| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 | ( function () {	/** * RGB Halftone shader for three.js. *	NOTE: * 		Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square) *		Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker) */	const HalftoneShader = {		uniforms: {			'tDiffuse': {				value: null			},			'shape': {				value: 1			},			'radius': {				value: 4			},			'rotateR': {				value: Math.PI / 12 * 1			},			'rotateG': {				value: Math.PI / 12 * 2			},			'rotateB': {				value: Math.PI / 12 * 3			},			'scatter': {				value: 0			},			'width': {				value: 1			},			'height': {				value: 1			},			'blending': {				value: 1			},			'blendingMode': {				value: 1			},			'greyscale': {				value: false			},			'disable': {				value: false			}		},		vertexShader:  /* glsl */  `		varying vec2 vUV;		void main() {			vUV = uv;			gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);		}`,		fragmentShader:  /* glsl */  `		#define SQRT2_MINUS_ONE 0.41421356		#define SQRT2_HALF_MINUS_ONE 0.20710678		#define PI2 6.28318531		#define SHAPE_DOT 1		#define SHAPE_ELLIPSE 2		#define SHAPE_LINE 3		#define SHAPE_SQUARE 4		#define BLENDING_LINEAR 1		#define BLENDING_MULTIPLY 2		#define BLENDING_ADD 3		#define BLENDING_LIGHTER 4		#define BLENDING_DARKER 5		uniform sampler2D tDiffuse;		uniform float radius;		uniform float rotateR;		uniform float rotateG;		uniform float rotateB;		uniform float scatter;		uniform float width;		uniform float height;		uniform int shape;		uniform bool disable;		uniform float blending;		uniform int blendingMode;		varying vec2 vUV;		uniform bool greyscale;		const int samples = 8;		float blend( float a, float b, float t ) {		// linear blend			return a * ( 1.0 - t ) + b * t;		}		float hypot( float x, float y ) {		// vector magnitude			return sqrt( x * x + y * y );		}		float rand( vec2 seed ){		// get pseudo-random number			return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 );		}		float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) {		// apply shape-specific transforms			float dist = hypot( coord.x - p.x, coord.y - p.y );			float rad = channel;			if ( shape == SHAPE_DOT ) {				rad = pow( abs( rad ), 1.125 ) * rad_max;			} else if ( shape == SHAPE_ELLIPSE ) {				rad = pow( abs( rad ), 1.125 ) * rad_max;				if ( dist != 0.0 ) {					float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y );					dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE;				}			} else if ( shape == SHAPE_LINE ) {				rad = pow( abs( rad ), 1.5) * rad_max;				float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y;				dist = hypot( normal.x * dot_p, normal.y * dot_p );			} else if ( shape == SHAPE_SQUARE ) {				float theta = atan( p.y - coord.y, p.x - coord.x ) - angle;				float sin_t = abs( sin( theta ) );				float cos_t = abs( cos( theta ) );				rad = pow( abs( rad ), 1.4 );				rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) );			}			return rad - dist;		}		struct Cell {		// grid sample positions			vec2 normal;			vec2 p1;			vec2 p2;			vec2 p3;			vec2 p4;			float samp2;			float samp1;			float samp3;			float samp4;		};		vec4 getSample( vec2 point ) {		// multi-sampled point			vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) );			float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2;			float step = PI2 / float( samples );			float dist = radius * 0.66;			for ( int i = 0; i < samples; ++i ) {				float r = base + step * float( i );				vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist );				tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) );			}			tex /= float( samples ) + 1.0;			return tex;		}		float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) {		// get colour for given point			float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res;			if ( channel == 0 ) {				c.samp1 = getSample( c.p1 ).r;				c.samp2 = getSample( c.p2 ).r;				c.samp3 = getSample( c.p3 ).r;				c.samp4 = getSample( c.p4 ).r;			} else if (channel == 1) {				c.samp1 = getSample( c.p1 ).g;				c.samp2 = getSample( c.p2 ).g;				c.samp3 = getSample( c.p3 ).g;				c.samp4 = getSample( c.p4 ).g;			} else {				c.samp1 = getSample( c.p1 ).b;				c.samp3 = getSample( c.p3 ).b;				c.samp2 = getSample( c.p2 ).b;				c.samp4 = getSample( c.p4 ).b;			}			dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius );			dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius );			dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius );			dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius );			res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0;			res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0;			res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0;			res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0;			res = clamp( res, 0.0, 1.0 );			return res;		}		Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) {		// get containing cell			Cell c;		// calc grid			vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) );			float threshold = step * 0.5;			float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y );			float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y );			vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal );			float offset_normal = mod( hypot( offset.x, offset.y ), step );			float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0;			float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir;			float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step );			float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0;			float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir;		// get closest corner			c.normal = n;			c.p1.x = p.x - n.x * normal_scale + n.y * line_scale;			c.p1.y = p.y - n.y * normal_scale - n.x * line_scale;		// scatter			if ( scatter != 0.0 ) {				float off_mag = scatter * threshold * 0.5;				float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2;				c.p1.x += cos( off_angle ) * off_mag;				c.p1.y += sin( off_angle ) * off_mag;			}		// find corners			float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step );			float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step );			c.p2.x = c.p1.x - n.x * normal_step;			c.p2.y = c.p1.y - n.y * normal_step;			c.p3.x = c.p1.x + n.y * line_step;			c.p3.y = c.p1.y - n.x * line_step;			c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step;			c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step;			return c;		}		float blendColour( float a, float b, float t ) {		// blend colours			if ( blendingMode == BLENDING_LINEAR ) {				return blend( a, b, 1.0 - t );			} else if ( blendingMode == BLENDING_ADD ) {				return blend( a, min( 1.0, a + b ), t );			} else if ( blendingMode == BLENDING_MULTIPLY ) {				return blend( a, max( 0.0, a * b ), t );			} else if ( blendingMode == BLENDING_LIGHTER ) {				return blend( a, max( a, b ), t );			} else if ( blendingMode == BLENDING_DARKER ) {				return blend( a, min( a, b ), t );			} else {				return blend( a, b, 1.0 - t );			}		}		void main() {			if ( ! disable ) {		// setup				vec2 p = vec2( vUV.x * width, vUV.y * height );				vec2 origin = vec2( 0, 0 );				float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25;		// get channel samples				Cell cell_r = getReferenceCell( p, origin, rotateR, radius );				Cell cell_g = getReferenceCell( p, origin, rotateG, radius );				Cell cell_b = getReferenceCell( p, origin, rotateB, radius );				float r = getDotColour( cell_r, p, 0, rotateR, aa );				float g = getDotColour( cell_g, p, 1, rotateG, aa );				float b = getDotColour( cell_b, p, 2, rotateB, aa );		// blend with original				vec4 colour = texture2D( tDiffuse, vUV );				r = blendColour( r, colour.r, blending );				g = blendColour( g, colour.g, blending );				b = blendColour( b, colour.b, blending );				if ( greyscale ) {					r = g = b = (r + b + g) / 3.0;				}				gl_FragColor = vec4( r, g, b, 1.0 );			} else {				gl_FragColor = texture2D( tDiffuse, vUV );			}		}`	};	THREE.HalftoneShader = HalftoneShader;} )();
 |