
- * @param {double} smallDelta Max distance to consider that a point belongs to a plane.
- *
- */
- const _v1 = new THREE.Vector3();
- class ConvexObjectBreaker {
- constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) {
- this.minSizeForBreak = minSizeForBreak;
- this.smallDelta = smallDelta;
- this.tempLine1 = new THREE.Line3();
- this.tempPlane1 = new THREE.Plane();
- this.tempPlane2 = new THREE.Plane();
- this.tempPlane_Cut = new THREE.Plane();
- this.tempCM1 = new THREE.Vector3();
- this.tempCM2 = new THREE.Vector3();
- this.tempVector3 = new THREE.Vector3();
- this.tempVector3_2 = new THREE.Vector3();
- this.tempVector3_3 = new THREE.Vector3();
- this.tempVector3_P0 = new THREE.Vector3();
- this.tempVector3_P1 = new THREE.Vector3();
- this.tempVector3_P2 = new THREE.Vector3();
- this.tempVector3_N0 = new THREE.Vector3();
- this.tempVector3_N1 = new THREE.Vector3();
- this.tempVector3_AB = new THREE.Vector3();
- this.tempVector3_CB = new THREE.Vector3();
- this.tempResultObjects = {
- object1: null,
- object2: null
- };
- this.segments = [];
- const n = 30 * 30;
- for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false;
- }
- prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {
- // object is a Object3d (normally a THREE.Mesh), must have a BufferGeometry, and it must be convex.
- // Its material property is propagated to its children (sub-pieces)
- // mass must be > 0
- if ( ! object.geometry.isBufferGeometry ) {
- console.error( 'THREE.ConvexObjectBreaker.prepareBreakableObject(): Parameter object must have a BufferGeometry.' );
- }
- const userData = object.userData;
- userData.mass = mass;
- userData.velocity = velocity.clone();
- userData.angularVelocity = angularVelocity.clone();
- userData.breakable = breakable;
- }
- /*
- * @param {int} maxRadialIterations Iterations for radial cuts.
- * @param {int} maxRandomIterations Max random iterations for not-radial cuts
- *
- * Returns the array of pieces
- */
- subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {
- const debris = [];
- const tempPlane1 = this.tempPlane1;
- const tempPlane2 = this.tempPlane2;
- this.tempVector3.addVectors( pointOfImpact, normal );
- tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );
- const maxTotalIterations = maxRandomIterations + maxRadialIterations;
- const scope = this;
- function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {
- if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {
- debris.push( subObject );
- return;
- }
- let angle = Math.PI;
- if ( numIterations === 0 ) {
- tempPlane2.normal.copy( tempPlane1.normal );
- tempPlane2.constant = tempPlane1.constant;
- } else {
- if ( numIterations <= maxRadialIterations ) {
- angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle; // Rotate tempPlane2 at impact point around normal axis and the angle
- scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
- tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );
- } else {
- angle = ( 0.5 * ( numIterations & 1 ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI; // Rotate tempPlane2 at object position around normal axis and the angle
- scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
- scope.tempVector3_3.copy( normal ).add( subObject.position );
- tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );
- }
- } // Perform the cut
- scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );
- const obj1 = scope.tempResultObjects.object1;
- const obj2 = scope.tempResultObjects.object2;
- if ( obj1 ) {
- subdivideRadial( obj1, startAngle, angle, numIterations + 1 );
- }
- if ( obj2 ) {
- subdivideRadial( obj2, angle, endAngle, numIterations + 1 );
- }
- }
- subdivideRadial( object, 0, 2 * Math.PI, 0 );
- return debris;
- }
- cutByPlane( object, plane, output ) {
- // Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
- // object2 can be null if the plane doesn't cut the object.
- // object1 can be null only in case of internal error
- // Returned value is number of pieces, 0 for error.
- const geometry = object.geometry;
- const coords = geometry.attributes.position.array;
- const normals = geometry.attributes.normal.array;
- const numPoints = coords.length / 3;
- let numFaces = numPoints / 3;
- let indices = geometry.getIndex();
- if ( indices ) {
- indices = indices.array;
- numFaces = indices.length / 3;
- }
- function getVertexIndex( faceIdx, vert ) {
- // vert = 0, 1 or 2.
- const idx = faceIdx * 3 + vert;
- return indices ? indices[ idx ] : idx;
- }
- const points1 = [];
- const points2 = [];
- const delta = this.smallDelta; // Reset segments mark
- const numPointPairs = numPoints * numPoints;
- for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;
- const p0 = this.tempVector3_P0;
- const p1 = this.tempVector3_P1;
- const n0 = this.tempVector3_N0;
- const n1 = this.tempVector3_N1; // Iterate through the faces to mark edges shared by coplanar faces
- for ( let i = 0; i < numFaces - 1; i ++ ) {
- const a1 = getVertexIndex( i, 0 );
- const b1 = getVertexIndex( i, 1 );
- const c1 = getVertexIndex( i, 2 ); // Assuming all 3 vertices have the same normal
- n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );
- for ( let j = i + 1; j < numFaces; j ++ ) {
- const a2 = getVertexIndex( j, 0 );
- const b2 = getVertexIndex( j, 1 );
- const c2 = getVertexIndex( j, 2 ); // Assuming all 3 vertices have the same normal
- n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );
- const coplanar = 1 - n0.dot( n1 ) < delta;
- if ( coplanar ) {
- if ( a1 === a2 || a1 === b2 || a1 === c2 ) {
- if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
- this.segments[ a1 * numPoints + b1 ] = true;
- this.segments[ b1 * numPoints + a1 ] = true;
- } else {
- this.segments[ c1 * numPoints + a1 ] = true;
- this.segments[ a1 * numPoints + c1 ] = true;
- }
- } else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
- this.segments[ c1 * numPoints + b1 ] = true;
- this.segments[ b1 * numPoints + c1 ] = true;
- }
- }
- }
- } // Transform the plane to object local space
- const localPlane = this.tempPlane_Cut;
- object.updateMatrix();
- ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane ); // Iterate through the faces adding points to both pieces
- for ( let i = 0; i < numFaces; i ++ ) {
- const va = getVertexIndex( i, 0 );
- const vb = getVertexIndex( i, 1 );
- const vc = getVertexIndex( i, 2 );
- for ( let segment = 0; segment < 3; segment ++ ) {
- const i0 = segment === 0 ? va : segment === 1 ? vb : vc;
- const i1 = segment === 0 ? vb : segment === 1 ? vc : va;
- const segmentState = this.segments[ i0 * numPoints + i1 ];
- if ( segmentState ) continue; // The segment already has been processed in another face
- // Mark segment as processed (also inverted segment)
- this.segments[ i0 * numPoints + i1 ] = true;
- this.segments[ i1 * numPoints + i0 ] = true;
- p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );
- p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] ); // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
- let mark0 = 0;
- let d = localPlane.distanceToPoint( p0 );
- if ( d > delta ) {
- mark0 = 2;
- points2.push( p0.clone() );
- } else if ( d < - delta ) {
- mark0 = 1;
- points1.push( p0.clone() );
- } else {
- mark0 = 3;
- points1.push( p0.clone() );
- points2.push( p0.clone() );
- } // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
- let mark1 = 0;
- d = localPlane.distanceToPoint( p1 );
- if ( d > delta ) {
- mark1 = 2;
- points2.push( p1.clone() );
- } else if ( d < - delta ) {
- mark1 = 1;
- points1.push( p1.clone() );
- } else {
- mark1 = 3;
- points1.push( p1.clone() );
- points2.push( p1.clone() );
- }
- if ( mark0 === 1 && mark1 === 2 || mark0 === 2 && mark1 === 1 ) {
- // Intersection of segment with the plane
- this.tempLine1.start.copy( p0 );
- this.tempLine1.end.copy( p1 );
- let intersection = new THREE.Vector3();
- intersection = localPlane.intersectLine( this.tempLine1, intersection );
- if ( intersection === null ) {
- // Shouldn't happen
- console.error( 'Internal error: segment does not intersect plane.' );
- output.segmentedObject1 = null;
- output.segmentedObject2 = null;
- return 0;
- }
- points1.push( intersection );
- points2.push( intersection.clone() );
- }
- }
- } // Calculate debris mass (very fast and imprecise):
- const newMass = object.userData.mass * 0.5; // Calculate debris Center of Mass (again fast and imprecise)
- this.tempCM1.set( 0, 0, 0 );
- let radius1 = 0;
- const numPoints1 = points1.length;
- if ( numPoints1 > 0 ) {
- for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );
- this.tempCM1.divideScalar( numPoints1 );
- for ( let i = 0; i < numPoints1; i ++ ) {
- const p = points1[ i ];
- p.sub( this.tempCM1 );
- radius1 = Math.max( radius1, p.x, p.y, p.z );
- }
- this.tempCM1.add( object.position );
- }
- this.tempCM2.set( 0, 0, 0 );
- let radius2 = 0;
- const numPoints2 = points2.length;
- if ( numPoints2 > 0 ) {
- for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );
- this.tempCM2.divideScalar( numPoints2 );
- for ( let i = 0; i < numPoints2; i ++ ) {
- const p = points2[ i ];
- p.sub( this.tempCM2 );
- radius2 = Math.max( radius2, p.x, p.y, p.z );
- }
- this.tempCM2.add( object.position );
- }
- let object1 = null;
- let object2 = null;
- let numObjects = 0;
- if ( numPoints1 > 4 ) {
- object1 = new THREE.Mesh( new THREE.ConvexGeometry( points1 ), object.material );
- object1.position.copy( this.tempCM1 );
- object1.quaternion.copy( object.quaternion );
- this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );
- numObjects ++;
- }
- if ( numPoints2 > 4 ) {
- object2 = new THREE.Mesh( new THREE.ConvexGeometry( points2 ), object.material );
- object2.position.copy( this.tempCM2 );
- object2.quaternion.copy( object.quaternion );
- this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );
- numObjects ++;
- }
- output.object1 = object1;
- output.object2 = object2;
- return numObjects;
- }
- static transformFreeVector( v, m ) {
- // input:
- // vector interpreted as a free vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- const x = v.x,
- y = v.y,
- z = v.z;
- const e = m.elements;
- v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
- v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
- v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
- return v;
- }
- static transformFreeVectorInverse( v, m ) {
- // input:
- // vector interpreted as a free vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- const x = v.x,
- y = v.y,
- z = v.z;
- const e = m.elements;
- v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;
- v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;
- v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;
- return v;
- }
- static transformTiedVectorInverse( v, m ) {
- // input:
- // vector interpreted as a tied (ordinary) vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- const x = v.x,
- y = v.y,
- z = v.z;
- const e = m.elements;
- v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];
- v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];
- v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];
- return v;
- }
- static transformPlaneToLocalSpace( plane, m, resultPlane ) {
- resultPlane.normal.copy( plane.normal );
- resultPlane.constant = plane.constant;
- const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );
- ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m ); // recalculate constant (like in setFromNormalAndCoplanarPoint)
- resultPlane.constant = - referencePoint.dot( resultPlane.normal );
- }
- }
- THREE.ConvexObjectBreaker = ConvexObjectBreaker;
- } )();
|