123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- ( function () {
- const a = {
- c: null,
- // center
- u: [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ],
- // basis vectors
- e: [] // half width
- };
- const b = {
- c: null,
- // center
- u: [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ],
- // basis vectors
- e: [] // half width
- };
- const R = [[], [], []];
- const AbsR = [[], [], []];
- const t = [];
- const xAxis = new THREE.Vector3();
- const yAxis = new THREE.Vector3();
- const zAxis = new THREE.Vector3();
- const v1 = new THREE.Vector3();
- const size = new THREE.Vector3();
- const closestPoint = new THREE.Vector3();
- const rotationMatrix = new THREE.Matrix3();
- const aabb = new THREE.Box3();
- const matrix = new THREE.Matrix4();
- const inverse = new THREE.Matrix4();
- const localRay = new THREE.Ray(); // OBB
- class OBB {
- constructor( center = new THREE.Vector3(), halfSize = new THREE.Vector3(), rotation = new THREE.Matrix3() ) {
- this.center = center;
- this.halfSize = halfSize;
- this.rotation = rotation;
- }
- set( center, halfSize, rotation ) {
- this.center = center;
- this.halfSize = halfSize;
- this.rotation = rotation;
- return this;
- }
- copy( obb ) {
- this.center.copy( obb.center );
- this.halfSize.copy( obb.halfSize );
- this.rotation.copy( obb.rotation );
- return this;
- }
- clone() {
- return new this.constructor().copy( this );
- }
- getSize( result ) {
- return result.copy( this.halfSize ).multiplyScalar( 2 );
- }
- /**
- * Reference: Closest Point on OBB to Point in Real-Time Collision Detection
- * by Christer Ericson (chapter 5.1.4)
- */
- clampPoint( point, result ) {
- const halfSize = this.halfSize;
- v1.subVectors( point, this.center );
- this.rotation.extractBasis( xAxis, yAxis, zAxis ); // start at the center position of the OBB
- result.copy( this.center ); // project the target onto the OBB axes and walk towards that point
- const x = THREE.MathUtils.clamp( v1.dot( xAxis ), - halfSize.x, halfSize.x );
- result.add( xAxis.multiplyScalar( x ) );
- const y = THREE.MathUtils.clamp( v1.dot( yAxis ), - halfSize.y, halfSize.y );
- result.add( yAxis.multiplyScalar( y ) );
- const z = THREE.MathUtils.clamp( v1.dot( zAxis ), - halfSize.z, halfSize.z );
- result.add( zAxis.multiplyScalar( z ) );
- return result;
- }
- containsPoint( point ) {
- v1.subVectors( point, this.center );
- this.rotation.extractBasis( xAxis, yAxis, zAxis ); // project v1 onto each axis and check if these points lie inside the OBB
- return Math.abs( v1.dot( xAxis ) ) <= this.halfSize.x && Math.abs( v1.dot( yAxis ) ) <= this.halfSize.y && Math.abs( v1.dot( zAxis ) ) <= this.halfSize.z;
- }
- intersectsBox3( box3 ) {
- return this.intersectsOBB( obb.fromBox3( box3 ) );
- }
- intersectsSphere( sphere ) {
- // find the point on the OBB closest to the sphere center
- this.clampPoint( sphere.center, closestPoint ); // if that point is inside the sphere, the OBB and sphere intersect
- return closestPoint.distanceToSquared( sphere.center ) <= sphere.radius * sphere.radius;
- }
- /**
- * Reference: OBB-OBB Intersection in Real-Time Collision Detection
- * by Christer Ericson (chapter 4.4.1)
- *
- */
- intersectsOBB( obb, epsilon = Number.EPSILON ) {
- // prepare data structures (the code uses the same nomenclature like the reference)
- a.c = this.center;
- a.e[ 0 ] = this.halfSize.x;
- a.e[ 1 ] = this.halfSize.y;
- a.e[ 2 ] = this.halfSize.z;
- this.rotation.extractBasis( a.u[ 0 ], a.u[ 1 ], a.u[ 2 ] );
- b.c = obb.center;
- b.e[ 0 ] = obb.halfSize.x;
- b.e[ 1 ] = obb.halfSize.y;
- b.e[ 2 ] = obb.halfSize.z;
- obb.rotation.extractBasis( b.u[ 0 ], b.u[ 1 ], b.u[ 2 ] ); // compute rotation matrix expressing b in a's coordinate frame
- for ( let i = 0; i < 3; i ++ ) {
- for ( let j = 0; j < 3; j ++ ) {
- R[ i ][ j ] = a.u[ i ].dot( b.u[ j ] );
- }
- } // compute translation vector
- v1.subVectors( b.c, a.c ); // bring translation into a's coordinate frame
- t[ 0 ] = v1.dot( a.u[ 0 ] );
- t[ 1 ] = v1.dot( a.u[ 1 ] );
- t[ 2 ] = v1.dot( a.u[ 2 ] ); // compute common subexpressions. Add in an epsilon term to
- // counteract arithmetic errors when two edges are parallel and
- // their cross product is (near) null
- for ( let i = 0; i < 3; i ++ ) {
- for ( let j = 0; j < 3; j ++ ) {
- AbsR[ i ][ j ] = Math.abs( R[ i ][ j ] ) + epsilon;
- }
- }
- let ra, rb; // test axes L = A0, L = A1, L = A2
- for ( let i = 0; i < 3; i ++ ) {
- ra = a.e[ i ];
- rb = b.e[ 0 ] * AbsR[ i ][ 0 ] + b.e[ 1 ] * AbsR[ i ][ 1 ] + b.e[ 2 ] * AbsR[ i ][ 2 ];
- if ( Math.abs( t[ i ] ) > ra + rb ) return false;
- } // test axes L = B0, L = B1, L = B2
- for ( let i = 0; i < 3; i ++ ) {
- ra = a.e[ 0 ] * AbsR[ 0 ][ i ] + a.e[ 1 ] * AbsR[ 1 ][ i ] + a.e[ 2 ] * AbsR[ 2 ][ i ];
- rb = b.e[ i ];
- if ( Math.abs( t[ 0 ] * R[ 0 ][ i ] + t[ 1 ] * R[ 1 ][ i ] + t[ 2 ] * R[ 2 ][ i ] ) > ra + rb ) return false;
- } // test axis L = A0 x B0
- ra = a.e[ 1 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 1 ][ 0 ];
- rb = b.e[ 1 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 1 ];
- if ( Math.abs( t[ 2 ] * R[ 1 ][ 0 ] - t[ 1 ] * R[ 2 ][ 0 ] ) > ra + rb ) return false; // test axis L = A0 x B1
- ra = a.e[ 1 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 1 ][ 1 ];
- rb = b.e[ 0 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 0 ];
- if ( Math.abs( t[ 2 ] * R[ 1 ][ 1 ] - t[ 1 ] * R[ 2 ][ 1 ] ) > ra + rb ) return false; // test axis L = A0 x B2
- ra = a.e[ 1 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 1 ][ 2 ];
- rb = b.e[ 0 ] * AbsR[ 0 ][ 1 ] + b.e[ 1 ] * AbsR[ 0 ][ 0 ];
- if ( Math.abs( t[ 2 ] * R[ 1 ][ 2 ] - t[ 1 ] * R[ 2 ][ 2 ] ) > ra + rb ) return false; // test axis L = A1 x B0
- ra = a.e[ 0 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 0 ][ 0 ];
- rb = b.e[ 1 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 1 ];
- if ( Math.abs( t[ 0 ] * R[ 2 ][ 0 ] - t[ 2 ] * R[ 0 ][ 0 ] ) > ra + rb ) return false; // test axis L = A1 x B1
- ra = a.e[ 0 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 0 ][ 1 ];
- rb = b.e[ 0 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 0 ];
- if ( Math.abs( t[ 0 ] * R[ 2 ][ 1 ] - t[ 2 ] * R[ 0 ][ 1 ] ) > ra + rb ) return false; // test axis L = A1 x B2
- ra = a.e[ 0 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 0 ][ 2 ];
- rb = b.e[ 0 ] * AbsR[ 1 ][ 1 ] + b.e[ 1 ] * AbsR[ 1 ][ 0 ];
- if ( Math.abs( t[ 0 ] * R[ 2 ][ 2 ] - t[ 2 ] * R[ 0 ][ 2 ] ) > ra + rb ) return false; // test axis L = A2 x B0
- ra = a.e[ 0 ] * AbsR[ 1 ][ 0 ] + a.e[ 1 ] * AbsR[ 0 ][ 0 ];
- rb = b.e[ 1 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 1 ];
- if ( Math.abs( t[ 1 ] * R[ 0 ][ 0 ] - t[ 0 ] * R[ 1 ][ 0 ] ) > ra + rb ) return false; // test axis L = A2 x B1
- ra = a.e[ 0 ] * AbsR[ 1 ][ 1 ] + a.e[ 1 ] * AbsR[ 0 ][ 1 ];
- rb = b.e[ 0 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 0 ];
- if ( Math.abs( t[ 1 ] * R[ 0 ][ 1 ] - t[ 0 ] * R[ 1 ][ 1 ] ) > ra + rb ) return false; // test axis L = A2 x B2
- ra = a.e[ 0 ] * AbsR[ 1 ][ 2 ] + a.e[ 1 ] * AbsR[ 0 ][ 2 ];
- rb = b.e[ 0 ] * AbsR[ 2 ][ 1 ] + b.e[ 1 ] * AbsR[ 2 ][ 0 ];
- if ( Math.abs( t[ 1 ] * R[ 0 ][ 2 ] - t[ 0 ] * R[ 1 ][ 2 ] ) > ra + rb ) return false; // since no separating axis is found, the OBBs must be intersecting
- return true;
- }
- /**
- * Reference: Testing Box Against Plane in Real-Time Collision Detection
- * by Christer Ericson (chapter 5.2.3)
- */
- intersectsPlane( plane ) {
- this.rotation.extractBasis( xAxis, yAxis, zAxis ); // compute the projection interval radius of this OBB onto L(t) = this->center + t * p.normal;
- const r = this.halfSize.x * Math.abs( plane.normal.dot( xAxis ) ) + this.halfSize.y * Math.abs( plane.normal.dot( yAxis ) ) + this.halfSize.z * Math.abs( plane.normal.dot( zAxis ) ); // compute distance of the OBB's center from the plane
- const d = plane.normal.dot( this.center ) - plane.constant; // Intersection occurs when distance d falls within [-r,+r] interval
- return Math.abs( d ) <= r;
- }
- /**
- * Performs a ray/OBB intersection test and stores the intersection point
- * to the given 3D vector. If no intersection is detected, *null* is returned.
- */
- intersectRay( ray, result ) {
- // the idea is to perform the intersection test in the local space
- // of the OBB.
- this.getSize( size );
- aabb.setFromCenterAndSize( v1.set( 0, 0, 0 ), size ); // create a 4x4 transformation matrix
- matrix.setFromMatrix3( this.rotation );
- matrix.setPosition( this.center ); // transform ray to the local space of the OBB
- inverse.copy( matrix ).invert();
- localRay.copy( ray ).applyMatrix4( inverse ); // perform ray <-> AABB intersection test
- if ( localRay.intersectBox( aabb, result ) ) {
- // transform the intersection point back to world space
- return result.applyMatrix4( matrix );
- } else {
- return null;
- }
- }
- /**
- * Performs a ray/OBB intersection test. Returns either true or false if
- * there is a intersection or not.
- */
- intersectsRay( ray ) {
- return this.intersectRay( ray, v1 ) !== null;
- }
- fromBox3( box3 ) {
- box3.getCenter( this.center );
- box3.getSize( this.halfSize ).multiplyScalar( 0.5 );
- this.rotation.identity();
- return this;
- }
- equals( obb ) {
- return obb.center.equals( this.center ) && obb.halfSize.equals( this.halfSize ) && obb.rotation.equals( this.rotation );
- }
- applyMatrix4( matrix ) {
- const e = matrix.elements;
- let sx = v1.set( e[ 0 ], e[ 1 ], e[ 2 ] ).length();
- const sy = v1.set( e[ 4 ], e[ 5 ], e[ 6 ] ).length();
- const sz = v1.set( e[ 8 ], e[ 9 ], e[ 10 ] ).length();
- const det = matrix.determinant();
- if ( det < 0 ) sx = - sx;
- rotationMatrix.setFromMatrix4( matrix );
- const invSX = 1 / sx;
- const invSY = 1 / sy;
- const invSZ = 1 / sz;
- rotationMatrix.elements[ 0 ] *= invSX;
- rotationMatrix.elements[ 1 ] *= invSX;
- rotationMatrix.elements[ 2 ] *= invSX;
- rotationMatrix.elements[ 3 ] *= invSY;
- rotationMatrix.elements[ 4 ] *= invSY;
- rotationMatrix.elements[ 5 ] *= invSY;
- rotationMatrix.elements[ 6 ] *= invSZ;
- rotationMatrix.elements[ 7 ] *= invSZ;
- rotationMatrix.elements[ 8 ] *= invSZ;
- this.rotation.multiply( rotationMatrix );
- this.halfSize.x *= sx;
- this.halfSize.y *= sy;
- this.halfSize.z *= sz;
- v1.setFromMatrixPosition( matrix );
- this.center.add( v1 );
- return this;
- }
- }
- const obb = new OBB();
- THREE.OBB = OBB;
- } )();
|