| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964 | ( function () {	/** * @version 1.1.1 * * @desc Load files in LWO3 and LWO2 format on Three.js * * LWO3 format specification: *  https://static.lightwave3d.com/sdk/2019/html/filefmts/lwo3.html * * LWO2 format specification: *  https://static.lightwave3d.com/sdk/2019/html/filefmts/lwo2.html * **/	let _lwoTree;	class LWOLoader extends THREE.Loader {		constructor( manager, parameters = {} ) {			super( manager );			this.resourcePath = parameters.resourcePath !== undefined ? parameters.resourcePath : '';		}		load( url, onLoad, onProgress, onError ) {			const scope = this;			const path = scope.path === '' ? extractParentUrl( url, 'Objects' ) : scope.path; // give the mesh a default name based on the filename			const modelName = url.split( path ).pop().split( '.' )[ 0 ];			const loader = new THREE.FileLoader( this.manager );			loader.setPath( scope.path );			loader.setResponseType( 'arraybuffer' );			loader.load( url, function ( buffer ) {				// console.time( 'Total parsing: ' );				try {					onLoad( scope.parse( buffer, path, modelName ) );				} catch ( e ) {					if ( onError ) {						onError( e );					} else {						console.error( e );					}					scope.manager.itemError( url );				} // console.timeEnd( 'Total parsing: ' );			}, onProgress, onError );		}		parse( iffBuffer, path, modelName ) {			_lwoTree = new THREE.IFFParser().parse( iffBuffer ); // console.log( 'lwoTree', lwoTree );			const textureLoader = new THREE.TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );			return new LWOTreeParser( textureLoader ).parse( modelName );		}	} // Parse the lwoTree object	class LWOTreeParser {		constructor( textureLoader ) {			this.textureLoader = textureLoader;		}		parse( modelName ) {			this.materials = new MaterialParser( this.textureLoader ).parse();			this.defaultLayerName = modelName;			this.meshes = this.parseLayers();			return {				materials: this.materials,				meshes: this.meshes			};		}		parseLayers() {			// array of all meshes for building hierarchy			const meshes = []; // final array containing meshes with scene graph hierarchy set up			const finalMeshes = [];			const geometryParser = new GeometryParser();			const scope = this;			_lwoTree.layers.forEach( function ( layer ) {				const geometry = geometryParser.parse( layer.geometry, layer );				const mesh = scope.parseMesh( geometry, layer );				meshes[ layer.number ] = mesh;				if ( layer.parent === - 1 ) finalMeshes.push( mesh ); else meshes[ layer.parent ].add( mesh );			} );			this.applyPivots( finalMeshes );			return finalMeshes;		}		parseMesh( geometry, layer ) {			let mesh;			const materials = this.getMaterials( geometry.userData.matNames, layer.geometry.type );			this.duplicateUVs( geometry, materials );			if ( layer.geometry.type === 'points' ) mesh = new THREE.Points( geometry, materials ); else if ( layer.geometry.type === 'lines' ) mesh = new THREE.LineSegments( geometry, materials ); else mesh = new THREE.Mesh( geometry, materials );			if ( layer.name ) mesh.name = layer.name; else mesh.name = this.defaultLayerName + '_layer_' + layer.number;			mesh.userData.pivot = layer.pivot;			return mesh;		} // TODO: may need to be reversed in z to convert LWO to three.js coordinates		applyPivots( meshes ) {			meshes.forEach( function ( mesh ) {				mesh.traverse( function ( child ) {					const pivot = child.userData.pivot;					child.position.x += pivot[ 0 ];					child.position.y += pivot[ 1 ];					child.position.z += pivot[ 2 ];					if ( child.parent ) {						const parentPivot = child.parent.userData.pivot;						child.position.x -= parentPivot[ 0 ];						child.position.y -= parentPivot[ 1 ];						child.position.z -= parentPivot[ 2 ];					}				} );			} );		}		getMaterials( namesArray, type ) {			const materials = [];			const scope = this;			namesArray.forEach( function ( name, i ) {				materials[ i ] = scope.getMaterialByName( name );			} ); // convert materials to line or point mats if required			if ( type === 'points' || type === 'lines' ) {				materials.forEach( function ( mat, i ) {					const spec = {						color: mat.color					};					if ( type === 'points' ) {						spec.size = 0.1;						spec.map = mat.map;						materials[ i ] = new THREE.PointsMaterial( spec );					} else if ( type === 'lines' ) {						materials[ i ] = new THREE.LineBasicMaterial( spec );					}				} );			} // if there is only one material, return that directly instead of array			const filtered = materials.filter( Boolean );			if ( filtered.length === 1 ) return filtered[ 0 ];			return materials;		}		getMaterialByName( name ) {			return this.materials.filter( function ( m ) {				return m.name === name;			} )[ 0 ];		} // If the material has an aoMap, duplicate UVs		duplicateUVs( geometry, materials ) {			let duplicateUVs = false;			if ( ! Array.isArray( materials ) ) {				if ( materials.aoMap ) duplicateUVs = true;			} else {				materials.forEach( function ( material ) {					if ( material.aoMap ) duplicateUVs = true;				} );			}			if ( ! duplicateUVs ) return;			geometry.setAttribute( 'uv2', new THREE.BufferAttribute( geometry.attributes.uv.array, 2 ) );		}	}	class MaterialParser {		constructor( textureLoader ) {			this.textureLoader = textureLoader;		}		parse() {			const materials = [];			this.textures = {};			for ( const name in _lwoTree.materials ) {				if ( _lwoTree.format === 'LWO3' ) {					materials.push( this.parseMaterial( _lwoTree.materials[ name ], name, _lwoTree.textures ) );				} else if ( _lwoTree.format === 'LWO2' ) {					materials.push( this.parseMaterialLwo2( _lwoTree.materials[ name ], name, _lwoTree.textures ) );				}			}			return materials;		}		parseMaterial( materialData, name, textures ) {			let params = {				name: name,				side: this.getSide( materialData.attributes ),				flatShading: this.getSmooth( materialData.attributes )			};			const connections = this.parseConnections( materialData.connections, materialData.nodes );			const maps = this.parseTextureNodes( connections.maps );			this.parseAttributeImageMaps( connections.attributes, textures, maps, materialData.maps );			const attributes = this.parseAttributes( connections.attributes, maps );			this.parseEnvMap( connections, maps, attributes );			params = Object.assign( maps, params );			params = Object.assign( params, attributes );			const materialType = this.getMaterialType( connections.attributes );			return new materialType( params );		}		parseMaterialLwo2( materialData, name			/*, textures*/		) {			let params = {				name: name,				side: this.getSide( materialData.attributes ),				flatShading: this.getSmooth( materialData.attributes )			};			const attributes = this.parseAttributes( materialData.attributes, {} );			params = Object.assign( params, attributes );			return new THREE.MeshPhongMaterial( params );		} // Note: converting from left to right handed coords by switching x -> -x in vertices, and		// then switching mat THREE.FrontSide -> THREE.BackSide		// NB: this means that THREE.FrontSide and THREE.BackSide have been switched!		getSide( attributes ) {			if ( ! attributes.side ) return THREE.BackSide;			switch ( attributes.side ) {				case 0:				case 1:					return THREE.BackSide;				case 2:					return THREE.FrontSide;				case 3:					return THREE.DoubleSide;			}		}		getSmooth( attributes ) {			if ( ! attributes.smooth ) return true;			return ! attributes.smooth;		}		parseConnections( connections, nodes ) {			const materialConnections = {				maps: {}			};			const inputName = connections.inputName;			const inputNodeName = connections.inputNodeName;			const nodeName = connections.nodeName;			const scope = this;			inputName.forEach( function ( name, index ) {				if ( name === 'Material' ) {					const matNode = scope.getNodeByRefName( inputNodeName[ index ], nodes );					materialConnections.attributes = matNode.attributes;					materialConnections.envMap = matNode.fileName;					materialConnections.name = inputNodeName[ index ];				}			} );			nodeName.forEach( function ( name, index ) {				if ( name === materialConnections.name ) {					materialConnections.maps[ inputName[ index ] ] = scope.getNodeByRefName( inputNodeName[ index ], nodes );				}			} );			return materialConnections;		}		getNodeByRefName( refName, nodes ) {			for ( const name in nodes ) {				if ( nodes[ name ].refName === refName ) return nodes[ name ];			}		}		parseTextureNodes( textureNodes ) {			const maps = {};			for ( const name in textureNodes ) {				const node = textureNodes[ name ];				const path = node.fileName;				if ( ! path ) return;				const texture = this.loadTexture( path );				if ( node.widthWrappingMode !== undefined ) texture.wrapS = this.getWrappingType( node.widthWrappingMode );				if ( node.heightWrappingMode !== undefined ) texture.wrapT = this.getWrappingType( node.heightWrappingMode );				switch ( name ) {					case 'Color':						maps.map = texture;						break;					case 'Roughness':						maps.roughnessMap = texture;						maps.roughness = 1;						break;					case 'Specular':						maps.specularMap = texture;						maps.specular = 0xffffff;						break;					case 'Luminous':						maps.emissiveMap = texture;						maps.emissive = 0x808080;						break;					case 'Luminous THREE.Color':						maps.emissive = 0x808080;						break;					case 'Metallic':						maps.metalnessMap = texture;						maps.metalness = 1;						break;					case 'Transparency':					case 'Alpha':						maps.alphaMap = texture;						maps.transparent = true;						break;					case 'Normal':						maps.normalMap = texture;						if ( node.amplitude !== undefined ) maps.normalScale = new THREE.Vector2( node.amplitude, node.amplitude );						break;					case 'Bump':						maps.bumpMap = texture;						break;				}			} // LWO BSDF materials can have both spec and rough, but this is not valid in three			if ( maps.roughnessMap && maps.specularMap ) delete maps.specularMap;			return maps;		} // maps can also be defined on individual material attributes, parse those here		// This occurs on Standard (Phong) surfaces		parseAttributeImageMaps( attributes, textures, maps ) {			for ( const name in attributes ) {				const attribute = attributes[ name ];				if ( attribute.maps ) {					const mapData = attribute.maps[ 0 ];					const path = this.getTexturePathByIndex( mapData.imageIndex, textures );					if ( ! path ) return;					const texture = this.loadTexture( path );					if ( mapData.wrap !== undefined ) texture.wrapS = this.getWrappingType( mapData.wrap.w );					if ( mapData.wrap !== undefined ) texture.wrapT = this.getWrappingType( mapData.wrap.h );					switch ( name ) {						case 'Color':							maps.map = texture;							break;						case 'Diffuse':							maps.aoMap = texture;							break;						case 'Roughness':							maps.roughnessMap = texture;							maps.roughness = 1;							break;						case 'Specular':							maps.specularMap = texture;							maps.specular = 0xffffff;							break;						case 'Luminosity':							maps.emissiveMap = texture;							maps.emissive = 0x808080;							break;						case 'Metallic':							maps.metalnessMap = texture;							maps.metalness = 1;							break;						case 'Transparency':						case 'Alpha':							maps.alphaMap = texture;							maps.transparent = true;							break;						case 'Normal':							maps.normalMap = texture;							break;						case 'Bump':							maps.bumpMap = texture;							break;					}				}			}		}		parseAttributes( attributes, maps ) {			const params = {}; // don't use color data if color map is present			if ( attributes.Color && ! maps.map ) {				params.color = new THREE.Color().fromArray( attributes.Color.value );			} else params.color = new THREE.Color();			if ( attributes.Transparency && attributes.Transparency.value !== 0 ) {				params.opacity = 1 - attributes.Transparency.value;				params.transparent = true;			}			if ( attributes[ 'Bump Height' ] ) params.bumpScale = attributes[ 'Bump Height' ].value * 0.1;			if ( attributes[ 'Refraction Index' ] ) params.refractionRatio = 0.98 / attributes[ 'Refraction Index' ].value;			this.parsePhysicalAttributes( params, attributes, maps );			this.parseStandardAttributes( params, attributes, maps );			this.parsePhongAttributes( params, attributes, maps );			return params;		}		parsePhysicalAttributes( params, attributes			/*, maps*/		) {			if ( attributes.Clearcoat && attributes.Clearcoat.value > 0 ) {				params.clearcoat = attributes.Clearcoat.value;				if ( attributes[ 'Clearcoat Gloss' ] ) {					params.clearcoatRoughness = 0.5 * ( 1 - attributes[ 'Clearcoat Gloss' ].value );				}			}		}		parseStandardAttributes( params, attributes, maps ) {			if ( attributes.Luminous ) {				params.emissiveIntensity = attributes.Luminous.value;				if ( attributes[ 'Luminous THREE.Color' ] && ! maps.emissive ) {					params.emissive = new THREE.Color().fromArray( attributes[ 'Luminous THREE.Color' ].value );				} else {					params.emissive = new THREE.Color( 0x808080 );				}			}			if ( attributes.Roughness && ! maps.roughnessMap ) params.roughness = attributes.Roughness.value;			if ( attributes.Metallic && ! maps.metalnessMap ) params.metalness = attributes.Metallic.value;		}		parsePhongAttributes( params, attributes, maps ) {			if ( attributes.Diffuse ) params.color.multiplyScalar( attributes.Diffuse.value );			if ( attributes.Reflection ) {				params.reflectivity = attributes.Reflection.value;				params.combine = THREE.AddOperation;			}			if ( attributes.Luminosity ) {				params.emissiveIntensity = attributes.Luminosity.value;				if ( ! maps.emissiveMap && ! maps.map ) {					params.emissive = params.color;				} else {					params.emissive = new THREE.Color( 0x808080 );				}			} // parse specular if there is no roughness - we will interpret the material as 'Phong' in this case			if ( ! attributes.Roughness && attributes.Specular && ! maps.specularMap ) {				if ( attributes[ 'Color Highlight' ] ) {					params.specular = new THREE.Color().setScalar( attributes.Specular.value ).lerp( params.color.clone().multiplyScalar( attributes.Specular.value ), attributes[ 'Color Highlight' ].value );				} else {					params.specular = new THREE.Color().setScalar( attributes.Specular.value );				}			}			if ( params.specular && attributes.Glossiness ) params.shininess = 7 + Math.pow( 2, attributes.Glossiness.value * 12 + 2 );		}		parseEnvMap( connections, maps, attributes ) {			if ( connections.envMap ) {				const envMap = this.loadTexture( connections.envMap );				if ( attributes.transparent && attributes.opacity < 0.999 ) {					envMap.mapping = THREE.EquirectangularRefractionMapping; // Reflectivity and refraction mapping don't work well together in Phong materials					if ( attributes.reflectivity !== undefined ) {						delete attributes.reflectivity;						delete attributes.combine;					}					if ( attributes.metalness !== undefined ) {						attributes.metalness = 1; // For most transparent materials metalness should be set to 1 if not otherwise defined. If set to 0 no refraction will be visible					}					attributes.opacity = 1; // transparency fades out refraction, forcing opacity to 1 ensures a closer visual match to the material in Lightwave.				} else envMap.mapping = THREE.EquirectangularReflectionMapping;				maps.envMap = envMap;			}		} // get texture defined at top level by its index		getTexturePathByIndex( index ) {			let fileName = '';			if ( ! _lwoTree.textures ) return fileName;			_lwoTree.textures.forEach( function ( texture ) {				if ( texture.index === index ) fileName = texture.fileName;			} );			return fileName;		}		loadTexture( path ) {			if ( ! path ) return null;			const texture = this.textureLoader.load( path, undefined, undefined, function () {				console.warn( 'LWOLoader: non-standard resource hierarchy. Use \`resourcePath\` parameter to specify root content directory.' );			} );			return texture;		} // 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge		getWrappingType( num ) {			switch ( num ) {				case 0:					console.warn( 'LWOLoader: "Reset" texture wrapping type is not supported in three.js' );					return THREE.ClampToEdgeWrapping;				case 1:					return THREE.RepeatWrapping;				case 2:					return THREE.MirroredRepeatWrapping;				case 3:					return THREE.ClampToEdgeWrapping;			}		}		getMaterialType( nodeData ) {			if ( nodeData.Clearcoat && nodeData.Clearcoat.value > 0 ) return THREE.MeshPhysicalMaterial;			if ( nodeData.Roughness ) return THREE.MeshStandardMaterial;			return THREE.MeshPhongMaterial;		}	}	class GeometryParser {		parse( geoData, layer ) {			const geometry = new THREE.BufferGeometry();			geometry.setAttribute( 'position', new THREE.Float32BufferAttribute( geoData.points, 3 ) );			const indices = this.splitIndices( geoData.vertexIndices, geoData.polygonDimensions );			geometry.setIndex( indices );			this.parseGroups( geometry, geoData );			geometry.computeVertexNormals();			this.parseUVs( geometry, layer, indices );			this.parseMorphTargets( geometry, layer, indices ); // TODO: z may need to be reversed to account for coordinate system change			geometry.translate( - layer.pivot[ 0 ], - layer.pivot[ 1 ], - layer.pivot[ 2 ] ); // let userData = geometry.userData;			// geometry = geometry.toNonIndexed()			// geometry.userData = userData;			return geometry;		} // split quads into tris		splitIndices( indices, polygonDimensions ) {			const remappedIndices = [];			let i = 0;			polygonDimensions.forEach( function ( dim ) {				if ( dim < 4 ) {					for ( let k = 0; k < dim; k ++ ) remappedIndices.push( indices[ i + k ] );				} else if ( dim === 4 ) {					remappedIndices.push( indices[ i ], indices[ i + 1 ], indices[ i + 2 ], indices[ i ], indices[ i + 2 ], indices[ i + 3 ] );				} else if ( dim > 4 ) {					for ( let k = 1; k < dim - 1; k ++ ) {						remappedIndices.push( indices[ i ], indices[ i + k ], indices[ i + k + 1 ] );					}					console.warn( 'LWOLoader: polygons with greater than 4 sides are not supported' );				}				i += dim;			} );			return remappedIndices;		} // NOTE: currently ignoring poly indices and assuming that they are intelligently ordered		parseGroups( geometry, geoData ) {			const tags = _lwoTree.tags;			const matNames = [];			let elemSize = 3;			if ( geoData.type === 'lines' ) elemSize = 2;			if ( geoData.type === 'points' ) elemSize = 1;			const remappedIndices = this.splitMaterialIndices( geoData.polygonDimensions, geoData.materialIndices );			let indexNum = 0; // create new indices in numerical order			const indexPairs = {}; // original indices mapped to numerical indices			let prevMaterialIndex;			let materialIndex;			let prevStart = 0;			let currentCount = 0;			for ( let i = 0; i < remappedIndices.length; i += 2 ) {				materialIndex = remappedIndices[ i + 1 ];				if ( i === 0 ) matNames[ indexNum ] = tags[ materialIndex ];				if ( prevMaterialIndex === undefined ) prevMaterialIndex = materialIndex;				if ( materialIndex !== prevMaterialIndex ) {					let currentIndex;					if ( indexPairs[ tags[ prevMaterialIndex ] ] ) {						currentIndex = indexPairs[ tags[ prevMaterialIndex ] ];					} else {						currentIndex = indexNum;						indexPairs[ tags[ prevMaterialIndex ] ] = indexNum;						matNames[ indexNum ] = tags[ prevMaterialIndex ];						indexNum ++;					}					geometry.addGroup( prevStart, currentCount, currentIndex );					prevStart += currentCount;					prevMaterialIndex = materialIndex;					currentCount = 0;				}				currentCount += elemSize;			} // the loop above doesn't add the last group, do that here.			if ( geometry.groups.length > 0 ) {				let currentIndex;				if ( indexPairs[ tags[ materialIndex ] ] ) {					currentIndex = indexPairs[ tags[ materialIndex ] ];				} else {					currentIndex = indexNum;					indexPairs[ tags[ materialIndex ] ] = indexNum;					matNames[ indexNum ] = tags[ materialIndex ];				}				geometry.addGroup( prevStart, currentCount, currentIndex );			} // Mat names from TAGS chunk, used to build up an array of materials for this geometry			geometry.userData.matNames = matNames;		}		splitMaterialIndices( polygonDimensions, indices ) {			const remappedIndices = [];			polygonDimensions.forEach( function ( dim, i ) {				if ( dim <= 3 ) {					remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] );				} else if ( dim === 4 ) {					remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ], indices[ i * 2 ], indices[ i * 2 + 1 ] );				} else {					// ignore > 4 for now					for ( let k = 0; k < dim - 2; k ++ ) {						remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] );					}				}			} );			return remappedIndices;		} // UV maps:		// 1: are defined via index into an array of points, not into a geometry		// - the geometry is also defined by an index into this array, but the indexes may not match		// 2: there can be any number of UV maps for a single geometry. Here these are combined,		// 	with preference given to the first map encountered		// 3: UV maps can be partial - that is, defined for only a part of the geometry		// 4: UV maps can be VMAP or VMAD (discontinuous, to allow for seams). In practice, most		// UV maps are defined as partially VMAP and partially VMAD		// VMADs are currently not supported		parseUVs( geometry, layer ) {			// start by creating a UV map set to zero for the whole geometry			const remappedUVs = Array.from( Array( geometry.attributes.position.count * 2 ), function () {				return 0;			} );			for ( const name in layer.uvs ) {				const uvs = layer.uvs[ name ].uvs;				const uvIndices = layer.uvs[ name ].uvIndices;				uvIndices.forEach( function ( i, j ) {					remappedUVs[ i * 2 ] = uvs[ j * 2 ];					remappedUVs[ i * 2 + 1 ] = uvs[ j * 2 + 1 ];				} );			}			geometry.setAttribute( 'uv', new THREE.Float32BufferAttribute( remappedUVs, 2 ) );		}		parseMorphTargets( geometry, layer ) {			let num = 0;			for ( const name in layer.morphTargets ) {				const remappedPoints = geometry.attributes.position.array.slice();				if ( ! geometry.morphAttributes.position ) geometry.morphAttributes.position = [];				const morphPoints = layer.morphTargets[ name ].points;				const morphIndices = layer.morphTargets[ name ].indices;				const type = layer.morphTargets[ name ].type;				morphIndices.forEach( function ( i, j ) {					if ( type === 'relative' ) {						remappedPoints[ i * 3 ] += morphPoints[ j * 3 ];						remappedPoints[ i * 3 + 1 ] += morphPoints[ j * 3 + 1 ];						remappedPoints[ i * 3 + 2 ] += morphPoints[ j * 3 + 2 ];					} else {						remappedPoints[ i * 3 ] = morphPoints[ j * 3 ];						remappedPoints[ i * 3 + 1 ] = morphPoints[ j * 3 + 1 ];						remappedPoints[ i * 3 + 2 ] = morphPoints[ j * 3 + 2 ];					}				} );				geometry.morphAttributes.position[ num ] = new THREE.Float32BufferAttribute( remappedPoints, 3 );				geometry.morphAttributes.position[ num ].name = name;				num ++;			}			geometry.morphTargetsRelative = false;		}	} // ************** UTILITY FUNCTIONS **************	function extractParentUrl( url, dir ) {		const index = url.indexOf( dir );		if ( index === - 1 ) return './';		return url.substr( 0, index );	}	THREE.LWOLoader = LWOLoader;} )();
 |