SimplexNoise.js 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. ( function () {
  2. // Ported from Stefan Gustavson's java implementation
  3. // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  4. // Read Stefan's excellent paper for details on how this code works.
  5. //
  6. // Sean McCullough banksean@gmail.com
  7. //
  8. // Added 4D noise
  9. /**
  10. * You can pass in a random number generator object if you like.
  11. * It is assumed to have a random() method.
  12. */
  13. class SimplexNoise {
  14. constructor( r = Math ) {
  15. this.grad3 = [[ 1, 1, 0 ], [ - 1, 1, 0 ], [ 1, - 1, 0 ], [ - 1, - 1, 0 ], [ 1, 0, 1 ], [ - 1, 0, 1 ], [ 1, 0, - 1 ], [ - 1, 0, - 1 ], [ 0, 1, 1 ], [ 0, - 1, 1 ], [ 0, 1, - 1 ], [ 0, - 1, - 1 ]];
  16. this.grad4 = [[ 0, 1, 1, 1 ], [ 0, 1, 1, - 1 ], [ 0, 1, - 1, 1 ], [ 0, 1, - 1, - 1 ], [ 0, - 1, 1, 1 ], [ 0, - 1, 1, - 1 ], [ 0, - 1, - 1, 1 ], [ 0, - 1, - 1, - 1 ], [ 1, 0, 1, 1 ], [ 1, 0, 1, - 1 ], [ 1, 0, - 1, 1 ], [ 1, 0, - 1, - 1 ], [ - 1, 0, 1, 1 ], [ - 1, 0, 1, - 1 ], [ - 1, 0, - 1, 1 ], [ - 1, 0, - 1, - 1 ], [ 1, 1, 0, 1 ], [ 1, 1, 0, - 1 ], [ 1, - 1, 0, 1 ], [ 1, - 1, 0, - 1 ], [ - 1, 1, 0, 1 ], [ - 1, 1, 0, - 1 ], [ - 1, - 1, 0, 1 ], [ - 1, - 1, 0, - 1 ], [ 1, 1, 1, 0 ], [ 1, 1, - 1, 0 ], [ 1, - 1, 1, 0 ], [ 1, - 1, - 1, 0 ], [ - 1, 1, 1, 0 ], [ - 1, 1, - 1, 0 ], [ - 1, - 1, 1, 0 ], [ - 1, - 1, - 1, 0 ]];
  17. this.p = [];
  18. for ( let i = 0; i < 256; i ++ ) {
  19. this.p[ i ] = Math.floor( r.random() * 256 );
  20. } // To remove the need for index wrapping, double the permutation table length
  21. this.perm = [];
  22. for ( let i = 0; i < 512; i ++ ) {
  23. this.perm[ i ] = this.p[ i & 255 ];
  24. } // A lookup table to traverse the simplex around a given point in 4D.
  25. // Details can be found where this table is used, in the 4D noise method.
  26. this.simplex = [[ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 2, 3, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 3, 0 ], [ 0, 2, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 3, 2, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 0, 3 ], [ 0, 0, 0, 0 ], [ 1, 3, 0, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ], [ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 3, 1 ], [ 0, 0, 0, 0 ], [ 2, 1, 3, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ], [ 0, 0, 0, 0 ], [ 3, 1, 2, 0 ], [ 2, 1, 0, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 1, 0, 2 ], [ 0, 0, 0, 0 ], [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]];
  27. }
  28. dot( g, x, y ) {
  29. return g[ 0 ] * x + g[ 1 ] * y;
  30. }
  31. dot3( g, x, y, z ) {
  32. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z;
  33. }
  34. dot4( g, x, y, z, w ) {
  35. return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w;
  36. }
  37. noise( xin, yin ) {
  38. let n0; // Noise contributions from the three corners
  39. let n1;
  40. let n2; // Skew the input space to determine which simplex cell we're in
  41. const F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 );
  42. const s = ( xin + yin ) * F2; // Hairy factor for 2D
  43. const i = Math.floor( xin + s );
  44. const j = Math.floor( yin + s );
  45. const G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0;
  46. const t = ( i + j ) * G2;
  47. const X0 = i - t; // Unskew the cell origin back to (x,y) space
  48. const Y0 = j - t;
  49. const x0 = xin - X0; // The x,y distances from the cell origin
  50. const y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle.
  51. // Determine which simplex we are in.
  52. let i1; // Offsets for second (middle) corner of simplex in (i,j) coords
  53. let j1;
  54. if ( x0 > y0 ) {
  55. i1 = 1;
  56. j1 = 0; // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  57. } else {
  58. i1 = 0;
  59. j1 = 1;
  60. } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  61. // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  62. // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  63. // c = (3-sqrt(3))/6
  64. const x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  65. const y1 = y0 - j1 + G2;
  66. const x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
  67. const y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners
  68. const ii = i & 255;
  69. const jj = j & 255;
  70. const gi0 = this.perm[ ii + this.perm[ jj ] ] % 12;
  71. const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ] ] % 12;
  72. const gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ] ] % 12; // Calculate the contribution from the three corners
  73. let t0 = 0.5 - x0 * x0 - y0 * y0;
  74. if ( t0 < 0 ) n0 = 0.0; else {
  75. t0 *= t0;
  76. n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient
  77. }
  78. let t1 = 0.5 - x1 * x1 - y1 * y1;
  79. if ( t1 < 0 ) n1 = 0.0; else {
  80. t1 *= t1;
  81. n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 );
  82. }
  83. let t2 = 0.5 - x2 * x2 - y2 * y2;
  84. if ( t2 < 0 ) n2 = 0.0; else {
  85. t2 *= t2;
  86. n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 );
  87. } // Add contributions from each corner to get the final noise value.
  88. // The result is scaled to return values in the interval [-1,1].
  89. return 70.0 * ( n0 + n1 + n2 );
  90. } // 3D simplex noise
  91. noise3d( xin, yin, zin ) {
  92. let n0; // Noise contributions from the four corners
  93. let n1;
  94. let n2;
  95. let n3; // Skew the input space to determine which simplex cell we're in
  96. const F3 = 1.0 / 3.0;
  97. const s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D
  98. const i = Math.floor( xin + s );
  99. const j = Math.floor( yin + s );
  100. const k = Math.floor( zin + s );
  101. const G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
  102. const t = ( i + j + k ) * G3;
  103. const X0 = i - t; // Unskew the cell origin back to (x,y,z) space
  104. const Y0 = j - t;
  105. const Z0 = k - t;
  106. const x0 = xin - X0; // The x,y,z distances from the cell origin
  107. const y0 = yin - Y0;
  108. const z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  109. // Determine which simplex we are in.
  110. let i1; // Offsets for second corner of simplex in (i,j,k) coords
  111. let j1;
  112. let k1;
  113. let i2; // Offsets for third corner of simplex in (i,j,k) coords
  114. let j2;
  115. let k2;
  116. if ( x0 >= y0 ) {
  117. if ( y0 >= z0 ) {
  118. i1 = 1;
  119. j1 = 0;
  120. k1 = 0;
  121. i2 = 1;
  122. j2 = 1;
  123. k2 = 0; // X Y Z order
  124. } else if ( x0 >= z0 ) {
  125. i1 = 1;
  126. j1 = 0;
  127. k1 = 0;
  128. i2 = 1;
  129. j2 = 0;
  130. k2 = 1; // X Z Y order
  131. } else {
  132. i1 = 0;
  133. j1 = 0;
  134. k1 = 1;
  135. i2 = 1;
  136. j2 = 0;
  137. k2 = 1;
  138. } // Z X Y order
  139. } else {
  140. // x0<y0
  141. if ( y0 < z0 ) {
  142. i1 = 0;
  143. j1 = 0;
  144. k1 = 1;
  145. i2 = 0;
  146. j2 = 1;
  147. k2 = 1; // Z Y X order
  148. } else if ( x0 < z0 ) {
  149. i1 = 0;
  150. j1 = 1;
  151. k1 = 0;
  152. i2 = 0;
  153. j2 = 1;
  154. k2 = 1; // Y Z X order
  155. } else {
  156. i1 = 0;
  157. j1 = 1;
  158. k1 = 0;
  159. i2 = 1;
  160. j2 = 1;
  161. k2 = 0;
  162. } // Y X Z order
  163. } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  164. // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  165. // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  166. // c = 1/6.
  167. const x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  168. const y1 = y0 - j1 + G3;
  169. const z1 = z0 - k1 + G3;
  170. const x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
  171. const y2 = y0 - j2 + 2.0 * G3;
  172. const z2 = z0 - k2 + 2.0 * G3;
  173. const x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
  174. const y3 = y0 - 1.0 + 3.0 * G3;
  175. const z3 = z0 - 1.0 + 3.0 * G3; // Work out the hashed gradient indices of the four simplex corners
  176. const ii = i & 255;
  177. const jj = j & 255;
  178. const kk = k & 255;
  179. const gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ] ] ] % 12;
  180. const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ] ] ] % 12;
  181. const gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ] ] ] % 12;
  182. const gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ] ] ] % 12; // Calculate the contribution from the four corners
  183. let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
  184. if ( t0 < 0 ) n0 = 0.0; else {
  185. t0 *= t0;
  186. n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 );
  187. }
  188. let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
  189. if ( t1 < 0 ) n1 = 0.0; else {
  190. t1 *= t1;
  191. n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 );
  192. }
  193. let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
  194. if ( t2 < 0 ) n2 = 0.0; else {
  195. t2 *= t2;
  196. n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 );
  197. }
  198. let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
  199. if ( t3 < 0 ) n3 = 0.0; else {
  200. t3 *= t3;
  201. n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 );
  202. } // Add contributions from each corner to get the final noise value.
  203. // The result is scaled to stay just inside [-1,1]
  204. return 32.0 * ( n0 + n1 + n2 + n3 );
  205. } // 4D simplex noise
  206. noise4d( x, y, z, w ) {
  207. // For faster and easier lookups
  208. const grad4 = this.grad4;
  209. const simplex = this.simplex;
  210. const perm = this.perm; // The skewing and unskewing factors are hairy again for the 4D case
  211. const F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0;
  212. const G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0;
  213. let n0; // Noise contributions from the five corners
  214. let n1;
  215. let n2;
  216. let n3;
  217. let n4; // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
  218. const s = ( x + y + z + w ) * F4; // Factor for 4D skewing
  219. const i = Math.floor( x + s );
  220. const j = Math.floor( y + s );
  221. const k = Math.floor( z + s );
  222. const l = Math.floor( w + s );
  223. const t = ( i + j + k + l ) * G4; // Factor for 4D unskewing
  224. const X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
  225. const Y0 = j - t;
  226. const Z0 = k - t;
  227. const W0 = l - t;
  228. const x0 = x - X0; // The x,y,z,w distances from the cell origin
  229. const y0 = y - Y0;
  230. const z0 = z - Z0;
  231. const w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe.
  232. // To find out which of the 24 possible simplices we're in, we need to
  233. // determine the magnitude ordering of x0, y0, z0 and w0.
  234. // The method below is a good way of finding the ordering of x,y,z,w and
  235. // then find the correct traversal order for the simplex we’re in.
  236. // First, six pair-wise comparisons are performed between each possible pair
  237. // of the four coordinates, and the results are used to add up binary bits
  238. // for an integer index.
  239. const c1 = x0 > y0 ? 32 : 0;
  240. const c2 = x0 > z0 ? 16 : 0;
  241. const c3 = y0 > z0 ? 8 : 0;
  242. const c4 = x0 > w0 ? 4 : 0;
  243. const c5 = y0 > w0 ? 2 : 0;
  244. const c6 = z0 > w0 ? 1 : 0;
  245. const c = c1 + c2 + c3 + c4 + c5 + c6; // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
  246. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
  247. // impossible. Only the 24 indices which have non-zero entries make any sense.
  248. // We use a thresholding to set the coordinates in turn from the largest magnitude.
  249. // The number 3 in the "simplex" array is at the position of the largest coordinate.
  250. const i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0;
  251. const j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0;
  252. const k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0;
  253. const l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate.
  254. const i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0;
  255. const j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0;
  256. const k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0;
  257. const l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate.
  258. const i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0;
  259. const j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0;
  260. const k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0;
  261. const l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up.
  262. const x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
  263. const y1 = y0 - j1 + G4;
  264. const z1 = z0 - k1 + G4;
  265. const w1 = w0 - l1 + G4;
  266. const x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
  267. const y2 = y0 - j2 + 2.0 * G4;
  268. const z2 = z0 - k2 + 2.0 * G4;
  269. const w2 = w0 - l2 + 2.0 * G4;
  270. const x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
  271. const y3 = y0 - j3 + 3.0 * G4;
  272. const z3 = z0 - k3 + 3.0 * G4;
  273. const w3 = w0 - l3 + 3.0 * G4;
  274. const x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
  275. const y4 = y0 - 1.0 + 4.0 * G4;
  276. const z4 = z0 - 1.0 + 4.0 * G4;
  277. const w4 = w0 - 1.0 + 4.0 * G4; // Work out the hashed gradient indices of the five simplex corners
  278. const ii = i & 255;
  279. const jj = j & 255;
  280. const kk = k & 255;
  281. const ll = l & 255;
  282. const gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ] ] ] ] % 32;
  283. const gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ] ] ] ] % 32;
  284. const gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ] ] ] ] % 32;
  285. const gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ] ] ] ] % 32;
  286. const gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ] ] ] ] % 32; // Calculate the contribution from the five corners
  287. let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
  288. if ( t0 < 0 ) n0 = 0.0; else {
  289. t0 *= t0;
  290. n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 );
  291. }
  292. let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
  293. if ( t1 < 0 ) n1 = 0.0; else {
  294. t1 *= t1;
  295. n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 );
  296. }
  297. let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
  298. if ( t2 < 0 ) n2 = 0.0; else {
  299. t2 *= t2;
  300. n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 );
  301. }
  302. let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
  303. if ( t3 < 0 ) n3 = 0.0; else {
  304. t3 *= t3;
  305. n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 );
  306. }
  307. let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
  308. if ( t4 < 0 ) n4 = 0.0; else {
  309. t4 *= t4;
  310. n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 );
  311. } // Sum up and scale the result to cover the range [-1,1]
  312. return 27.0 * ( n0 + n1 + n2 + n3 + n4 );
  313. }
  314. }
  315. THREE.SimplexNoise = SimplexNoise;
  316. } )();