polynomialBestFitClass.php 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. <?php
  2. require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
  3. require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/JAMA/Matrix.php';
  4. /**
  5. * PHPExcel_Polynomial_Best_Fit
  6. *
  7. * Copyright (c) 2006 - 2015 PHPExcel
  8. *
  9. * This library is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * This library is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with this library; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. *
  23. * @category PHPExcel
  24. * @package PHPExcel_Shared_Trend
  25. * @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
  26. * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
  27. * @version ##VERSION##, ##DATE##
  28. */
  29. class PHPExcel_Polynomial_Best_Fit extends PHPExcel_Best_Fit
  30. {
  31. /**
  32. * Algorithm type to use for best-fit
  33. * (Name of this trend class)
  34. *
  35. * @var string
  36. **/
  37. protected $bestFitType = 'polynomial';
  38. /**
  39. * Polynomial order
  40. *
  41. * @protected
  42. * @var int
  43. **/
  44. protected $order = 0;
  45. /**
  46. * Return the order of this polynomial
  47. *
  48. * @return int
  49. **/
  50. public function getOrder()
  51. {
  52. return $this->order;
  53. }
  54. /**
  55. * Return the Y-Value for a specified value of X
  56. *
  57. * @param float $xValue X-Value
  58. * @return float Y-Value
  59. **/
  60. public function getValueOfYForX($xValue)
  61. {
  62. $retVal = $this->getIntersect();
  63. $slope = $this->getSlope();
  64. foreach ($slope as $key => $value) {
  65. if ($value != 0.0) {
  66. $retVal += $value * pow($xValue, $key + 1);
  67. }
  68. }
  69. return $retVal;
  70. }
  71. /**
  72. * Return the X-Value for a specified value of Y
  73. *
  74. * @param float $yValue Y-Value
  75. * @return float X-Value
  76. **/
  77. public function getValueOfXForY($yValue)
  78. {
  79. return ($yValue - $this->getIntersect()) / $this->getSlope();
  80. }
  81. /**
  82. * Return the Equation of the best-fit line
  83. *
  84. * @param int $dp Number of places of decimal precision to display
  85. * @return string
  86. **/
  87. public function getEquation($dp = 0)
  88. {
  89. $slope = $this->getSlope($dp);
  90. $intersect = $this->getIntersect($dp);
  91. $equation = 'Y = ' . $intersect;
  92. foreach ($slope as $key => $value) {
  93. if ($value != 0.0) {
  94. $equation .= ' + ' . $value . ' * X';
  95. if ($key > 0) {
  96. $equation .= '^' . ($key + 1);
  97. }
  98. }
  99. }
  100. return $equation;
  101. }
  102. /**
  103. * Return the Slope of the line
  104. *
  105. * @param int $dp Number of places of decimal precision to display
  106. * @return string
  107. **/
  108. public function getSlope($dp = 0)
  109. {
  110. if ($dp != 0) {
  111. $coefficients = array();
  112. foreach ($this->_slope as $coefficient) {
  113. $coefficients[] = round($coefficient, $dp);
  114. }
  115. return $coefficients;
  116. }
  117. return $this->_slope;
  118. }
  119. public function getCoefficients($dp = 0)
  120. {
  121. return array_merge(array($this->getIntersect($dp)), $this->getSlope($dp));
  122. }
  123. /**
  124. * Execute the regression and calculate the goodness of fit for a set of X and Y data values
  125. *
  126. * @param int $order Order of Polynomial for this regression
  127. * @param float[] $yValues The set of Y-values for this regression
  128. * @param float[] $xValues The set of X-values for this regression
  129. * @param boolean $const
  130. */
  131. private function polynomialRegression($order, $yValues, $xValues, $const)
  132. {
  133. // calculate sums
  134. $x_sum = array_sum($xValues);
  135. $y_sum = array_sum($yValues);
  136. $xx_sum = $xy_sum = 0;
  137. for ($i = 0; $i < $this->valueCount; ++$i) {
  138. $xy_sum += $xValues[$i] * $yValues[$i];
  139. $xx_sum += $xValues[$i] * $xValues[$i];
  140. $yy_sum += $yValues[$i] * $yValues[$i];
  141. }
  142. /*
  143. * This routine uses logic from the PHP port of polyfit version 0.1
  144. * written by Michael Bommarito and Paul Meagher
  145. *
  146. * The function fits a polynomial function of order $order through
  147. * a series of x-y data points using least squares.
  148. *
  149. */
  150. for ($i = 0; $i < $this->valueCount; ++$i) {
  151. for ($j = 0; $j <= $order; ++$j) {
  152. $A[$i][$j] = pow($xValues[$i], $j);
  153. }
  154. }
  155. for ($i=0; $i < $this->valueCount; ++$i) {
  156. $B[$i] = array($yValues[$i]);
  157. }
  158. $matrixA = new Matrix($A);
  159. $matrixB = new Matrix($B);
  160. $C = $matrixA->solve($matrixB);
  161. $coefficients = array();
  162. for ($i = 0; $i < $C->m; ++$i) {
  163. $r = $C->get($i, 0);
  164. if (abs($r) <= pow(10, -9)) {
  165. $r = 0;
  166. }
  167. $coefficients[] = $r;
  168. }
  169. $this->intersect = array_shift($coefficients);
  170. $this->_slope = $coefficients;
  171. $this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum);
  172. foreach ($this->xValues as $xKey => $xValue) {
  173. $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
  174. }
  175. }
  176. /**
  177. * Define the regression and calculate the goodness of fit for a set of X and Y data values
  178. *
  179. * @param int $order Order of Polynomial for this regression
  180. * @param float[] $yValues The set of Y-values for this regression
  181. * @param float[] $xValues The set of X-values for this regression
  182. * @param boolean $const
  183. */
  184. public function __construct($order, $yValues, $xValues = array(), $const = true)
  185. {
  186. if (parent::__construct($yValues, $xValues) !== false) {
  187. if ($order < $this->valueCount) {
  188. $this->bestFitType .= '_'.$order;
  189. $this->order = $order;
  190. $this->polynomialRegression($order, $yValues, $xValues, $const);
  191. if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
  192. $this->_error = true;
  193. }
  194. } else {
  195. $this->_error = true;
  196. }
  197. }
  198. }
  199. }