| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 | import {	Color,	LightProbe,	LinearEncoding,	SphericalHarmonics3,	Vector3,	sRGBEncoding} from '../../../build/three.module.js';class LightProbeGenerator {	// https://www.ppsloan.org/publications/StupidSH36.pdf	static fromCubeTexture( cubeTexture ) {		let totalWeight = 0;		const coord = new Vector3();		const dir = new Vector3();		const color = new Color();		const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];		const sh = new SphericalHarmonics3();		const shCoefficients = sh.coefficients;		for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {			const image = cubeTexture.image[ faceIndex ];			const width = image.width;			const height = image.height;			const canvas = document.createElement( 'canvas' );			canvas.width = width;			canvas.height = height;			const context = canvas.getContext( '2d' );			context.drawImage( image, 0, 0, width, height );			const imageData = context.getImageData( 0, 0, width, height );			const data = imageData.data;			const imageWidth = imageData.width; // assumed to be square			const pixelSize = 2 / imageWidth;			for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed				// pixel color				color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 );				// convert to linear color space				convertColorToLinear( color, cubeTexture.encoding );				// pixel coordinate on unit cube				const pixelIndex = i / 4;				const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;				const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;				switch ( faceIndex ) {					case 0: coord.set( - 1, row, - col ); break;					case 1: coord.set( 1, row, col ); break;					case 2: coord.set( - col, 1, - row ); break;					case 3: coord.set( - col, - 1, row ); break;					case 4: coord.set( - col, row, 1 ); break;					case 5: coord.set( col, row, - 1 ); break;				}				// weight assigned to this pixel				const lengthSq = coord.lengthSq();				const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );				totalWeight += weight;				// direction vector to this pixel				dir.copy( coord ).normalize();				// evaluate SH basis functions in direction dir				SphericalHarmonics3.getBasisAt( dir, shBasis );				// accummuulate				for ( let j = 0; j < 9; j ++ ) {					shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;					shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;					shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;				}			}		}		// normalize		const norm = ( 4 * Math.PI ) / totalWeight;		for ( let j = 0; j < 9; j ++ ) {			shCoefficients[ j ].x *= norm;			shCoefficients[ j ].y *= norm;			shCoefficients[ j ].z *= norm;		}		return new LightProbe( sh );	}	static fromCubeRenderTarget( renderer, cubeRenderTarget ) {		// The renderTarget must be set to RGBA in order to make readRenderTargetPixels works		let totalWeight = 0;		const coord = new Vector3();		const dir = new Vector3();		const color = new Color();		const shBasis = [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];		const sh = new SphericalHarmonics3();		const shCoefficients = sh.coefficients;		for ( let faceIndex = 0; faceIndex < 6; faceIndex ++ ) {			const imageWidth = cubeRenderTarget.width; // assumed to be square			const data = new Uint8Array( imageWidth * imageWidth * 4 );			renderer.readRenderTargetPixels( cubeRenderTarget, 0, 0, imageWidth, imageWidth, data, faceIndex );			const pixelSize = 2 / imageWidth;			for ( let i = 0, il = data.length; i < il; i += 4 ) { // RGBA assumed				// pixel color				color.setRGB( data[ i ] / 255, data[ i + 1 ] / 255, data[ i + 2 ] / 255 );				// convert to linear color space				convertColorToLinear( color, cubeRenderTarget.texture.encoding );				// pixel coordinate on unit cube				const pixelIndex = i / 4;				const col = - 1 + ( pixelIndex % imageWidth + 0.5 ) * pixelSize;				const row = 1 - ( Math.floor( pixelIndex / imageWidth ) + 0.5 ) * pixelSize;				switch ( faceIndex ) {					case 0: coord.set( 1, row, - col ); break;					case 1: coord.set( - 1, row, col ); break;					case 2: coord.set( col, 1, - row ); break;					case 3: coord.set( col, - 1, row ); break;					case 4: coord.set( col, row, 1 ); break;					case 5: coord.set( - col, row, - 1 ); break;				}				// weight assigned to this pixel				const lengthSq = coord.lengthSq();				const weight = 4 / ( Math.sqrt( lengthSq ) * lengthSq );				totalWeight += weight;				// direction vector to this pixel				dir.copy( coord ).normalize();				// evaluate SH basis functions in direction dir				SphericalHarmonics3.getBasisAt( dir, shBasis );				// accummuulate				for ( let j = 0; j < 9; j ++ ) {					shCoefficients[ j ].x += shBasis[ j ] * color.r * weight;					shCoefficients[ j ].y += shBasis[ j ] * color.g * weight;					shCoefficients[ j ].z += shBasis[ j ] * color.b * weight;				}			}		}		// normalize		const norm = ( 4 * Math.PI ) / totalWeight;		for ( let j = 0; j < 9; j ++ ) {			shCoefficients[ j ].x *= norm;			shCoefficients[ j ].y *= norm;			shCoefficients[ j ].z *= norm;		}		return new LightProbe( sh );	}}function convertColorToLinear( color, encoding ) {	switch ( encoding ) {		case sRGBEncoding:			color.convertSRGBToLinear();			break;		case LinearEncoding:			break;		default:			console.warn( 'WARNING: LightProbeGenerator convertColorToLinear() encountered an unsupported encoding.' );			break;	}	return color;}export { LightProbeGenerator };
 |