| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574 | ( function () {	/** * Octahedron and Quantization encodings based on work by: * * @link https://github.com/tsherif/mesh-quantization-example * */	/** * Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data. * * @param {THREE.Mesh} mesh * @param {String} encodeMethod		"DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES" * */	function compressNormals( mesh, encodeMethod ) {		if ( ! mesh.geometry ) {			console.error( 'Mesh must contain geometry. ' );		}		const normal = mesh.geometry.attributes.normal;		if ( ! normal ) {			console.error( 'Geometry must contain normal attribute. ' );		}		if ( normal.isPacked ) return;		if ( normal.itemSize != 3 ) {			console.error( 'normal.itemSize is not 3, which cannot be encoded. ' );		}		const array = normal.array;		const count = normal.count;		let result;		if ( encodeMethod == 'DEFAULT' ) {			// TODO: Add 1 byte to the result, making the encoded length to be 4 bytes.			result = new Uint8Array( count * 3 );			for ( let idx = 0; idx < array.length; idx += 3 ) {				const encoded = defaultEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );				result[ idx + 0 ] = encoded[ 0 ];				result[ idx + 1 ] = encoded[ 1 ];				result[ idx + 2 ] = encoded[ 2 ];			}			mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 3, true ) );			mesh.geometry.attributes.normal.bytes = result.length * 1;		} else if ( encodeMethod == 'OCT1Byte' ) {			/**    * It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage    * As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible    * Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208    */			result = new Int8Array( count * 2 );			for ( let idx = 0; idx < array.length; idx += 3 ) {				const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );				result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];				result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];			}			mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );			mesh.geometry.attributes.normal.bytes = result.length * 1;		} else if ( encodeMethod == 'OCT2Byte' ) {			result = new Int16Array( count * 2 );			for ( let idx = 0; idx < array.length; idx += 3 ) {				const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 2 );				result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];				result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];			}			mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );			mesh.geometry.attributes.normal.bytes = result.length * 2;		} else if ( encodeMethod == 'ANGLES' ) {			result = new Uint16Array( count * 2 );			for ( let idx = 0; idx < array.length; idx += 3 ) {				const encoded = anglesEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ] );				result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];				result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];			}			mesh.geometry.setAttribute( 'normal', new THREE.BufferAttribute( result, 2, true ) );			mesh.geometry.attributes.normal.bytes = result.length * 2;		} else {			console.error( 'Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ' );		}		mesh.geometry.attributes.normal.needsUpdate = true;		mesh.geometry.attributes.normal.isPacked = true;		mesh.geometry.attributes.normal.packingMethod = encodeMethod; // modify material		if ( ! ( mesh.material instanceof THREE.PackedPhongMaterial ) ) {			mesh.material = new THREE.PackedPhongMaterial().copy( mesh.material );		}		if ( encodeMethod == 'ANGLES' ) {			mesh.material.defines.USE_PACKED_NORMAL = 0;		}		if ( encodeMethod == 'OCT1Byte' ) {			mesh.material.defines.USE_PACKED_NORMAL = 1;		}		if ( encodeMethod == 'OCT2Byte' ) {			mesh.material.defines.USE_PACKED_NORMAL = 1;		}		if ( encodeMethod == 'DEFAULT' ) {			mesh.material.defines.USE_PACKED_NORMAL = 2;		}	}	/**	 * Make the input mesh.geometry's position attribute encoded and compressed.	 * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data.	 *	 * @param {THREE.Mesh} mesh	 *	 */	function compressPositions( mesh ) {		if ( ! mesh.geometry ) {			console.error( 'Mesh must contain geometry. ' );		}		const position = mesh.geometry.attributes.position;		if ( ! position ) {			console.error( 'Geometry must contain position attribute. ' );		}		if ( position.isPacked ) return;		if ( position.itemSize != 3 ) {			console.error( 'position.itemSize is not 3, which cannot be packed. ' );		}		const array = position.array;		const encodingBytes = 2;		const result = quantizedEncode( array, encodingBytes );		const quantized = result.quantized;		const decodeMat = result.decodeMat; // IMPORTANT: calculate original geometry bounding info first, before updating packed positions		if ( mesh.geometry.boundingBox == null ) mesh.geometry.computeBoundingBox();		if ( mesh.geometry.boundingSphere == null ) mesh.geometry.computeBoundingSphere();		mesh.geometry.setAttribute( 'position', new THREE.BufferAttribute( quantized, 3 ) );		mesh.geometry.attributes.position.isPacked = true;		mesh.geometry.attributes.position.needsUpdate = true;		mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes; // modify material		if ( ! ( mesh.material instanceof THREE.PackedPhongMaterial ) ) {			mesh.material = new THREE.PackedPhongMaterial().copy( mesh.material );		}		mesh.material.defines.USE_PACKED_POSITION = 0;		mesh.material.uniforms.quantizeMatPos.value = decodeMat;		mesh.material.uniforms.quantizeMatPos.needsUpdate = true;	}	/** * Make the input mesh.geometry's uv attribute encoded and compressed. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data. * * @param {THREE.Mesh} mesh * */	function compressUvs( mesh ) {		if ( ! mesh.geometry ) {			console.error( 'Mesh must contain geometry property. ' );		}		const uvs = mesh.geometry.attributes.uv;		if ( ! uvs ) {			console.error( 'Geometry must contain uv attribute. ' );		}		if ( uvs.isPacked ) return;		const range = {			min: Infinity,			max: - Infinity		};		const array = uvs.array;		for ( let i = 0; i < array.length; i ++ ) {			range.min = Math.min( range.min, array[ i ] );			range.max = Math.max( range.max, array[ i ] );		}		let result;		if ( range.min >= - 1.0 && range.max <= 1.0 ) {			// use default encoding method			result = new Uint16Array( array.length );			for ( let i = 0; i < array.length; i += 2 ) {				const encoded = defaultEncode( array[ i ], array[ i + 1 ], 0, 2 );				result[ i ] = encoded[ 0 ];				result[ i + 1 ] = encoded[ 1 ];			}			mesh.geometry.setAttribute( 'uv', new THREE.BufferAttribute( result, 2, true ) );			mesh.geometry.attributes.uv.isPacked = true;			mesh.geometry.attributes.uv.needsUpdate = true;			mesh.geometry.attributes.uv.bytes = result.length * 2;			if ( ! ( mesh.material instanceof THREE.PackedPhongMaterial ) ) {				mesh.material = new THREE.PackedPhongMaterial().copy( mesh.material );			}			mesh.material.defines.USE_PACKED_UV = 0;		} else {			// use quantized encoding method			result = quantizedEncodeUV( array, 2 );			mesh.geometry.setAttribute( 'uv', new THREE.BufferAttribute( result.quantized, 2 ) );			mesh.geometry.attributes.uv.isPacked = true;			mesh.geometry.attributes.uv.needsUpdate = true;			mesh.geometry.attributes.uv.bytes = result.quantized.length * 2;			if ( ! ( mesh.material instanceof THREE.PackedPhongMaterial ) ) {				mesh.material = new THREE.PackedPhongMaterial().copy( mesh.material );			}			mesh.material.defines.USE_PACKED_UV = 1;			mesh.material.uniforms.quantizeMatUV.value = result.decodeMat;			mesh.material.uniforms.quantizeMatUV.needsUpdate = true;		}	} // Encoding functions	function defaultEncode( x, y, z, bytes ) {		if ( bytes == 1 ) {			const tmpx = Math.round( ( x + 1 ) * 0.5 * 255 );			const tmpy = Math.round( ( y + 1 ) * 0.5 * 255 );			const tmpz = Math.round( ( z + 1 ) * 0.5 * 255 );			return new Uint8Array( [ tmpx, tmpy, tmpz ] );		} else if ( bytes == 2 ) {			const tmpx = Math.round( ( x + 1 ) * 0.5 * 65535 );			const tmpy = Math.round( ( y + 1 ) * 0.5 * 65535 );			const tmpz = Math.round( ( z + 1 ) * 0.5 * 65535 );			return new Uint16Array( [ tmpx, tmpy, tmpz ] );		} else {			console.error( 'number of bytes must be 1 or 2' );		}	} // for `Angles` encoding	function anglesEncode( x, y, z ) {		const normal0 = parseInt( 0.5 * ( 1.0 + Math.atan2( y, x ) / Math.PI ) * 65535 );		const normal1 = parseInt( 0.5 * ( 1.0 + z ) * 65535 );		return new Uint16Array( [ normal0, normal1 ] );	} // for `Octahedron` encoding	function octEncodeBest( x, y, z, bytes ) {		let oct, dec, best, currentCos, bestCos; // Test various combinations of ceil and floor		// to minimize rounding errors		best = oct = octEncodeVec3( x, y, z, 'floor', 'floor' );		dec = octDecodeVec2( oct );		bestCos = dot( x, y, z, dec );		oct = octEncodeVec3( x, y, z, 'ceil', 'floor' );		dec = octDecodeVec2( oct );		currentCos = dot( x, y, z, dec );		if ( currentCos > bestCos ) {			best = oct;			bestCos = currentCos;		}		oct = octEncodeVec3( x, y, z, 'floor', 'ceil' );		dec = octDecodeVec2( oct );		currentCos = dot( x, y, z, dec );		if ( currentCos > bestCos ) {			best = oct;			bestCos = currentCos;		}		oct = octEncodeVec3( x, y, z, 'ceil', 'ceil' );		dec = octDecodeVec2( oct );		currentCos = dot( x, y, z, dec );		if ( currentCos > bestCos ) {			best = oct;		}		return best;		function octEncodeVec3( x0, y0, z0, xfunc, yfunc ) {			let x = x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );			let y = y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );			if ( z < 0 ) {				const tempx = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );				const tempy = ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 );				x = tempx;				y = tempy;				let diff = 1 - Math.abs( x ) - Math.abs( y );				if ( diff > 0 ) {					diff += 0.001;					x += x > 0 ? diff / 2 : - diff / 2;					y += y > 0 ? diff / 2 : - diff / 2;				}			}			if ( bytes == 1 ) {				return new Int8Array( [ Math[ xfunc ]( x * 127.5 + ( x < 0 ? 1 : 0 ) ), Math[ yfunc ]( y * 127.5 + ( y < 0 ? 1 : 0 ) ) ] );			}			if ( bytes == 2 ) {				return new Int16Array( [ Math[ xfunc ]( x * 32767.5 + ( x < 0 ? 1 : 0 ) ), Math[ yfunc ]( y * 32767.5 + ( y < 0 ? 1 : 0 ) ) ] );			}		}		function octDecodeVec2( oct ) {			let x = oct[ 0 ];			let y = oct[ 1 ];			if ( bytes == 1 ) {				x /= x < 0 ? 127 : 128;				y /= y < 0 ? 127 : 128;			} else if ( bytes == 2 ) {				x /= x < 0 ? 32767 : 32768;				y /= y < 0 ? 32767 : 32768;			}			const z = 1 - Math.abs( x ) - Math.abs( y );			if ( z < 0 ) {				const tmpx = x;				x = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );				y = ( 1 - Math.abs( tmpx ) ) * ( y >= 0 ? 1 : - 1 );			}			const length = Math.sqrt( x * x + y * y + z * z );			return [ x / length, y / length, z / length ];		}		function dot( x, y, z, vec3 ) {			return x * vec3[ 0 ] + y * vec3[ 1 ] + z * vec3[ 2 ];		}	}	function quantizedEncode( array, bytes ) {		let quantized, segments;		if ( bytes == 1 ) {			quantized = new Uint8Array( array.length );			segments = 255;		} else if ( bytes == 2 ) {			quantized = new Uint16Array( array.length );			segments = 65535;		} else {			console.error( 'number of bytes error! ' );		}		const decodeMat = new THREE.Matrix4();		const min = new Float32Array( 3 );		const max = new Float32Array( 3 );		min[ 0 ] = min[ 1 ] = min[ 2 ] = Number.MAX_VALUE;		max[ 0 ] = max[ 1 ] = max[ 2 ] = - Number.MAX_VALUE;		for ( let i = 0; i < array.length; i += 3 ) {			min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );			min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );			min[ 2 ] = Math.min( min[ 2 ], array[ i + 2 ] );			max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );			max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );			max[ 2 ] = Math.max( max[ 2 ], array[ i + 2 ] );		}		decodeMat.scale( new THREE.Vector3( ( max[ 0 ] - min[ 0 ] ) / segments, ( max[ 1 ] - min[ 1 ] ) / segments, ( max[ 2 ] - min[ 2 ] ) / segments ) );		decodeMat.elements[ 12 ] = min[ 0 ];		decodeMat.elements[ 13 ] = min[ 1 ];		decodeMat.elements[ 14 ] = min[ 2 ];		decodeMat.transpose();		const multiplier = new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0, max[ 2 ] !== min[ 2 ] ? segments / ( max[ 2 ] - min[ 2 ] ) : 0 ] );		for ( let i = 0; i < array.length; i += 3 ) {			quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );			quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );			quantized[ i + 2 ] = Math.floor( ( array[ i + 2 ] - min[ 2 ] ) * multiplier[ 2 ] );		}		return {			quantized: quantized,			decodeMat: decodeMat		};	}	function quantizedEncodeUV( array, bytes ) {		let quantized, segments;		if ( bytes == 1 ) {			quantized = new Uint8Array( array.length );			segments = 255;		} else if ( bytes == 2 ) {			quantized = new Uint16Array( array.length );			segments = 65535;		} else {			console.error( 'number of bytes error! ' );		}		const decodeMat = new THREE.Matrix3();		const min = new Float32Array( 2 );		const max = new Float32Array( 2 );		min[ 0 ] = min[ 1 ] = Number.MAX_VALUE;		max[ 0 ] = max[ 1 ] = - Number.MAX_VALUE;		for ( let i = 0; i < array.length; i += 2 ) {			min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );			min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );			max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );			max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );		}		decodeMat.scale( ( max[ 0 ] - min[ 0 ] ) / segments, ( max[ 1 ] - min[ 1 ] ) / segments );		decodeMat.elements[ 6 ] = min[ 0 ];		decodeMat.elements[ 7 ] = min[ 1 ];		decodeMat.transpose();		const multiplier = new Float32Array( [ max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0 ] );		for ( let i = 0; i < array.length; i += 2 ) {			quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );			quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );		}		return {			quantized: quantized,			decodeMat: decodeMat		};	}	THREE.GeometryCompressionUtils = {};	THREE.GeometryCompressionUtils.compressNormals = compressNormals;	THREE.GeometryCompressionUtils.compressPositions = compressPositions;	THREE.GeometryCompressionUtils.compressUvs = compressUvs;} )();
 |