| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745 | <?php/** PHPExcel root directory */if (!defined('PHPEXCEL_ROOT')) {    /**     * @ignore     */    define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../');    require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php');}require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php';/** LOG_GAMMA_X_MAX_VALUE */define('LOG_GAMMA_X_MAX_VALUE', 2.55e305);/** XMININ */define('XMININ', 2.23e-308);/** EPS */define('EPS', 2.22e-16);/** SQRT2PI */define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099);/** * PHPExcel_Calculation_Statistical * * Copyright (c) 2006 - 2015 PHPExcel * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * @category    PHPExcel * @package        PHPExcel_Calculation * @copyright    Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel) * @license        http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL * @version        ##VERSION##, ##DATE## */class PHPExcel_Calculation_Statistical{    private static function checkTrendArrays(&$array1, &$array2)    {        if (!is_array($array1)) {            $array1 = array($array1);        }        if (!is_array($array2)) {            $array2 = array($array2);        }        $array1 = PHPExcel_Calculation_Functions::flattenArray($array1);        $array2 = PHPExcel_Calculation_Functions::flattenArray($array2);        foreach ($array1 as $key => $value) {            if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {                unset($array1[$key]);                unset($array2[$key]);            }        }        foreach ($array2 as $key => $value) {            if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {                unset($array1[$key]);                unset($array2[$key]);            }        }        $array1 = array_merge($array1);        $array2 = array_merge($array2);        return true;    }    /**     * Beta function.     *     * @author Jaco van Kooten     *     * @param p require p>0     * @param q require q>0     * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow     */    private static function beta($p, $q)    {        if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) {            return 0.0;        } else {            return exp(self::logBeta($p, $q));        }    }    /**     * Incomplete beta function     *     * @author Jaco van Kooten     * @author Paul Meagher     *     * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).     * @param x require 0<=x<=1     * @param p require p>0     * @param q require q>0     * @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow     */    private static function incompleteBeta($x, $p, $q)    {        if ($x <= 0.0) {            return 0.0;        } elseif ($x >= 1.0) {            return 1.0;        } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {            return 0.0;        }        $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));        if ($x < ($p + 1.0) / ($p + $q + 2.0)) {            return $beta_gam * self::betaFraction($x, $p, $q) / $p;        } else {            return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q);        }    }    // Function cache for logBeta function    private static $logBetaCacheP      = 0.0;    private static $logBetaCacheQ      = 0.0;    private static $logBetaCacheResult = 0.0;    /**     * The natural logarithm of the beta function.     *     * @param p require p>0     * @param q require q>0     * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow     * @author Jaco van Kooten     */    private static function logBeta($p, $q)    {        if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) {            self::$logBetaCacheP = $p;            self::$logBetaCacheQ = $q;            if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {                self::$logBetaCacheResult = 0.0;            } else {                self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q);            }        }        return self::$logBetaCacheResult;    }    /**     * Evaluates of continued fraction part of incomplete beta function.     * Based on an idea from Numerical Recipes (W.H. Press et al, 1992).     * @author Jaco van Kooten     */    private static function betaFraction($x, $p, $q)    {        $c = 1.0;        $sum_pq = $p + $q;        $p_plus = $p + 1.0;        $p_minus = $p - 1.0;        $h = 1.0 - $sum_pq * $x / $p_plus;        if (abs($h) < XMININ) {            $h = XMININ;        }        $h = 1.0 / $h;        $frac = $h;        $m     = 1;        $delta = 0.0;        while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION) {            $m2 = 2 * $m;            // even index for d            $d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2));            $h = 1.0 + $d * $h;            if (abs($h) < XMININ) {                $h = XMININ;            }            $h = 1.0 / $h;            $c = 1.0 + $d / $c;            if (abs($c) < XMININ) {                $c = XMININ;            }            $frac *= $h * $c;            // odd index for d            $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));            $h = 1.0 + $d * $h;            if (abs($h) < XMININ) {                $h = XMININ;            }            $h = 1.0 / $h;            $c = 1.0 + $d / $c;            if (abs($c) < XMININ) {                $c = XMININ;            }            $delta = $h * $c;            $frac *= $delta;            ++$m;        }        return $frac;    }    /**     * logGamma function     *     * @version 1.1     * @author Jaco van Kooten     *     * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.     *     * The natural logarithm of the gamma function. <br />     * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />     * Applied Mathematics Division <br />     * Argonne National Laboratory <br />     * Argonne, IL 60439 <br />     * <p>     * References:     * <ol>     * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural     *     Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>     * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>     * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>     * </ol>     * </p>     * <p>     * From the original documentation:     * </p>     * <p>     * This routine calculates the LOG(GAMMA) function for a positive real argument X.     * Computation is based on an algorithm outlined in references 1 and 2.     * The program uses rational functions that theoretically approximate LOG(GAMMA)     * to at least 18 significant decimal digits. The approximation for X > 12 is from     * reference 3, while approximations for X < 12.0 are similar to those in reference     * 1, but are unpublished. The accuracy achieved depends on the arithmetic system,     * the compiler, the intrinsic functions, and proper selection of the     * machine-dependent constants.     * </p>     * <p>     * Error returns: <br />     * The program returns the value XINF for X .LE. 0.0 or when overflow would occur.     * The computation is believed to be free of underflow and overflow.     * </p>     * @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305     */    // Function cache for logGamma    private static $logGammaCacheResult = 0.0;    private static $logGammaCacheX      = 0.0;    private static function logGamma($x)    {        // Log Gamma related constants        static $lg_d1 = -0.5772156649015328605195174;        static $lg_d2 = 0.4227843350984671393993777;        static $lg_d4 = 1.791759469228055000094023;        static $lg_p1 = array(            4.945235359296727046734888,            201.8112620856775083915565,            2290.838373831346393026739,            11319.67205903380828685045,            28557.24635671635335736389,            38484.96228443793359990269,            26377.48787624195437963534,            7225.813979700288197698961        );        static $lg_p2 = array(            4.974607845568932035012064,            542.4138599891070494101986,            15506.93864978364947665077,            184793.2904445632425417223,            1088204.76946882876749847,            3338152.967987029735917223,            5106661.678927352456275255,            3074109.054850539556250927        );        static $lg_p4 = array(            14745.02166059939948905062,            2426813.369486704502836312,            121475557.4045093227939592,            2663432449.630976949898078,            29403789566.34553899906876,            170266573776.5398868392998,            492612579337.743088758812,            560625185622.3951465078242        );        static $lg_q1 = array(            67.48212550303777196073036,            1113.332393857199323513008,            7738.757056935398733233834,            27639.87074403340708898585,            54993.10206226157329794414,            61611.22180066002127833352,            36351.27591501940507276287,            8785.536302431013170870835        );        static $lg_q2 = array(            183.0328399370592604055942,            7765.049321445005871323047,            133190.3827966074194402448,            1136705.821321969608938755,            5267964.117437946917577538,            13467014.54311101692290052,            17827365.30353274213975932,            9533095.591844353613395747        );        static $lg_q4 = array(            2690.530175870899333379843,            639388.5654300092398984238,            41355999.30241388052042842,            1120872109.61614794137657,            14886137286.78813811542398,            101680358627.2438228077304,            341747634550.7377132798597,            446315818741.9713286462081        );        static $lg_c  = array(            -0.001910444077728,            8.4171387781295e-4,            -5.952379913043012e-4,            7.93650793500350248e-4,            -0.002777777777777681622553,            0.08333333333333333331554247,            0.0057083835261        );        // Rough estimate of the fourth root of logGamma_xBig        static $lg_frtbig = 2.25e76;        static $pnt68     = 0.6796875;        if ($x == self::$logGammaCacheX) {            return self::$logGammaCacheResult;        }        $y = $x;        if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) {            if ($y <= EPS) {                $res = -log(y);            } elseif ($y <= 1.5) {                // ---------------------                //    EPS .LT. X .LE. 1.5                // ---------------------                if ($y < $pnt68) {                    $corr = -log($y);                    $xm1 = $y;                } else {                    $corr = 0.0;                    $xm1 = $y - 1.0;                }                if ($y <= 0.5 || $y >= $pnt68) {                    $xden = 1.0;                    $xnum = 0.0;                    for ($i = 0; $i < 8; ++$i) {                        $xnum = $xnum * $xm1 + $lg_p1[$i];                        $xden = $xden * $xm1 + $lg_q1[$i];                    }                    $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));                } else {                    $xm2 = $y - 1.0;                    $xden = 1.0;                    $xnum = 0.0;                    for ($i = 0; $i < 8; ++$i) {                        $xnum = $xnum * $xm2 + $lg_p2[$i];                        $xden = $xden * $xm2 + $lg_q2[$i];                    }                    $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));                }            } elseif ($y <= 4.0) {                // ---------------------                //    1.5 .LT. X .LE. 4.0                // ---------------------                $xm2 = $y - 2.0;                $xden = 1.0;                $xnum = 0.0;                for ($i = 0; $i < 8; ++$i) {                    $xnum = $xnum * $xm2 + $lg_p2[$i];                    $xden = $xden * $xm2 + $lg_q2[$i];                }                $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));            } elseif ($y <= 12.0) {                // ----------------------                //    4.0 .LT. X .LE. 12.0                // ----------------------                $xm4 = $y - 4.0;                $xden = -1.0;                $xnum = 0.0;                for ($i = 0; $i < 8; ++$i) {                    $xnum = $xnum * $xm4 + $lg_p4[$i];                    $xden = $xden * $xm4 + $lg_q4[$i];                }                $res = $lg_d4 + $xm4 * ($xnum / $xden);            } else {                // ---------------------------------                //    Evaluate for argument .GE. 12.0                // ---------------------------------                $res = 0.0;                if ($y <= $lg_frtbig) {                    $res = $lg_c[6];                    $ysq = $y * $y;                    for ($i = 0; $i < 6; ++$i) {                        $res = $res / $ysq + $lg_c[$i];                    }                    $res /= $y;                    $corr = log($y);                    $res = $res + log(SQRT2PI) - 0.5 * $corr;                    $res += $y * ($corr - 1.0);                }            }        } else {            // --------------------------            //    Return for bad arguments            // --------------------------            $res = MAX_VALUE;        }        // ------------------------------        //    Final adjustments and return        // ------------------------------        self::$logGammaCacheX = $x;        self::$logGammaCacheResult = $res;        return $res;    }    //    //    Private implementation of the incomplete Gamma function    //    private static function incompleteGamma($a, $x)    {        static $max = 32;        $summer = 0;        for ($n=0; $n<=$max; ++$n) {            $divisor = $a;            for ($i=1; $i<=$n; ++$i) {                $divisor *= ($a + $i);            }            $summer += (pow($x, $n) / $divisor);        }        return pow($x, $a) * exp(0-$x) * $summer;    }    //    //    Private implementation of the Gamma function    //    private static function gamma($data)    {        if ($data == 0.0) {            return 0;        }        static $p0 = 1.000000000190015;        static $p = array(            1 => 76.18009172947146,            2 => -86.50532032941677,            3 => 24.01409824083091,            4 => -1.231739572450155,            5 => 1.208650973866179e-3,            6 => -5.395239384953e-6        );        $y = $x = $data;        $tmp = $x + 5.5;        $tmp -= ($x + 0.5) * log($tmp);        $summer = $p0;        for ($j=1; $j<=6; ++$j) {            $summer += ($p[$j] / ++$y);        }        return exp(0 - $tmp + log(SQRT2PI * $summer / $x));    }    /***************************************************************************     *                                inverse_ncdf.php     *                            -------------------     *    begin                : Friday, January 16, 2004     *    copyright            : (C) 2004 Michael Nickerson     *    email                : nickersonm@yahoo.com     *     ***************************************************************************/    private static function inverseNcdf($p)    {        //    Inverse ncdf approximation by Peter J. Acklam, implementation adapted to        //    PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as        //    a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html        //    I have not checked the accuracy of this implementation. Be aware that PHP        //    will truncate the coeficcients to 14 digits.        //    You have permission to use and distribute this function freely for        //    whatever purpose you want, but please show common courtesy and give credit        //    where credit is due.        //    Input paramater is $p - probability - where 0 < p < 1.        //    Coefficients in rational approximations        static $a = array(            1 => -3.969683028665376e+01,            2 => 2.209460984245205e+02,            3 => -2.759285104469687e+02,            4 => 1.383577518672690e+02,            5 => -3.066479806614716e+01,            6 => 2.506628277459239e+00        );        static $b = array(            1 => -5.447609879822406e+01,            2 => 1.615858368580409e+02,            3 => -1.556989798598866e+02,            4 => 6.680131188771972e+01,            5 => -1.328068155288572e+01        );        static $c = array(            1 => -7.784894002430293e-03,            2 => -3.223964580411365e-01,            3 => -2.400758277161838e+00,            4 => -2.549732539343734e+00,            5 => 4.374664141464968e+00,            6 => 2.938163982698783e+00        );        static $d = array(            1 => 7.784695709041462e-03,            2 => 3.224671290700398e-01,            3 => 2.445134137142996e+00,            4 => 3.754408661907416e+00        );        //    Define lower and upper region break-points.        $p_low = 0.02425;            //Use lower region approx. below this        $p_high = 1 - $p_low;        //Use upper region approx. above this        if (0 < $p && $p < $p_low) {            //    Rational approximation for lower region.            $q = sqrt(-2 * log($p));            return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /                    (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);        } elseif ($p_low <= $p && $p <= $p_high) {            //    Rational approximation for central region.            $q = $p - 0.5;            $r = $q * $q;            return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /                   ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);        } elseif ($p_high < $p && $p < 1) {            //    Rational approximation for upper region.            $q = sqrt(-2 * log(1 - $p));            return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /                     (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);        }        //    If 0 < p < 1, return a null value        return PHPExcel_Calculation_Functions::NULL();    }    private static function inverseNcdf2($prob)    {        //    Approximation of inverse standard normal CDF developed by        //    B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58.        $a1 = 2.50662823884;        $a2 = -18.61500062529;        $a3 = 41.39119773534;        $a4 = -25.44106049637;        $b1 = -8.4735109309;        $b2 = 23.08336743743;        $b3 = -21.06224101826;        $b4 = 3.13082909833;        $c1 = 0.337475482272615;        $c2 = 0.976169019091719;        $c3 = 0.160797971491821;        $c4 = 2.76438810333863E-02;        $c5 = 3.8405729373609E-03;        $c6 = 3.951896511919E-04;        $c7 = 3.21767881768E-05;        $c8 = 2.888167364E-07;        $c9 = 3.960315187E-07;        $y = $prob - 0.5;        if (abs($y) < 0.42) {            $z = ($y * $y);            $z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1);        } else {            if ($y > 0) {                $z = log(-log(1 - $prob));            } else {                $z = log(-log($prob));            }            $z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9)))))));            if ($y < 0) {                $z = -$z;            }        }        return $z;    }    //    function inverseNcdf2()    private static function inverseNcdf3($p)    {        //    ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3.        //    Produces the normal deviate Z corresponding to a given lower        //    tail area of P; Z is accurate to about 1 part in 10**16.        //        //    This is a PHP version of the original FORTRAN code that can        //    be found at http://lib.stat.cmu.edu/apstat/        $split1 = 0.425;        $split2 = 5;        $const1 = 0.180625;        $const2 = 1.6;        //    coefficients for p close to 0.5        $a0 = 3.3871328727963666080;        $a1 = 1.3314166789178437745E+2;        $a2 = 1.9715909503065514427E+3;        $a3 = 1.3731693765509461125E+4;        $a4 = 4.5921953931549871457E+4;        $a5 = 6.7265770927008700853E+4;        $a6 = 3.3430575583588128105E+4;        $a7 = 2.5090809287301226727E+3;        $b1 = 4.2313330701600911252E+1;        $b2 = 6.8718700749205790830E+2;        $b3 = 5.3941960214247511077E+3;        $b4 = 2.1213794301586595867E+4;        $b5 = 3.9307895800092710610E+4;        $b6 = 2.8729085735721942674E+4;        $b7 = 5.2264952788528545610E+3;        //    coefficients for p not close to 0, 0.5 or 1.        $c0 = 1.42343711074968357734;        $c1 = 4.63033784615654529590;        $c2 = 5.76949722146069140550;        $c3 = 3.64784832476320460504;        $c4 = 1.27045825245236838258;        $c5 = 2.41780725177450611770E-1;        $c6 = 2.27238449892691845833E-2;        $c7 = 7.74545014278341407640E-4;        $d1 = 2.05319162663775882187;        $d2 = 1.67638483018380384940;        $d3 = 6.89767334985100004550E-1;        $d4 = 1.48103976427480074590E-1;        $d5 = 1.51986665636164571966E-2;        $d6 = 5.47593808499534494600E-4;        $d7 = 1.05075007164441684324E-9;        //    coefficients for p near 0 or 1.        $e0 = 6.65790464350110377720;        $e1 = 5.46378491116411436990;        $e2 = 1.78482653991729133580;        $e3 = 2.96560571828504891230E-1;        $e4 = 2.65321895265761230930E-2;        $e5 = 1.24266094738807843860E-3;        $e6 = 2.71155556874348757815E-5;        $e7 = 2.01033439929228813265E-7;        $f1 = 5.99832206555887937690E-1;        $f2 = 1.36929880922735805310E-1;        $f3 = 1.48753612908506148525E-2;        $f4 = 7.86869131145613259100E-4;        $f5 = 1.84631831751005468180E-5;        $f6 = 1.42151175831644588870E-7;        $f7 = 2.04426310338993978564E-15;        $q = $p - 0.5;        //    computation for p close to 0.5        if (abs($q) <= split1) {            $R = $const1 - $q * $q;            $z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) /                      ((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1);        } else {            if ($q < 0) {                $R = $p;            } else {                $R = 1 - $p;            }            $R = pow(-log($R), 2);            //    computation for p not close to 0, 0.5 or 1.            if ($R <= $split2) {                $R = $R - $const2;                $z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) /                     ((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1);            } else {            //    computation for p near 0 or 1.                $R = $R - $split2;                $z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) /                     ((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1);            }            if ($q < 0) {                $z = -$z;            }        }        return $z;    }    /**     * AVEDEV     *     * Returns the average of the absolute deviations of data points from their mean.     * AVEDEV is a measure of the variability in a data set.     *     * Excel Function:     *        AVEDEV(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function AVEDEV()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        // Return value        $returnValue = null;        $aMean = self::AVERAGE($aArgs);        if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {            $aCount = 0;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {                    $arg = (integer) $arg;                }                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    if (is_null($returnValue)) {                        $returnValue = abs($arg - $aMean);                    } else {                        $returnValue += abs($arg - $aMean);                    }                    ++$aCount;                }            }            // Return            if ($aCount == 0) {                return PHPExcel_Calculation_Functions::DIV0();            }            return $returnValue / $aCount;        }        return PHPExcel_Calculation_Functions::NaN();    }    /**     * AVERAGE     *     * Returns the average (arithmetic mean) of the arguments     *     * Excel Function:     *        AVERAGE(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function AVERAGE()    {        $returnValue = $aCount = 0;        // Loop through arguments        foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {            if ((is_bool($arg)) &&                ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {                $arg = (integer) $arg;            }            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                if (is_null($returnValue)) {                    $returnValue = $arg;                } else {                    $returnValue += $arg;                }                ++$aCount;            }        }        // Return        if ($aCount > 0) {            return $returnValue / $aCount;        } else {            return PHPExcel_Calculation_Functions::DIV0();        }    }    /**     * AVERAGEA     *     * Returns the average of its arguments, including numbers, text, and logical values     *     * Excel Function:     *        AVERAGEA(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function AVERAGEA()    {        $returnValue = null;        $aCount = 0;        // Loop through arguments        foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {            if ((is_bool($arg)) &&                (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {            } else {                if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {                    if (is_bool($arg)) {                        $arg = (integer) $arg;                    } elseif (is_string($arg)) {                        $arg = 0;                    }                    if (is_null($returnValue)) {                        $returnValue = $arg;                    } else {                        $returnValue += $arg;                    }                    ++$aCount;                }            }        }        if ($aCount > 0) {            return $returnValue / $aCount;        } else {            return PHPExcel_Calculation_Functions::DIV0();        }    }    /**     * AVERAGEIF     *     * Returns the average value from a range of cells that contain numbers within the list of arguments     *     * Excel Function:     *        AVERAGEIF(value1[,value2[, ...]],condition)     *     * @access    public     * @category Mathematical and Trigonometric Functions     * @param    mixed        $arg,...        Data values     * @param    string        $condition        The criteria that defines which cells will be checked.     * @param    mixed[]        $averageArgs    Data values     * @return    float     */    public static function AVERAGEIF($aArgs, $condition, $averageArgs = array())    {        $returnValue = 0;        $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);        $averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs);        if (empty($averageArgs)) {            $averageArgs = $aArgs;        }        $condition = PHPExcel_Calculation_Functions::ifCondition($condition);        // Loop through arguments        $aCount = 0;        foreach ($aArgs as $key => $arg) {            if (!is_numeric($arg)) {                $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));            }            $testCondition = '='.$arg.$condition;            if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {                if ((is_null($returnValue)) || ($arg > $returnValue)) {                    $returnValue += $arg;                    ++$aCount;                }            }        }        if ($aCount > 0) {            return $returnValue / $aCount;        }        return PHPExcel_Calculation_Functions::DIV0();    }    /**     * BETADIST     *     * Returns the beta distribution.     *     * @param    float        $value            Value at which you want to evaluate the distribution     * @param    float        $alpha            Parameter to the distribution     * @param    float        $beta            Parameter to the distribution     * @param    boolean        $cumulative     * @return    float     *     */    public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1)    {        $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);        $beta  = PHPExcel_Calculation_Functions::flattenSingleValue($beta);        $rMin  = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);        $rMax  = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);        if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {            if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {                return PHPExcel_Calculation_Functions::NaN();            }            if ($rMin > $rMax) {                $tmp = $rMin;                $rMin = $rMax;                $rMax = $tmp;            }            $value -= $rMin;            $value /= ($rMax - $rMin);            return self::incompleteBeta($value, $alpha, $beta);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * BETAINV     *     * Returns the inverse of the beta distribution.     *     * @param    float        $probability    Probability at which you want to evaluate the distribution     * @param    float        $alpha            Parameter to the distribution     * @param    float        $beta            Parameter to the distribution     * @param    float        $rMin            Minimum value     * @param    float        $rMax            Maximum value     * @param    boolean        $cumulative     * @return    float     *     */    public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1)    {        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        $alpha       = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);        $beta        = PHPExcel_Calculation_Functions::flattenSingleValue($beta);        $rMin        = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);        $rMax        = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);        if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {            if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            if ($rMin > $rMax) {                $tmp = $rMin;                $rMin = $rMax;                $rMax = $tmp;            }            $a = 0;            $b = 2;            $i = 0;            while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) {                $guess = ($a + $b) / 2;                $result = self::BETADIST($guess, $alpha, $beta);                if (($result == $probability) || ($result == 0)) {                    $b = $a;                } elseif ($result > $probability) {                    $b = $guess;                } else {                    $a = $guess;                }            }            if ($i == MAX_ITERATIONS) {                return PHPExcel_Calculation_Functions::NA();            }            return round($rMin + $guess * ($rMax - $rMin), 12);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * BINOMDIST     *     * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with     *        a fixed number of tests or trials, when the outcomes of any trial are only success or failure,     *        when trials are independent, and when the probability of success is constant throughout the     *        experiment. For example, BINOMDIST can calculate the probability that two of the next three     *        babies born are male.     *     * @param    float        $value            Number of successes in trials     * @param    float        $trials            Number of trials     * @param    float        $probability    Probability of success on each trial     * @param    boolean        $cumulative     * @return    float     *     * @todo    Cumulative distribution function     *     */    public static function BINOMDIST($value, $trials, $probability, $cumulative)    {        $value       = floor(PHPExcel_Calculation_Functions::flattenSingleValue($value));        $trials      = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {            if (($value < 0) || ($value > $trials)) {                return PHPExcel_Calculation_Functions::NaN();            }            if (($probability < 0) || ($probability > 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    $summer = 0;                    for ($i = 0; $i <= $value; ++$i) {                        $summer += PHPExcel_Calculation_MathTrig::COMBIN($trials, $i) * pow($probability, $i) * pow(1 - $probability, $trials - $i);                    }                    return $summer;                } else {                    return PHPExcel_Calculation_MathTrig::COMBIN($trials, $value) * pow($probability, $value) * pow(1 - $probability, $trials - $value) ;                }            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * CHIDIST     *     * Returns the one-tailed probability of the chi-squared distribution.     *     * @param    float        $value            Value for the function     * @param    float        $degrees        degrees of freedom     * @return    float     */    public static function CHIDIST($value, $degrees)    {        $value   = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));        if ((is_numeric($value)) && (is_numeric($degrees))) {            if ($degrees < 1) {                return PHPExcel_Calculation_Functions::NaN();            }            if ($value < 0) {                if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {                    return 1;                }                return PHPExcel_Calculation_Functions::NaN();            }            return 1 - (self::incompleteGamma($degrees/2, $value/2) / self::gamma($degrees/2));        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * CHIINV     *     * Returns the one-tailed probability of the chi-squared distribution.     *     * @param    float        $probability    Probability for the function     * @param    float        $degrees        degrees of freedom     * @return    float     */    public static function CHIINV($probability, $degrees)    {        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        $degrees     = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));        if ((is_numeric($probability)) && (is_numeric($degrees))) {            $xLo = 100;            $xHi = 0;            $x = $xNew = 1;            $dx    = 1;            $i = 0;            while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {                // Apply Newton-Raphson step                $result = self::CHIDIST($x, $degrees);                $error = $result - $probability;                if ($error == 0.0) {                    $dx = 0;                } elseif ($error < 0.0) {                    $xLo = $x;                } else {                    $xHi = $x;                }                // Avoid division by zero                if ($result != 0.0) {                    $dx = $error / $result;                    $xNew = $x - $dx;                }                // If the NR fails to converge (which for example may be the                // case if the initial guess is too rough) we apply a bisection                // step to determine a more narrow interval around the root.                if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {                    $xNew = ($xLo + $xHi) / 2;                    $dx = $xNew - $x;                }                $x = $xNew;            }            if ($i == MAX_ITERATIONS) {                return PHPExcel_Calculation_Functions::NA();            }            return round($x, 12);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * CONFIDENCE     *     * Returns the confidence interval for a population mean     *     * @param    float        $alpha     * @param    float        $stdDev        Standard Deviation     * @param    float        $size     * @return    float     *     */    public static function CONFIDENCE($alpha, $stdDev, $size)    {        $alpha  = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);        $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);        $size   = floor(PHPExcel_Calculation_Functions::flattenSingleValue($size));        if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {            if (($alpha <= 0) || ($alpha >= 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            if (($stdDev <= 0) || ($size < 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * CORREL     *     * Returns covariance, the average of the products of deviations for each data point pair.     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @return    float     */    public static function CORREL($yValues, $xValues = null)    {        if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) {            return PHPExcel_Calculation_Functions::VALUE();        }        if (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return PHPExcel_Calculation_Functions::DIV0();        }        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getCorrelation();    }    /**     * COUNT     *     * Counts the number of cells that contain numbers within the list of arguments     *     * Excel Function:     *        COUNT(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    int     */    public static function COUNT()    {        $returnValue = 0;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        foreach ($aArgs as $k => $arg) {            if ((is_bool($arg)) &&                ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {                $arg = (integer) $arg;            }            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                ++$returnValue;            }        }        return $returnValue;    }    /**     * COUNTA     *     * Counts the number of cells that are not empty within the list of arguments     *     * Excel Function:     *        COUNTA(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    int     */    public static function COUNTA()    {        $returnValue = 0;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        foreach ($aArgs as $arg) {            // Is it a numeric, boolean or string value?            if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {                ++$returnValue;            }        }        return $returnValue;    }    /**     * COUNTBLANK     *     * Counts the number of empty cells within the list of arguments     *     * Excel Function:     *        COUNTBLANK(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    int     */    public static function COUNTBLANK()    {        $returnValue = 0;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        foreach ($aArgs as $arg) {            // Is it a blank cell?            if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) {                ++$returnValue;            }        }        return $returnValue;    }    /**     * COUNTIF     *     * Counts the number of cells that contain numbers within the list of arguments     *     * Excel Function:     *        COUNTIF(value1[,value2[, ...]],condition)     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @param    string        $condition        The criteria that defines which cells will be counted.     * @return    int     */    public static function COUNTIF($aArgs, $condition)    {        $returnValue = 0;        $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);        $condition = PHPExcel_Calculation_Functions::ifCondition($condition);        // Loop through arguments        foreach ($aArgs as $arg) {            if (!is_numeric($arg)) {                $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));            }            $testCondition = '='.$arg.$condition;            if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {                // Is it a value within our criteria                ++$returnValue;            }        }        return $returnValue;    }    /**     * COVAR     *     * Returns covariance, the average of the products of deviations for each data point pair.     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @return    float     */    public static function COVAR($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return PHPExcel_Calculation_Functions::DIV0();        }        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getCovariance();    }    /**     * CRITBINOM     *     * Returns the smallest value for which the cumulative binomial distribution is greater     *        than or equal to a criterion value     *     * See http://support.microsoft.com/kb/828117/ for details of the algorithm used     *     * @param    float        $trials            number of Bernoulli trials     * @param    float        $probability    probability of a success on each trial     * @param    float        $alpha            criterion value     * @return    int     *     * @todo    Warning. This implementation differs from the algorithm detailed on the MS     *            web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess     *            This eliminates a potential endless loop error, but may have an adverse affect on the     *            accuracy of the function (although all my tests have so far returned correct results).     *     */    public static function CRITBINOM($trials, $probability, $alpha)    {        $trials      = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        $alpha       = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);        if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {            if ($trials < 0) {                return PHPExcel_Calculation_Functions::NaN();            } elseif (($probability < 0) || ($probability > 1)) {                return PHPExcel_Calculation_Functions::NaN();            } elseif (($alpha < 0) || ($alpha > 1)) {                return PHPExcel_Calculation_Functions::NaN();            } elseif ($alpha <= 0.5) {                $t = sqrt(log(1 / ($alpha * $alpha)));                $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));            } else {                $t = sqrt(log(1 / pow(1 - $alpha, 2)));                $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);            }            $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));            if ($Guess < 0) {                $Guess = 0;            } elseif ($Guess > $trials) {                $Guess = $trials;            }            $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;            $EssentiallyZero = 10e-12;            $m = floor($trials * $probability);            ++$TotalUnscaledProbability;            if ($m == $Guess) {                ++$UnscaledPGuess;            }            if ($m <= $Guess) {                ++$UnscaledCumPGuess;            }            $PreviousValue = 1;            $Done = false;            $k = $m + 1;            while ((!$Done) && ($k <= $trials)) {                $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));                $TotalUnscaledProbability += $CurrentValue;                if ($k == $Guess) {                    $UnscaledPGuess += $CurrentValue;                }                if ($k <= $Guess) {                    $UnscaledCumPGuess += $CurrentValue;                }                if ($CurrentValue <= $EssentiallyZero) {                    $Done = true;                }                $PreviousValue = $CurrentValue;                ++$k;            }            $PreviousValue = 1;            $Done = false;            $k = $m - 1;            while ((!$Done) && ($k >= 0)) {                $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);                $TotalUnscaledProbability += $CurrentValue;                if ($k == $Guess) {                    $UnscaledPGuess += $CurrentValue;                }                if ($k <= $Guess) {                    $UnscaledCumPGuess += $CurrentValue;                }                if ($CurrentValue <= $EssentiallyZero) {                    $Done = true;                }                $PreviousValue = $CurrentValue;                --$k;            }            $PGuess = $UnscaledPGuess / $TotalUnscaledProbability;            $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;//            $CumPGuessMinus1 = $CumPGuess - $PGuess;            $CumPGuessMinus1 = $CumPGuess - 1;            while (true) {                if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {                    return $Guess;                } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {                    $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);                    $CumPGuessMinus1 = $CumPGuess;                    $CumPGuess = $CumPGuess + $PGuessPlus1;                    $PGuess = $PGuessPlus1;                    ++$Guess;                } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {                    $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;                    $CumPGuess = $CumPGuessMinus1;                    $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;                    $PGuess = $PGuessMinus1;                    --$Guess;                }            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * DEVSQ     *     * Returns the sum of squares of deviations of data points from their sample mean.     *     * Excel Function:     *        DEVSQ(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function DEVSQ()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        // Return value        $returnValue = null;        $aMean = self::AVERAGE($aArgs);        if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {            $aCount = -1;            foreach ($aArgs as $k => $arg) {                // Is it a numeric value?                if ((is_bool($arg)) &&                    ((!PHPExcel_Calculation_Functions::isCellValue($k)) ||                    (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {                    $arg = (integer) $arg;                }                if ((is_numeric($arg)) && (!is_string($arg))) {                    if (is_null($returnValue)) {                        $returnValue = pow(($arg - $aMean), 2);                    } else {                        $returnValue += pow(($arg - $aMean), 2);                    }                    ++$aCount;                }            }            // Return            if (is_null($returnValue)) {                return PHPExcel_Calculation_Functions::NaN();            } else {                return $returnValue;            }        }        return self::NA();    }    /**     * EXPONDIST     *     *    Returns the exponential distribution. Use EXPONDIST to model the time between events,     *        such as how long an automated bank teller takes to deliver cash. For example, you can     *        use EXPONDIST to determine the probability that the process takes at most 1 minute.     *     * @param    float        $value            Value of the function     * @param    float        $lambda            The parameter value     * @param    boolean        $cumulative     * @return    float     */    public static function EXPONDIST($value, $lambda, $cumulative)    {        $value    = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $lambda    = PHPExcel_Calculation_Functions::flattenSingleValue($lambda);        $cumulative    = PHPExcel_Calculation_Functions::flattenSingleValue($cumulative);        if ((is_numeric($value)) && (is_numeric($lambda))) {            if (($value < 0) || ($lambda < 0)) {                return PHPExcel_Calculation_Functions::NaN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    return 1 - exp(0-$value*$lambda);                } else {                    return $lambda * exp(0-$value*$lambda);                }            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * FISHER     *     * Returns the Fisher transformation at x. This transformation produces a function that     *        is normally distributed rather than skewed. Use this function to perform hypothesis     *        testing on the correlation coefficient.     *     * @param    float        $value     * @return    float     */    public static function FISHER($value)    {        $value    = PHPExcel_Calculation_Functions::flattenSingleValue($value);        if (is_numeric($value)) {            if (($value <= -1) || ($value >= 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            return 0.5 * log((1+$value)/(1-$value));        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * FISHERINV     *     * Returns the inverse of the Fisher transformation. Use this transformation when     *        analyzing correlations between ranges or arrays of data. If y = FISHER(x), then     *        FISHERINV(y) = x.     *     * @param    float        $value     * @return    float     */    public static function FISHERINV($value)    {        $value    = PHPExcel_Calculation_Functions::flattenSingleValue($value);        if (is_numeric($value)) {            return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * FORECAST     *     * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.     *     * @param    float                Value of X for which we want to find Y     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @return    float     */    public static function FORECAST($xValue, $yValues, $xValues)    {        $xValue    = PHPExcel_Calculation_Functions::flattenSingleValue($xValue);        if (!is_numeric($xValue)) {            return PHPExcel_Calculation_Functions::VALUE();        } elseif (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return PHPExcel_Calculation_Functions::DIV0();        }        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getValueOfYForX($xValue);    }    /**     * GAMMADIST     *     * Returns the gamma distribution.     *     * @param    float        $value            Value at which you want to evaluate the distribution     * @param    float        $a                Parameter to the distribution     * @param    float        $b                Parameter to the distribution     * @param    boolean        $cumulative     * @return    float     *     */    public static function GAMMADIST($value, $a, $b, $cumulative)    {        $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $a     = PHPExcel_Calculation_Functions::flattenSingleValue($a);        $b     = PHPExcel_Calculation_Functions::flattenSingleValue($b);        if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {            if (($value < 0) || ($a <= 0) || ($b <= 0)) {                return PHPExcel_Calculation_Functions::NaN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    return self::incompleteGamma($a, $value / $b) / self::gamma($a);                } else {                    return (1 / (pow($b, $a) * self::gamma($a))) * pow($value, $a-1) * exp(0-($value / $b));                }            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * GAMMAINV     *     * Returns the inverse of the beta distribution.     *     * @param    float        $probability    Probability at which you want to evaluate the distribution     * @param    float        $alpha            Parameter to the distribution     * @param    float        $beta            Parameter to the distribution     * @return    float     *     */    public static function GAMMAINV($probability, $alpha, $beta)    {        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        $alpha       = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);        $beta        = PHPExcel_Calculation_Functions::flattenSingleValue($beta);        if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {            if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            $xLo = 0;            $xHi = $alpha * $beta * 5;            $x = $xNew = 1;            $error = $pdf = 0;            $dx    = 1024;            $i = 0;            while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {                // Apply Newton-Raphson step                $error = self::GAMMADIST($x, $alpha, $beta, true) - $probability;                if ($error < 0.0) {                    $xLo = $x;                } else {                    $xHi = $x;                }                $pdf = self::GAMMADIST($x, $alpha, $beta, false);                // Avoid division by zero                if ($pdf != 0.0) {                    $dx = $error / $pdf;                    $xNew = $x - $dx;                }                // If the NR fails to converge (which for example may be the                // case if the initial guess is too rough) we apply a bisection                // step to determine a more narrow interval around the root.                if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {                    $xNew = ($xLo + $xHi) / 2;                    $dx = $xNew - $x;                }                $x = $xNew;            }            if ($i == MAX_ITERATIONS) {                return PHPExcel_Calculation_Functions::NA();            }            return $x;        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * GAMMALN     *     * Returns the natural logarithm of the gamma function.     *     * @param    float        $value     * @return    float     */    public static function GAMMALN($value)    {        $value    = PHPExcel_Calculation_Functions::flattenSingleValue($value);        if (is_numeric($value)) {            if ($value <= 0) {                return PHPExcel_Calculation_Functions::NaN();            }            return log(self::gamma($value));        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * GEOMEAN     *     * Returns the geometric mean of an array or range of positive data. For example, you     *        can use GEOMEAN to calculate average growth rate given compound interest with     *        variable rates.     *     * Excel Function:     *        GEOMEAN(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function GEOMEAN()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        $aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs);        if (is_numeric($aMean) && ($aMean > 0)) {            $aCount = self::COUNT($aArgs) ;            if (self::MIN($aArgs) > 0) {                return pow($aMean, (1 / $aCount));            }        }        return PHPExcel_Calculation_Functions::NaN();    }    /**     * GROWTH     *     * Returns values along a predicted emponential trend     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @param    array of mixed        Values of X for which we want to find Y     * @param    boolean                A logical value specifying whether to force the intersect to equal 0.     * @return    array of float     */    public static function GROWTH($yValues, $xValues = array(), $newValues = array(), $const = true)    {        $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);        $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);        $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);        $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);        $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL, $yValues, $xValues, $const);        if (empty($newValues)) {            $newValues = $bestFitExponential->getXValues();        }        $returnArray = array();        foreach ($newValues as $xValue) {            $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);        }        return $returnArray;    }    /**     * HARMEAN     *     * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the     *        arithmetic mean of reciprocals.     *     * Excel Function:     *        HARMEAN(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function HARMEAN()    {        // Return value        $returnValue = PHPExcel_Calculation_Functions::NA();        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        if (self::MIN($aArgs) < 0) {            return PHPExcel_Calculation_Functions::NaN();        }        $aCount = 0;        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                if ($arg <= 0) {                    return PHPExcel_Calculation_Functions::NaN();                }                if (is_null($returnValue)) {                    $returnValue = (1 / $arg);                } else {                    $returnValue += (1 / $arg);                }                ++$aCount;            }        }        // Return        if ($aCount > 0) {            return 1 / ($returnValue / $aCount);        } else {            return $returnValue;        }    }    /**     * HYPGEOMDIST     *     * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of     * sample successes, given the sample size, population successes, and population size.     *     * @param    float        $sampleSuccesses        Number of successes in the sample     * @param    float        $sampleNumber            Size of the sample     * @param    float        $populationSuccesses    Number of successes in the population     * @param    float        $populationNumber        Population size     * @return    float     *     */    public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber)    {        $sampleSuccesses     = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses));        $sampleNumber        = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber));        $populationSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses));        $populationNumber    = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber));        if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {            if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {                return PHPExcel_Calculation_Functions::NaN();            }            if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {                return PHPExcel_Calculation_Functions::NaN();            }            if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {                return PHPExcel_Calculation_Functions::NaN();            }            return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) *                   PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) /                   PHPExcel_Calculation_MathTrig::COMBIN($populationNumber, $sampleNumber);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * INTERCEPT     *     * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @return    float     */    public static function INTERCEPT($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return PHPExcel_Calculation_Functions::DIV0();        }        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getIntersect();    }    /**     * KURT     *     * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness     * or flatness of a distribution compared with the normal distribution. Positive     * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a     * relatively flat distribution.     *     * @param    array    Data Series     * @return    float     */    public static function KURT()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        $mean = self::AVERAGE($aArgs);        $stdDev = self::STDEV($aArgs);        if ($stdDev > 0) {            $count = $summer = 0;            // Loop through arguments            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {                } else {                    // Is it a numeric value?                    if ((is_numeric($arg)) && (!is_string($arg))) {                        $summer += pow((($arg - $mean) / $stdDev), 4);                        ++$count;                    }                }            }            // Return            if ($count > 3) {                return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1, 2) / (($count-2) * ($count-3)));            }        }        return PHPExcel_Calculation_Functions::DIV0();    }    /**     * LARGE     *     * Returns the nth largest value in a data set. You can use this function to     *        select a value based on its relative standing.     *     * Excel Function:     *        LARGE(value1[,value2[, ...]],entry)     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @param    int            $entry            Position (ordered from the largest) in the array or range of data to return     * @return    float     *     */    public static function LARGE()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        // Calculate        $entry = floor(array_pop($aArgs));        if ((is_numeric($entry)) && (!is_string($entry))) {            $mArgs = array();            foreach ($aArgs as $arg) {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $mArgs[] = $arg;                }            }            $count = self::COUNT($mArgs);            $entry = floor(--$entry);            if (($entry < 0) || ($entry >= $count) || ($count == 0)) {                return PHPExcel_Calculation_Functions::NaN();            }            rsort($mArgs);            return $mArgs[$entry];        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * LINEST     *     * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,     *        and then returns an array that describes the line.     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @param    boolean                A logical value specifying whether to force the intersect to equal 0.     * @param    boolean                A logical value specifying whether to return additional regression statistics.     * @return    array     */    public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)    {        $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);        $stats = (is_null($stats)) ? false : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);        if (is_null($xValues)) {            $xValues = range(1, count(PHPExcel_Calculation_Functions::flattenArray($yValues)));        }        if (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return 0;        }        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues, $const);        if ($stats) {            return array(                array(                    $bestFitLinear->getSlope(),                    $bestFitLinear->getSlopeSE(),                    $bestFitLinear->getGoodnessOfFit(),                    $bestFitLinear->getF(),                    $bestFitLinear->getSSRegression(),                ),                array(                    $bestFitLinear->getIntersect(),                    $bestFitLinear->getIntersectSE(),                    $bestFitLinear->getStdevOfResiduals(),                    $bestFitLinear->getDFResiduals(),                    $bestFitLinear->getSSResiduals()                )            );        } else {            return array(                $bestFitLinear->getSlope(),                $bestFitLinear->getIntersect()            );        }    }    /**     * LOGEST     *     * Calculates an exponential curve that best fits the X and Y data series,     *        and then returns an array that describes the line.     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @param    boolean                A logical value specifying whether to force the intersect to equal 0.     * @param    boolean                A logical value specifying whether to return additional regression statistics.     * @return    array     */    public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)    {        $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);        $stats = (is_null($stats)) ? false : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);        if (is_null($xValues)) {            $xValues = range(1, count(PHPExcel_Calculation_Functions::flattenArray($yValues)));        }        if (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        foreach ($yValues as $value) {            if ($value <= 0.0) {                return PHPExcel_Calculation_Functions::NaN();            }        }        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return 1;        }        $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL, $yValues, $xValues, $const);        if ($stats) {            return array(                array(                    $bestFitExponential->getSlope(),                    $bestFitExponential->getSlopeSE(),                    $bestFitExponential->getGoodnessOfFit(),                    $bestFitExponential->getF(),                    $bestFitExponential->getSSRegression(),                ),                array(                    $bestFitExponential->getIntersect(),                    $bestFitExponential->getIntersectSE(),                    $bestFitExponential->getStdevOfResiduals(),                    $bestFitExponential->getDFResiduals(),                    $bestFitExponential->getSSResiduals()                )            );        } else {            return array(                $bestFitExponential->getSlope(),                $bestFitExponential->getIntersect()            );        }    }    /**     * LOGINV     *     * Returns the inverse of the normal cumulative distribution     *     * @param    float        $probability     * @param    float        $mean     * @param    float        $stdDev     * @return    float     *     * @todo    Try implementing P J Acklam's refinement algorithm for greater     *            accuracy if I can get my head round the mathematics     *            (as described at) http://home.online.no/~pjacklam/notes/invnorm/     */    public static function LOGINV($probability, $mean, $stdDev)    {        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        $mean        = PHPExcel_Calculation_Functions::flattenSingleValue($mean);        $stdDev      = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);        if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {                return PHPExcel_Calculation_Functions::NaN();            }            return exp($mean + $stdDev * self::NORMSINV($probability));        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * LOGNORMDIST     *     * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed     * with parameters mean and standard_dev.     *     * @param    float        $value     * @param    float        $mean     * @param    float        $stdDev     * @return    float     */    public static function LOGNORMDIST($value, $mean, $stdDev)    {        $value  = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $mean   = PHPExcel_Calculation_Functions::flattenSingleValue($mean);        $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);        if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if (($value <= 0) || ($stdDev <= 0)) {                return PHPExcel_Calculation_Functions::NaN();            }            return self::NORMSDIST((log($value) - $mean) / $stdDev);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * MAX     *     * MAX returns the value of the element of the values passed that has the highest value,     *        with negative numbers considered smaller than positive numbers.     *     * Excel Function:     *        MAX(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function MAX()    {        $returnValue = null;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                if ((is_null($returnValue)) || ($arg > $returnValue)) {                    $returnValue = $arg;                }            }        }        if (is_null($returnValue)) {            return 0;        }        return $returnValue;    }    /**     * MAXA     *     * Returns the greatest value in a list of arguments, including numbers, text, and logical values     *     * Excel Function:     *        MAXA(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function MAXA()    {        $returnValue = null;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {                if (is_bool($arg)) {                    $arg = (integer) $arg;                } elseif (is_string($arg)) {                    $arg = 0;                }                if ((is_null($returnValue)) || ($arg > $returnValue)) {                    $returnValue = $arg;                }            }        }        if (is_null($returnValue)) {            return 0;        }        return $returnValue;    }    /**     * MAXIF     *     * Counts the maximum value within a range of cells that contain numbers within the list of arguments     *     * Excel Function:     *        MAXIF(value1[,value2[, ...]],condition)     *     * @access    public     * @category Mathematical and Trigonometric Functions     * @param    mixed        $arg,...        Data values     * @param    string        $condition        The criteria that defines which cells will be checked.     * @return    float     */    public static function MAXIF($aArgs, $condition, $sumArgs = array())    {        $returnValue = null;        $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);        $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);        if (empty($sumArgs)) {            $sumArgs = $aArgs;        }        $condition = PHPExcel_Calculation_Functions::ifCondition($condition);        // Loop through arguments        foreach ($aArgs as $key => $arg) {            if (!is_numeric($arg)) {                $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));            }            $testCondition = '='.$arg.$condition;            if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {                if ((is_null($returnValue)) || ($arg > $returnValue)) {                    $returnValue = $arg;                }            }        }        return $returnValue;    }    /**     * MEDIAN     *     * Returns the median of the given numbers. The median is the number in the middle of a set of numbers.     *     * Excel Function:     *        MEDIAN(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function MEDIAN()    {        $returnValue = PHPExcel_Calculation_Functions::NaN();        $mArgs = array();        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                $mArgs[] = $arg;            }        }        $mValueCount = count($mArgs);        if ($mValueCount > 0) {            sort($mArgs, SORT_NUMERIC);            $mValueCount = $mValueCount / 2;            if ($mValueCount == floor($mValueCount)) {                $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;            } else {                $mValueCount = floor($mValueCount);                $returnValue = $mArgs[$mValueCount];            }        }        return $returnValue;    }    /**     * MIN     *     * MIN returns the value of the element of the values passed that has the smallest value,     *        with negative numbers considered smaller than positive numbers.     *     * Excel Function:     *        MIN(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function MIN()    {        $returnValue = null;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                if ((is_null($returnValue)) || ($arg < $returnValue)) {                    $returnValue = $arg;                }            }        }        if (is_null($returnValue)) {            return 0;        }        return $returnValue;    }    /**     * MINA     *     * Returns the smallest value in a list of arguments, including numbers, text, and logical values     *     * Excel Function:     *        MINA(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function MINA()    {        $returnValue = null;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {                if (is_bool($arg)) {                    $arg = (integer) $arg;                } elseif (is_string($arg)) {                    $arg = 0;                }                if ((is_null($returnValue)) || ($arg < $returnValue)) {                    $returnValue = $arg;                }            }        }        if (is_null($returnValue)) {            return 0;        }        return $returnValue;    }    /**     * MINIF     *     * Returns the minimum value within a range of cells that contain numbers within the list of arguments     *     * Excel Function:     *        MINIF(value1[,value2[, ...]],condition)     *     * @access    public     * @category Mathematical and Trigonometric Functions     * @param    mixed        $arg,...        Data values     * @param    string        $condition        The criteria that defines which cells will be checked.     * @return    float     */    public static function MINIF($aArgs, $condition, $sumArgs = array())    {        $returnValue = null;        $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);        $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);        if (empty($sumArgs)) {            $sumArgs = $aArgs;        }        $condition = PHPExcel_Calculation_Functions::ifCondition($condition);        // Loop through arguments        foreach ($aArgs as $key => $arg) {            if (!is_numeric($arg)) {                $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));            }            $testCondition = '='.$arg.$condition;            if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {                if ((is_null($returnValue)) || ($arg < $returnValue)) {                    $returnValue = $arg;                }            }        }        return $returnValue;    }    //    //    Special variant of array_count_values that isn't limited to strings and integers,    //        but can work with floating point numbers as values    //    private static function modeCalc($data)    {        $frequencyArray = array();        foreach ($data as $datum) {            $found = false;            foreach ($frequencyArray as $key => $value) {                if ((string) $value['value'] == (string) $datum) {                    ++$frequencyArray[$key]['frequency'];                    $found = true;                    break;                }            }            if (!$found) {                $frequencyArray[] = array(                    'value'     => $datum,                    'frequency' => 1                );            }        }        foreach ($frequencyArray as $key => $value) {            $frequencyList[$key] = $value['frequency'];            $valueList[$key] = $value['value'];        }        array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray);        if ($frequencyArray[0]['frequency'] == 1) {            return PHPExcel_Calculation_Functions::NA();        }        return $frequencyArray[0]['value'];    }    /**     * MODE     *     * Returns the most frequently occurring, or repetitive, value in an array or range of data     *     * Excel Function:     *        MODE(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function MODE()    {        $returnValue = PHPExcel_Calculation_Functions::NA();        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        $mArgs = array();        foreach ($aArgs as $arg) {            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                $mArgs[] = $arg;            }        }        if (!empty($mArgs)) {            return self::modeCalc($mArgs);        }        return $returnValue;    }    /**     * NEGBINOMDIST     *     * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that     *        there will be number_f failures before the number_s-th success, when the constant     *        probability of a success is probability_s. This function is similar to the binomial     *        distribution, except that the number of successes is fixed, and the number of trials is     *        variable. Like the binomial, trials are assumed to be independent.     *     * @param    float        $failures        Number of Failures     * @param    float        $successes        Threshold number of Successes     * @param    float        $probability    Probability of success on each trial     * @return    float     *     */    public static function NEGBINOMDIST($failures, $successes, $probability)    {        $failures    = floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures));        $successes   = floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes));        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {            if (($failures < 0) || ($successes < 1)) {                return PHPExcel_Calculation_Functions::NaN();            } elseif (($probability < 0) || ($probability > 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {                if (($failures + $successes - 1) <= 0) {                    return PHPExcel_Calculation_Functions::NaN();                }            }            return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * (pow($probability, $successes)) * (pow(1 - $probability, $failures));        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * NORMDIST     *     * Returns the normal distribution for the specified mean and standard deviation. This     * function has a very wide range of applications in statistics, including hypothesis     * testing.     *     * @param    float        $value     * @param    float        $mean        Mean Value     * @param    float        $stdDev        Standard Deviation     * @param    boolean        $cumulative     * @return    float     *     */    public static function NORMDIST($value, $mean, $stdDev, $cumulative)    {        $value  = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $mean   = PHPExcel_Calculation_Functions::flattenSingleValue($mean);        $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);        if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if ($stdDev < 0) {                return PHPExcel_Calculation_Functions::NaN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    return 0.5 * (1 + PHPExcel_Calculation_Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2))));                } else {                    return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean, 2) / (2 * ($stdDev * $stdDev))));                }            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * NORMINV     *     * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.     *     * @param    float        $value     * @param    float        $mean        Mean Value     * @param    float        $stdDev        Standard Deviation     * @return    float     *     */    public static function NORMINV($probability, $mean, $stdDev)    {        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        $mean        = PHPExcel_Calculation_Functions::flattenSingleValue($mean);        $stdDev      = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);        if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if (($probability < 0) || ($probability > 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            if ($stdDev < 0) {                return PHPExcel_Calculation_Functions::NaN();            }            return (self::inverseNcdf($probability) * $stdDev) + $mean;        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * NORMSDIST     *     * Returns the standard normal cumulative distribution function. The distribution has     * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a     * table of standard normal curve areas.     *     * @param    float        $value     * @return    float     */    public static function NORMSDIST($value)    {        $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);        return self::NORMDIST($value, 0, 1, true);    }    /**     * NORMSINV     *     * Returns the inverse of the standard normal cumulative distribution     *     * @param    float        $value     * @return    float     */    public static function NORMSINV($value)    {        return self::NORMINV($value, 0, 1);    }    /**     * PERCENTILE     *     * Returns the nth percentile of values in a range..     *     * Excel Function:     *        PERCENTILE(value1[,value2[, ...]],entry)     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @param    float        $entry            Percentile value in the range 0..1, inclusive.     * @return    float     */    public static function PERCENTILE()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        // Calculate        $entry = array_pop($aArgs);        if ((is_numeric($entry)) && (!is_string($entry))) {            if (($entry < 0) || ($entry > 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            $mArgs = array();            foreach ($aArgs as $arg) {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $mArgs[] = $arg;                }            }            $mValueCount = count($mArgs);            if ($mValueCount > 0) {                sort($mArgs);                $count = self::COUNT($mArgs);                $index = $entry * ($count-1);                $iBase = floor($index);                if ($index == $iBase) {                    return $mArgs[$index];                } else {                    $iNext = $iBase + 1;                    $iProportion = $index - $iBase;                    return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ;                }            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * PERCENTRANK     *     * Returns the rank of a value in a data set as a percentage of the data set.     *     * @param    array of number        An array of, or a reference to, a list of numbers.     * @param    number                The number whose rank you want to find.     * @param    number                The number of significant digits for the returned percentage value.     * @return    float     */    public static function PERCENTRANK($valueSet, $value, $significance = 3)    {        $valueSet     = PHPExcel_Calculation_Functions::flattenArray($valueSet);        $value        = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $significance = (is_null($significance)) ? 3 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance);        foreach ($valueSet as $key => $valueEntry) {            if (!is_numeric($valueEntry)) {                unset($valueSet[$key]);            }        }        sort($valueSet, SORT_NUMERIC);        $valueCount = count($valueSet);        if ($valueCount == 0) {            return PHPExcel_Calculation_Functions::NaN();        }        $valueAdjustor = $valueCount - 1;        if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {            return PHPExcel_Calculation_Functions::NA();        }        $pos = array_search($value, $valueSet);        if ($pos === false) {            $pos = 0;            $testValue = $valueSet[0];            while ($testValue < $value) {                $testValue = $valueSet[++$pos];            }            --$pos;            $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));        }        return round($pos / $valueAdjustor, $significance);    }    /**     * PERMUT     *     * Returns the number of permutations for a given number of objects that can be     *        selected from number objects. A permutation is any set or subset of objects or     *        events where internal order is significant. Permutations are different from     *        combinations, for which the internal order is not significant. Use this function     *        for lottery-style probability calculations.     *     * @param    int        $numObjs    Number of different objects     * @param    int        $numInSet    Number of objects in each permutation     * @return    int        Number of permutations     */    public static function PERMUT($numObjs, $numInSet)    {        $numObjs  = PHPExcel_Calculation_Functions::flattenSingleValue($numObjs);        $numInSet = PHPExcel_Calculation_Functions::flattenSingleValue($numInSet);        if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {            $numInSet = floor($numInSet);            if ($numObjs < $numInSet) {                return PHPExcel_Calculation_Functions::NaN();            }            return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet));        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * POISSON     *     * Returns the Poisson distribution. A common application of the Poisson distribution     * is predicting the number of events over a specific time, such as the number of     * cars arriving at a toll plaza in 1 minute.     *     * @param    float        $value     * @param    float        $mean        Mean Value     * @param    boolean        $cumulative     * @return    float     *     */    public static function POISSON($value, $mean, $cumulative)    {        $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $mean  = PHPExcel_Calculation_Functions::flattenSingleValue($mean);        if ((is_numeric($value)) && (is_numeric($mean))) {            if (($value < 0) || ($mean <= 0)) {                return PHPExcel_Calculation_Functions::NaN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    $summer = 0;                    for ($i = 0; $i <= floor($value); ++$i) {                        $summer += pow($mean, $i) / PHPExcel_Calculation_MathTrig::FACT($i);                    }                    return exp(0-$mean) * $summer;                } else {                    return (exp(0-$mean) * pow($mean, $value)) / PHPExcel_Calculation_MathTrig::FACT($value);                }            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * QUARTILE     *     * Returns the quartile of a data set.     *     * Excel Function:     *        QUARTILE(value1[,value2[, ...]],entry)     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @param    int            $entry            Quartile value in the range 1..3, inclusive.     * @return    float     */    public static function QUARTILE()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        // Calculate        $entry = floor(array_pop($aArgs));        if ((is_numeric($entry)) && (!is_string($entry))) {            $entry /= 4;            if (($entry < 0) || ($entry > 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            return self::PERCENTILE($aArgs, $entry);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * RANK     *     * Returns the rank of a number in a list of numbers.     *     * @param    number                The number whose rank you want to find.     * @param    array of number        An array of, or a reference to, a list of numbers.     * @param    mixed                Order to sort the values in the value set     * @return    float     */    public static function RANK($value, $valueSet, $order = 0)    {        $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);        $order = (is_null($order)) ? 0 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($order);        foreach ($valueSet as $key => $valueEntry) {            if (!is_numeric($valueEntry)) {                unset($valueSet[$key]);            }        }        if ($order == 0) {            rsort($valueSet, SORT_NUMERIC);        } else {            sort($valueSet, SORT_NUMERIC);        }        $pos = array_search($value, $valueSet);        if ($pos === false) {            return PHPExcel_Calculation_Functions::NA();        }        return ++$pos;    }    /**     * RSQ     *     * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @return    float     */    public static function RSQ($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return PHPExcel_Calculation_Functions::DIV0();        }        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getGoodnessOfFit();    }    /**     * SKEW     *     * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry     * of a distribution around its mean. Positive skewness indicates a distribution with an     * asymmetric tail extending toward more positive values. Negative skewness indicates a     * distribution with an asymmetric tail extending toward more negative values.     *     * @param    array    Data Series     * @return    float     */    public static function SKEW()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        $mean = self::AVERAGE($aArgs);        $stdDev = self::STDEV($aArgs);        $count = $summer = 0;        // Loop through arguments        foreach ($aArgs as $k => $arg) {            if ((is_bool($arg)) &&                (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {            } else {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $summer += pow((($arg - $mean) / $stdDev), 3);                    ++$count;                }            }        }        if ($count > 2) {            return $summer * ($count / (($count-1) * ($count-2)));        }        return PHPExcel_Calculation_Functions::DIV0();    }    /**     * SLOPE     *     * Returns the slope of the linear regression line through data points in known_y's and known_x's.     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @return    float     */    public static function SLOPE($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return PHPExcel_Calculation_Functions::DIV0();        }        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getSlope();    }    /**     * SMALL     *     * Returns the nth smallest value in a data set. You can use this function to     *        select a value based on its relative standing.     *     * Excel Function:     *        SMALL(value1[,value2[, ...]],entry)     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @param    int            $entry            Position (ordered from the smallest) in the array or range of data to return     * @return    float     */    public static function SMALL()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        // Calculate        $entry = array_pop($aArgs);        if ((is_numeric($entry)) && (!is_string($entry))) {            $mArgs = array();            foreach ($aArgs as $arg) {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $mArgs[] = $arg;                }            }            $count = self::COUNT($mArgs);            $entry = floor(--$entry);            if (($entry < 0) || ($entry >= $count) || ($count == 0)) {                return PHPExcel_Calculation_Functions::NaN();            }            sort($mArgs);            return $mArgs[$entry];        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * STANDARDIZE     *     * Returns a normalized value from a distribution characterized by mean and standard_dev.     *     * @param    float    $value        Value to normalize     * @param    float    $mean        Mean Value     * @param    float    $stdDev        Standard Deviation     * @return    float    Standardized value     */    public static function STANDARDIZE($value, $mean, $stdDev)    {        $value  = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $mean   = PHPExcel_Calculation_Functions::flattenSingleValue($mean);        $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);        if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {            if ($stdDev <= 0) {                return PHPExcel_Calculation_Functions::NaN();            }            return ($value - $mean) / $stdDev ;        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * STDEV     *     * Estimates standard deviation based on a sample. The standard deviation is a measure of how     *        widely values are dispersed from the average value (the mean).     *     * Excel Function:     *        STDEV(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function STDEV()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        // Return value        $returnValue = null;        $aMean = self::AVERAGE($aArgs);        if (!is_null($aMean)) {            $aCount = -1;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {                    $arg = (integer) $arg;                }                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    if (is_null($returnValue)) {                        $returnValue = pow(($arg - $aMean), 2);                    } else {                        $returnValue += pow(($arg - $aMean), 2);                    }                    ++$aCount;                }            }            // Return            if (($aCount > 0) && ($returnValue >= 0)) {                return sqrt($returnValue / $aCount);            }        }        return PHPExcel_Calculation_Functions::DIV0();    }    /**     * STDEVA     *     * Estimates standard deviation based on a sample, including numbers, text, and logical values     *     * Excel Function:     *        STDEVA(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function STDEVA()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        $returnValue = null;        $aMean = self::AVERAGEA($aArgs);        if (!is_null($aMean)) {            $aCount = -1;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {                } else {                    // Is it a numeric value?                    if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {                        if (is_bool($arg)) {                            $arg = (integer) $arg;                        } elseif (is_string($arg)) {                            $arg = 0;                        }                        if (is_null($returnValue)) {                            $returnValue = pow(($arg - $aMean), 2);                        } else {                            $returnValue += pow(($arg - $aMean), 2);                        }                        ++$aCount;                    }                }            }            if (($aCount > 0) && ($returnValue >= 0)) {                return sqrt($returnValue / $aCount);            }        }        return PHPExcel_Calculation_Functions::DIV0();    }    /**     * STDEVP     *     * Calculates standard deviation based on the entire population     *     * Excel Function:     *        STDEVP(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function STDEVP()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        $returnValue = null;        $aMean = self::AVERAGE($aArgs);        if (!is_null($aMean)) {            $aCount = 0;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {                    $arg = (integer) $arg;                }                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    if (is_null($returnValue)) {                        $returnValue = pow(($arg - $aMean), 2);                    } else {                        $returnValue += pow(($arg - $aMean), 2);                    }                    ++$aCount;                }            }            if (($aCount > 0) && ($returnValue >= 0)) {                return sqrt($returnValue / $aCount);            }        }        return PHPExcel_Calculation_Functions::DIV0();    }    /**     * STDEVPA     *     * Calculates standard deviation based on the entire population, including numbers, text, and logical values     *     * Excel Function:     *        STDEVPA(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function STDEVPA()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        $returnValue = null;        $aMean = self::AVERAGEA($aArgs);        if (!is_null($aMean)) {            $aCount = 0;            foreach ($aArgs as $k => $arg) {                if ((is_bool($arg)) &&                    (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {                } else {                    // Is it a numeric value?                    if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {                        if (is_bool($arg)) {                            $arg = (integer) $arg;                        } elseif (is_string($arg)) {                            $arg = 0;                        }                        if (is_null($returnValue)) {                            $returnValue = pow(($arg - $aMean), 2);                        } else {                            $returnValue += pow(($arg - $aMean), 2);                        }                        ++$aCount;                    }                }            }            if (($aCount > 0) && ($returnValue >= 0)) {                return sqrt($returnValue / $aCount);            }        }        return PHPExcel_Calculation_Functions::DIV0();    }    /**     * STEYX     *     * Returns the standard error of the predicted y-value for each x in the regression.     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @return    float     */    public static function STEYX($yValues, $xValues)    {        if (!self::checkTrendArrays($yValues, $xValues)) {            return PHPExcel_Calculation_Functions::VALUE();        }        $yValueCount = count($yValues);        $xValueCount = count($xValues);        if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {            return PHPExcel_Calculation_Functions::NA();        } elseif ($yValueCount == 1) {            return PHPExcel_Calculation_Functions::DIV0();        }        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);        return $bestFitLinear->getStdevOfResiduals();    }    /**     * TDIST     *     * Returns the probability of Student's T distribution.     *     * @param    float        $value            Value for the function     * @param    float        $degrees        degrees of freedom     * @param    float        $tails            number of tails (1 or 2)     * @return    float     */    public static function TDIST($value, $degrees, $tails)    {        $value        = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $degrees    = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));        $tails        = floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails));        if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {            if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {                return PHPExcel_Calculation_Functions::NaN();            }            //    tdist, which finds the probability that corresponds to a given value            //    of t with k degrees of freedom. This algorithm is translated from a            //    pascal function on p81 of "Statistical Computing in Pascal" by D            //    Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:            //    London). The above Pascal algorithm is itself a translation of the            //    fortran algoritm "AS 3" by B E Cooper of the Atlas Computer            //    Laboratory as reported in (among other places) "Applied Statistics            //    Algorithms", editied by P Griffiths and I D Hill (1985; Ellis            //    Horwood Ltd.; W. Sussex, England).            $tterm = $degrees;            $ttheta = atan2($value, sqrt($tterm));            $tc = cos($ttheta);            $ts = sin($ttheta);            $tsum = 0;            if (($degrees % 2) == 1) {                $ti = 3;                $tterm = $tc;            } else {                $ti = 2;                $tterm = 1;            }            $tsum = $tterm;            while ($ti < $degrees) {                $tterm *= $tc * $tc * ($ti - 1) / $ti;                $tsum += $tterm;                $ti += 2;            }            $tsum *= $ts;            if (($degrees % 2) == 1) {                $tsum = M_2DIVPI * ($tsum + $ttheta);            }            $tValue = 0.5 * (1 + $tsum);            if ($tails == 1) {                return 1 - abs($tValue);            } else {                return 1 - abs((1 - $tValue) - $tValue);            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * TINV     *     * Returns the one-tailed probability of the chi-squared distribution.     *     * @param    float        $probability    Probability for the function     * @param    float        $degrees        degrees of freedom     * @return    float     */    public static function TINV($probability, $degrees)    {        $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);        $degrees     = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));        if ((is_numeric($probability)) && (is_numeric($degrees))) {            $xLo = 100;            $xHi = 0;            $x = $xNew = 1;            $dx    = 1;            $i = 0;            while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {                // Apply Newton-Raphson step                $result = self::TDIST($x, $degrees, 2);                $error = $result - $probability;                if ($error == 0.0) {                    $dx = 0;                } elseif ($error < 0.0) {                    $xLo = $x;                } else {                    $xHi = $x;                }                // Avoid division by zero                if ($result != 0.0) {                    $dx = $error / $result;                    $xNew = $x - $dx;                }                // If the NR fails to converge (which for example may be the                // case if the initial guess is too rough) we apply a bisection                // step to determine a more narrow interval around the root.                if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {                    $xNew = ($xLo + $xHi) / 2;                    $dx = $xNew - $x;                }                $x = $xNew;            }            if ($i == MAX_ITERATIONS) {                return PHPExcel_Calculation_Functions::NA();            }            return round($x, 12);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * TREND     *     * Returns values along a linear trend     *     * @param    array of mixed        Data Series Y     * @param    array of mixed        Data Series X     * @param    array of mixed        Values of X for which we want to find Y     * @param    boolean                A logical value specifying whether to force the intersect to equal 0.     * @return    array of float     */    public static function TREND($yValues, $xValues = array(), $newValues = array(), $const = true)    {        $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);        $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);        $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);        $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);        $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues, $const);        if (empty($newValues)) {            $newValues = $bestFitLinear->getXValues();        }        $returnArray = array();        foreach ($newValues as $xValue) {            $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);        }        return $returnArray;    }    /**     * TRIMMEAN     *     * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean     *        taken by excluding a percentage of data points from the top and bottom tails     *        of a data set.     *     * Excel Function:     *        TRIMEAN(value1[,value2[, ...]], $discard)     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @param    float        $discard        Percentage to discard     * @return    float     */    public static function TRIMMEAN()    {        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        // Calculate        $percent = array_pop($aArgs);        if ((is_numeric($percent)) && (!is_string($percent))) {            if (($percent < 0) || ($percent > 1)) {                return PHPExcel_Calculation_Functions::NaN();            }            $mArgs = array();            foreach ($aArgs as $arg) {                // Is it a numeric value?                if ((is_numeric($arg)) && (!is_string($arg))) {                    $mArgs[] = $arg;                }            }            $discard = floor(self::COUNT($mArgs) * $percent / 2);            sort($mArgs);            for ($i=0; $i < $discard; ++$i) {                array_pop($mArgs);                array_shift($mArgs);            }            return self::AVERAGE($mArgs);        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * VARFunc     *     * Estimates variance based on a sample.     *     * Excel Function:     *        VAR(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function VARFunc()    {        $returnValue = PHPExcel_Calculation_Functions::DIV0();        $summerA = $summerB = 0;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        $aCount = 0;        foreach ($aArgs as $arg) {            if (is_bool($arg)) {                $arg = (integer) $arg;            }            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                $summerA += ($arg * $arg);                $summerB += $arg;                ++$aCount;            }        }        if ($aCount > 1) {            $summerA *= $aCount;            $summerB *= $summerB;            $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));        }        return $returnValue;    }    /**     * VARA     *     * Estimates variance based on a sample, including numbers, text, and logical values     *     * Excel Function:     *        VARA(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function VARA()    {        $returnValue = PHPExcel_Calculation_Functions::DIV0();        $summerA = $summerB = 0;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        $aCount = 0;        foreach ($aArgs as $k => $arg) {            if ((is_string($arg)) &&                (PHPExcel_Calculation_Functions::isValue($k))) {                return PHPExcel_Calculation_Functions::VALUE();            } elseif ((is_string($arg)) &&                (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {            } else {                // Is it a numeric value?                if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {                    if (is_bool($arg)) {                        $arg = (integer) $arg;                    } elseif (is_string($arg)) {                        $arg = 0;                    }                    $summerA += ($arg * $arg);                    $summerB += $arg;                    ++$aCount;                }            }        }        if ($aCount > 1) {            $summerA *= $aCount;            $summerB *= $summerB;            $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));        }        return $returnValue;    }    /**     * VARP     *     * Calculates variance based on the entire population     *     * Excel Function:     *        VARP(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function VARP()    {        // Return value        $returnValue = PHPExcel_Calculation_Functions::DIV0();        $summerA = $summerB = 0;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());        $aCount = 0;        foreach ($aArgs as $arg) {            if (is_bool($arg)) {                $arg = (integer) $arg;            }            // Is it a numeric value?            if ((is_numeric($arg)) && (!is_string($arg))) {                $summerA += ($arg * $arg);                $summerB += $arg;                ++$aCount;            }        }        if ($aCount > 0) {            $summerA *= $aCount;            $summerB *= $summerB;            $returnValue = ($summerA - $summerB) / ($aCount * $aCount);        }        return $returnValue;    }    /**     * VARPA     *     * Calculates variance based on the entire population, including numbers, text, and logical values     *     * Excel Function:     *        VARPA(value1[,value2[, ...]])     *     * @access    public     * @category Statistical Functions     * @param    mixed        $arg,...        Data values     * @return    float     */    public static function VARPA()    {        $returnValue = PHPExcel_Calculation_Functions::DIV0();        $summerA = $summerB = 0;        // Loop through arguments        $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());        $aCount = 0;        foreach ($aArgs as $k => $arg) {            if ((is_string($arg)) &&                (PHPExcel_Calculation_Functions::isValue($k))) {                return PHPExcel_Calculation_Functions::VALUE();            } elseif ((is_string($arg)) &&                (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {            } else {                // Is it a numeric value?                if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {                    if (is_bool($arg)) {                        $arg = (integer) $arg;                    } elseif (is_string($arg)) {                        $arg = 0;                    }                    $summerA += ($arg * $arg);                    $summerB += $arg;                    ++$aCount;                }            }        }        if ($aCount > 0) {            $summerA *= $aCount;            $summerB *= $summerB;            $returnValue = ($summerA - $summerB) / ($aCount * $aCount);        }        return $returnValue;    }    /**     * WEIBULL     *     * Returns the Weibull distribution. Use this distribution in reliability     * analysis, such as calculating a device's mean time to failure.     *     * @param    float        $value     * @param    float        $alpha        Alpha Parameter     * @param    float        $beta        Beta Parameter     * @param    boolean        $cumulative     * @return    float     *     */    public static function WEIBULL($value, $alpha, $beta, $cumulative)    {        $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);        $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);        $beta  = PHPExcel_Calculation_Functions::flattenSingleValue($beta);        if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {            if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {                return PHPExcel_Calculation_Functions::NaN();            }            if ((is_numeric($cumulative)) || (is_bool($cumulative))) {                if ($cumulative) {                    return 1 - exp(0 - pow($value / $beta, $alpha));                } else {                    return ($alpha / pow($beta, $alpha)) * pow($value, $alpha - 1) * exp(0 - pow($value / $beta, $alpha));                }            }        }        return PHPExcel_Calculation_Functions::VALUE();    }    /**     * ZTEST     *     * Returns the Weibull distribution. Use this distribution in reliability     * analysis, such as calculating a device's mean time to failure.     *     * @param    float        $dataSet     * @param    float        $m0        Alpha Parameter     * @param    float        $sigma    Beta Parameter     * @param    boolean        $cumulative     * @return    float     *     */    public static function ZTEST($dataSet, $m0, $sigma = null)    {        $dataSet = PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet);        $m0      = PHPExcel_Calculation_Functions::flattenSingleValue($m0);        $sigma   = PHPExcel_Calculation_Functions::flattenSingleValue($sigma);        if (is_null($sigma)) {            $sigma = self::STDEV($dataSet);        }        $n = count($dataSet);        return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / SQRT($n)));    }}
 |