import {
	Camera,
	ClampToEdgeWrapping,
	DataTexture,
	FloatType,
	Mesh,
	NearestFilter,
	PlaneGeometry,
	RGBAFormat,
	Scene,
	ShaderMaterial,
	WebGLRenderTarget
} from '../../../build/three.module.js';

/**
 * GPUComputationRenderer, based on SimulationRenderer by zz85
 *
 * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
 * for each compute element (texel)
 *
 * Each variable has a fragment shader that defines the computation made to obtain the variable in question.
 * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
 * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
 *
 * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
 * as inputs to render the textures of the next frame.
 *
 * The render targets of the variables can be used as input textures for your visualization shaders.
 *
 * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
 * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
 *
 * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
 * #DEFINE resolution vec2( 1024.0, 1024.0 )
 *
 * -------------
 *
 * Basic use:
 *
 * // Initialization...
 *
 * // Create computation renderer
 * const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
 *
 * // Create initial state float textures
 * const pos0 = gpuCompute.createTexture();
 * const vel0 = gpuCompute.createTexture();
 * // and fill in here the texture data...
 *
 * // Add texture variables
 * const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
 * const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
 *
 * // Add variable dependencies
 * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
 * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
 *
 * // Add custom uniforms
 * velVar.material.uniforms.time = { value: 0.0 };
 *
 * // Check for completeness
 * const error = gpuCompute.init();
 * if ( error !== null ) {
 *		console.error( error );
  * }
 *
 *
 * // In each frame...
 *
 * // Compute!
 * gpuCompute.compute();
 *
 * // Update texture uniforms in your visualization materials with the gpu renderer output
 * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
 *
 * // Do your rendering
 * renderer.render( myScene, myCamera );
 *
 * -------------
 *
 * Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)
 * Note that the shaders can have multiple input textures.
 *
 * const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
 * const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
 *
 * const inputTexture = gpuCompute.createTexture();
 *
 * // Fill in here inputTexture...
 *
 * myFilter1.uniforms.theTexture.value = inputTexture;
 *
 * const myRenderTarget = gpuCompute.createRenderTarget();
 * myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
 *
 * const outputRenderTarget = gpuCompute.createRenderTarget();
 *
 * // Now use the output texture where you want:
 * myMaterial.uniforms.map.value = outputRenderTarget.texture;
 *
 * // And compute each frame, before rendering to screen:
 * gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
 * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
 *
 *
 *
 * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
 * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
 * @param {WebGLRenderer} renderer The renderer
  */

class GPUComputationRenderer {

	constructor( sizeX, sizeY, renderer ) {

		this.variables = [];

		this.currentTextureIndex = 0;

		let dataType = FloatType;

		const scene = new Scene();

		const camera = new Camera();
		camera.position.z = 1;

		const passThruUniforms = {
			passThruTexture: { value: null }
		};

		const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );

		const mesh = new Mesh( new PlaneGeometry( 2, 2 ), passThruShader );
		scene.add( mesh );


		this.setDataType = function ( type ) {

			dataType = type;
			return this;

		};

		this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {

			const material = this.createShaderMaterial( computeFragmentShader );

			const variable = {
				name: variableName,
				initialValueTexture: initialValueTexture,
				material: material,
				dependencies: null,
				renderTargets: [],
				wrapS: null,
				wrapT: null,
				minFilter: NearestFilter,
				magFilter: NearestFilter
			};

			this.variables.push( variable );

			return variable;

		};

		this.setVariableDependencies = function ( variable, dependencies ) {

			variable.dependencies = dependencies;

		};

		this.init = function () {

			if ( renderer.capabilities.isWebGL2 === false && renderer.extensions.has( 'OES_texture_float' ) === false ) {

				return 'No OES_texture_float support for float textures.';

			}

			if ( renderer.capabilities.maxVertexTextures === 0 ) {

				return 'No support for vertex shader textures.';

			}

			for ( let i = 0; i < this.variables.length; i ++ ) {

				const variable = this.variables[ i ];

				// Creates rendertargets and initialize them with input texture
				variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
				variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
				this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
				this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );

				// Adds dependencies uniforms to the ShaderMaterial
				const material = variable.material;
				const uniforms = material.uniforms;

				if ( variable.dependencies !== null ) {

					for ( let d = 0; d < variable.dependencies.length; d ++ ) {

						const depVar = variable.dependencies[ d ];

						if ( depVar.name !== variable.name ) {

							// Checks if variable exists
							let found = false;

							for ( let j = 0; j < this.variables.length; j ++ ) {

								if ( depVar.name === this.variables[ j ].name ) {

									found = true;
									break;

								}

							}

							if ( ! found ) {

								return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;

							}

						}

						uniforms[ depVar.name ] = { value: null };

						material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;

					}

				}

			}

			this.currentTextureIndex = 0;

			return null;

		};

		this.compute = function () {

			const currentTextureIndex = this.currentTextureIndex;
			const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;

			for ( let i = 0, il = this.variables.length; i < il; i ++ ) {

				const variable = this.variables[ i ];

				// Sets texture dependencies uniforms
				if ( variable.dependencies !== null ) {

					const uniforms = variable.material.uniforms;

					for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {

						const depVar = variable.dependencies[ d ];

						uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;

					}

				}

				// Performs the computation for this variable
				this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );

			}

			this.currentTextureIndex = nextTextureIndex;

		};

		this.getCurrentRenderTarget = function ( variable ) {

			return variable.renderTargets[ this.currentTextureIndex ];

		};

		this.getAlternateRenderTarget = function ( variable ) {

			return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];

		};

		function addResolutionDefine( materialShader ) {

			materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';

		}

		this.addResolutionDefine = addResolutionDefine;


		// The following functions can be used to compute things manually

		function createShaderMaterial( computeFragmentShader, uniforms ) {

			uniforms = uniforms || {};

			const material = new ShaderMaterial( {
				uniforms: uniforms,
				vertexShader: getPassThroughVertexShader(),
				fragmentShader: computeFragmentShader
			} );

			addResolutionDefine( material );

			return material;

		}

		this.createShaderMaterial = createShaderMaterial;

		this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {

			sizeXTexture = sizeXTexture || sizeX;
			sizeYTexture = sizeYTexture || sizeY;

			wrapS = wrapS || ClampToEdgeWrapping;
			wrapT = wrapT || ClampToEdgeWrapping;

			minFilter = minFilter || NearestFilter;
			magFilter = magFilter || NearestFilter;

			const renderTarget = new WebGLRenderTarget( sizeXTexture, sizeYTexture, {
				wrapS: wrapS,
				wrapT: wrapT,
				minFilter: minFilter,
				magFilter: magFilter,
				format: RGBAFormat,
				type: dataType,
				depthBuffer: false
			} );

			return renderTarget;

		};

		this.createTexture = function () {

			const data = new Float32Array( sizeX * sizeY * 4 );
			return new DataTexture( data, sizeX, sizeY, RGBAFormat, FloatType );

		};

		this.renderTexture = function ( input, output ) {

			// Takes a texture, and render out in rendertarget
			// input = Texture
			// output = RenderTarget

			passThruUniforms.passThruTexture.value = input;

			this.doRenderTarget( passThruShader, output );

			passThruUniforms.passThruTexture.value = null;

		};

		this.doRenderTarget = function ( material, output ) {

			const currentRenderTarget = renderer.getRenderTarget();

			mesh.material = material;
			renderer.setRenderTarget( output );
			renderer.render( scene, camera );
			mesh.material = passThruShader;

			renderer.setRenderTarget( currentRenderTarget );

		};

		// Shaders

		function getPassThroughVertexShader() {

			return	'void main()	{\n' +
					'\n' +
					'	gl_Position = vec4( position, 1.0 );\n' +
					'\n' +
					'}\n';

		}

		function getPassThroughFragmentShader() {

			return	'uniform sampler2D passThruTexture;\n' +
					'\n' +
					'void main() {\n' +
					'\n' +
					'	vec2 uv = gl_FragCoord.xy / resolution.xy;\n' +
					'\n' +
					'	gl_FragColor = texture2D( passThruTexture, uv );\n' +
					'\n' +
					'}\n';

		}

	}

}

export { GPUComputationRenderer };