123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 |
- ( function () {
- /**
- * References:
- * http://www.valvesoftware.com/publications/2010/siggraph2010_vlachos_waterflow.pdf
- * http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html
- *
- */
- class Water extends THREE.Mesh {
- constructor( geometry, options = {} ) {
- super( geometry );
- this.type = 'Water';
- const scope = this;
- const color = options.color !== undefined ? new THREE.Color( options.color ) : new THREE.Color( 0xFFFFFF );
- const textureWidth = options.textureWidth || 512;
- const textureHeight = options.textureHeight || 512;
- const clipBias = options.clipBias || 0;
- const flowDirection = options.flowDirection || new THREE.Vector2( 1, 0 );
- const flowSpeed = options.flowSpeed || 0.03;
- const reflectivity = options.reflectivity || 0.02;
- const scale = options.scale || 1;
- const shader = options.shader || Water.WaterShader;
- const encoding = options.encoding !== undefined ? options.encoding : THREE.LinearEncoding;
- const textureLoader = new THREE.TextureLoader();
- const flowMap = options.flowMap || undefined;
- const normalMap0 = options.normalMap0 || textureLoader.load( 'textures/water/Water_1_M_Normal.jpg' );
- const normalMap1 = options.normalMap1 || textureLoader.load( 'textures/water/Water_2_M_Normal.jpg' );
- const cycle = 0.15; // a cycle of a flow map phase
- const halfCycle = cycle * 0.5;
- const textureMatrix = new THREE.Matrix4();
- const clock = new THREE.Clock(); // internal components
- if ( THREE.Reflector === undefined ) {
- console.error( 'THREE.Water: Required component THREE.Reflector not found.' );
- return;
- }
- if ( THREE.Refractor === undefined ) {
- console.error( 'THREE.Water: Required component THREE.Refractor not found.' );
- return;
- }
- const reflector = new THREE.Reflector( geometry, {
- textureWidth: textureWidth,
- textureHeight: textureHeight,
- clipBias: clipBias,
- encoding: encoding
- } );
- const refractor = new THREE.Refractor( geometry, {
- textureWidth: textureWidth,
- textureHeight: textureHeight,
- clipBias: clipBias,
- encoding: encoding
- } );
- reflector.matrixAutoUpdate = false;
- refractor.matrixAutoUpdate = false; // material
- this.material = new THREE.ShaderMaterial( {
- uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ 'fog' ], shader.uniforms ] ),
- vertexShader: shader.vertexShader,
- fragmentShader: shader.fragmentShader,
- transparent: true,
- fog: true
- } );
- if ( flowMap !== undefined ) {
- this.material.defines.USE_FLOWMAP = '';
- this.material.uniforms[ 'tFlowMap' ] = {
- type: 't',
- value: flowMap
- };
- } else {
- this.material.uniforms[ 'flowDirection' ] = {
- type: 'v2',
- value: flowDirection
- };
- } // maps
- normalMap0.wrapS = normalMap0.wrapT = THREE.RepeatWrapping;
- normalMap1.wrapS = normalMap1.wrapT = THREE.RepeatWrapping;
- this.material.uniforms[ 'tReflectionMap' ].value = reflector.getRenderTarget().texture;
- this.material.uniforms[ 'tRefractionMap' ].value = refractor.getRenderTarget().texture;
- this.material.uniforms[ 'tNormalMap0' ].value = normalMap0;
- this.material.uniforms[ 'tNormalMap1' ].value = normalMap1; // water
- this.material.uniforms[ 'color' ].value = color;
- this.material.uniforms[ 'reflectivity' ].value = reflectivity;
- this.material.uniforms[ 'textureMatrix' ].value = textureMatrix; // inital values
- this.material.uniforms[ 'config' ].value.x = 0; // flowMapOffset0
- this.material.uniforms[ 'config' ].value.y = halfCycle; // flowMapOffset1
- this.material.uniforms[ 'config' ].value.z = halfCycle; // halfCycle
- this.material.uniforms[ 'config' ].value.w = scale; // scale
- // functions
- function updateTextureMatrix( camera ) {
- textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 );
- textureMatrix.multiply( camera.projectionMatrix );
- textureMatrix.multiply( camera.matrixWorldInverse );
- textureMatrix.multiply( scope.matrixWorld );
- }
- function updateFlow() {
- const delta = clock.getDelta();
- const config = scope.material.uniforms[ 'config' ];
- config.value.x += flowSpeed * delta; // flowMapOffset0
- config.value.y = config.value.x + halfCycle; // flowMapOffset1
- // Important: The distance between offsets should be always the value of "halfCycle".
- // Moreover, both offsets should be in the range of [ 0, cycle ].
- // This approach ensures a smooth water flow and avoids "reset" effects.
- if ( config.value.x >= cycle ) {
- config.value.x = 0;
- config.value.y = halfCycle;
- } else if ( config.value.y >= cycle ) {
- config.value.y = config.value.y - cycle;
- }
- } //
- this.onBeforeRender = function ( renderer, scene, camera ) {
- updateTextureMatrix( camera );
- updateFlow();
- scope.visible = false;
- reflector.matrixWorld.copy( scope.matrixWorld );
- refractor.matrixWorld.copy( scope.matrixWorld );
- reflector.onBeforeRender( renderer, scene, camera );
- refractor.onBeforeRender( renderer, scene, camera );
- scope.visible = true;
- };
- }
- }
- Water.prototype.isWater = true;
- Water.WaterShader = {
- uniforms: {
- 'color': {
- type: 'c',
- value: null
- },
- 'reflectivity': {
- type: 'f',
- value: 0
- },
- 'tReflectionMap': {
- type: 't',
- value: null
- },
- 'tRefractionMap': {
- type: 't',
- value: null
- },
- 'tNormalMap0': {
- type: 't',
- value: null
- },
- 'tNormalMap1': {
- type: 't',
- value: null
- },
- 'textureMatrix': {
- type: 'm4',
- value: null
- },
- 'config': {
- type: 'v4',
- value: new THREE.Vector4()
- }
- },
- vertexShader:
- /* glsl */
- `
- #include <common>
- #include <fog_pars_vertex>
- #include <logdepthbuf_pars_vertex>
- uniform mat4 textureMatrix;
- varying vec4 vCoord;
- varying vec2 vUv;
- varying vec3 vToEye;
- void main() {
- vUv = uv;
- vCoord = textureMatrix * vec4( position, 1.0 );
- vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
- vToEye = cameraPosition - worldPosition.xyz;
- vec4 mvPosition = viewMatrix * worldPosition; // used in fog_vertex
- gl_Position = projectionMatrix * mvPosition;
- #include <logdepthbuf_vertex>
- #include <fog_vertex>
- }`,
- fragmentShader:
- /* glsl */
- `
- #include <common>
- #include <fog_pars_fragment>
- #include <logdepthbuf_pars_fragment>
- uniform sampler2D tReflectionMap;
- uniform sampler2D tRefractionMap;
- uniform sampler2D tNormalMap0;
- uniform sampler2D tNormalMap1;
- #ifdef USE_FLOWMAP
- uniform sampler2D tFlowMap;
- #else
- uniform vec2 flowDirection;
- #endif
- uniform vec3 color;
- uniform float reflectivity;
- uniform vec4 config;
- varying vec4 vCoord;
- varying vec2 vUv;
- varying vec3 vToEye;
- void main() {
- #include <logdepthbuf_fragment>
- float flowMapOffset0 = config.x;
- float flowMapOffset1 = config.y;
- float halfCycle = config.z;
- float scale = config.w;
- vec3 toEye = normalize( vToEye );
- // determine flow direction
- vec2 flow;
- #ifdef USE_FLOWMAP
- flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0;
- #else
- flow = flowDirection;
- #endif
- flow.x *= - 1.0;
- // sample normal maps (distort uvs with flowdata)
- vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 );
- vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 );
- // linear interpolate to get the final normal color
- float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle;
- vec4 normalColor = mix( normalColor0, normalColor1, flowLerp );
- // calculate normal vector
- vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b, normalColor.g * 2.0 - 1.0 ) );
- // calculate the fresnel term to blend reflection and refraction maps
- float theta = max( dot( toEye, normal ), 0.0 );
- float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 );
- // calculate final uv coords
- vec3 coord = vCoord.xyz / vCoord.w;
- vec2 uv = coord.xy + coord.z * normal.xz * 0.05;
- vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) );
- vec4 refractColor = texture2D( tRefractionMap, uv );
- // multiply water color with the mix of both textures
- gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance );
- #include <tonemapping_fragment>
- #include <encodings_fragment>
- #include <fog_fragment>
- }`
- };
- THREE.Water = Water;
- } )();
|