( function () { const SSRrShader = { defines: { MAX_STEP: 0, PERSPECTIVE_CAMERA: true, SPECULAR: true, FILL_HOLE: true, INFINITE_THICK: false }, uniforms: { 'tDiffuse': { value: null }, 'tSpecular': { value: null }, 'tNormalSelects': { value: null }, 'tRefractive': { value: null }, 'tDepth': { value: null }, 'tDepthSelects': { value: null }, 'cameraNear': { value: null }, 'cameraFar': { value: null }, 'resolution': { value: new THREE.Vector2() }, 'cameraProjectionMatrix': { value: new THREE.Matrix4() }, 'cameraInverseProjectionMatrix': { value: new THREE.Matrix4() }, 'ior': { value: 1.03 }, 'cameraRange': { value: 0 }, 'maxDistance': { value: 180 }, 'surfDist': { value: .007 } }, vertexShader: /* glsl */ ` varying vec2 vUv; void main() { vUv = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); } `, fragmentShader: /* glsl */ ` // precision highp float; precision highp sampler2D; varying vec2 vUv; uniform sampler2D tDepth; uniform sampler2D tDepthSelects; uniform sampler2D tNormalSelects; uniform sampler2D tRefractive; uniform sampler2D tDiffuse; uniform sampler2D tSpecular; uniform float cameraRange; uniform vec2 resolution; uniform float cameraNear; uniform float cameraFar; uniform float ior; uniform mat4 cameraProjectionMatrix; uniform mat4 cameraInverseProjectionMatrix; uniform float maxDistance; uniform float surfDist; #include float pointToLineDistance(vec3 x0, vec3 x1, vec3 x2) { //x0: point, x1: linePointA, x2: linePointB //https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html return length(cross(x0-x1,x0-x2))/length(x2-x1); } float pointPlaneDistance(vec3 point,vec3 planePoint,vec3 planeNormal){ // https://mathworld.wolfram.com/Point-PlaneDistance.html //// https://en.wikipedia.org/wiki/Plane_(geometry) //// http://paulbourke.net/geometry/pointlineplane/ float a=planeNormal.x,b=planeNormal.y,c=planeNormal.z; float x0=point.x,y0=point.y,z0=point.z; float x=planePoint.x,y=planePoint.y,z=planePoint.z; float d=-(a*x+b*y+c*z); float distance=(a*x0+b*y0+c*z0+d)/sqrt(a*a+b*b+c*c); return distance; } float getDepth( const in vec2 uv ) { return texture2D( tDepth, uv ).x; } float getDepthSelects( const in vec2 uv ) { return texture2D( tDepthSelects, uv ).x; } float getViewZ( const in float depth ) { #ifdef PERSPECTIVE_CAMERA return perspectiveDepthToViewZ( depth, cameraNear, cameraFar ); #else return orthographicDepthToViewZ( depth, cameraNear, cameraFar ); #endif } vec3 getViewPosition( const in vec2 uv, const in float depth/*clip space*/, const in float clipW ) { vec4 clipPosition = vec4( ( vec3( uv, depth ) - 0.5 ) * 2.0, 1.0 );//ndc clipPosition *= clipW; //clip return ( cameraInverseProjectionMatrix * clipPosition ).xyz;//view } vec3 getViewNormalSelects( const in vec2 uv ) { return unpackRGBToNormal( texture2D( tNormalSelects, uv ).xyz ); } vec2 viewPositionToXY(vec3 viewPosition){ vec2 xy; vec4 clip=cameraProjectionMatrix*vec4(viewPosition,1); xy=clip.xy;//clip float clipW=clip.w; xy/=clipW;//NDC xy=(xy+1.)/2.;//uv xy*=resolution;//screen return xy; } void setResultColor(vec2 uv){ vec4 refractColor=texture2D(tDiffuse,uv); #ifdef SPECULAR vec4 specularColor=texture2D(tSpecular,vUv); gl_FragColor.xyz=mix(refractColor.xyz,vec3(1),specularColor.r); // gl_FragColor.xyz=refractColor.xyz*(1.+specularColor.r*3.); #else gl_FragColor.xyz=refractColor.xyz; #endif gl_FragColor.a=1.; } void main(){ if(ior==1.) return; // Adding this line may have better performance, but more importantly, it can avoid display errors at the very edges of the model when IOR is equal to 1. float refractive=texture2D(tRefractive,vUv).r; if(refractive<=0.) return; // gl_FragColor=vec4(0,0,.5,1);return; vec3 viewNormalSelects=getViewNormalSelects( vUv ); // gl_FragColor=vec4(viewNormalSelects,1);return; // if(viewNormalSelects.x<=0.&&viewNormalSelects.y<=0.&&viewNormalSelects.z<=0.) return; float depth = getDepthSelects( vUv ); float viewZ = getViewZ( depth ); // if(-viewZ>=cameraFar) return; float clipW = cameraProjectionMatrix[2][3] * viewZ+cameraProjectionMatrix[3][3]; vec3 viewPosition=getViewPosition( vUv, depth, clipW ); vec2 d0=gl_FragCoord.xy; vec2 d1; #ifdef PERSPECTIVE_CAMERA vec3 viewIncidentDir=normalize(viewPosition); #else vec3 viewIncidentDir=vec3(0,0,-1); #endif vec3 viewRefractDir=refract(viewIncidentDir,viewNormalSelects,1./ior); // https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/refract.xhtml vec3 d1viewPosition=viewPosition+viewRefractDir*maxDistance; #ifdef PERSPECTIVE_CAMERA if(d1viewPosition.z>-cameraNear){ //https://tutorial.math.lamar.edu/Classes/CalcIII/EqnsOfLines.aspx float t=(-cameraNear-viewPosition.z)/viewRefractDir.z; d1viewPosition=viewPosition+viewRefractDir*t; } #endif d1=viewPositionToXY(d1viewPosition); float totalLen=length(d1-d0); float xLen=d1.x-d0.x; float yLen=d1.y-d0.y; float totalStep=max(abs(xLen),abs(yLen)); float xSpan=xLen/totalStep; float ySpan=yLen/totalStep; #ifdef FILL_HOLE bool isRough=false; vec2 uvRough; #endif for(float i=0.;i=totalStep) break; vec2 xy=vec2(d0.x+i*xSpan,d0.y+i*ySpan); if(xy.x<0.||xy.x>resolution.x||xy.y<0.||xy.y>resolution.y) break; float s=length(xy-d0)/totalLen; vec2 uv=xy/resolution; float d = getDepth(uv); float vZ = getViewZ( d ); float cW = cameraProjectionMatrix[2][3] * vZ+cameraProjectionMatrix[3][3]; vec3 vP=getViewPosition( uv, d, cW ); #ifdef PERSPECTIVE_CAMERA // https://www.comp.nus.edu.sg/~lowkl/publications/lowk_persp_interp_techrep.pdf float recipVPZ=1./viewPosition.z; float viewRefractRayZ=1./(recipVPZ+s*(1./d1viewPosition.z-recipVPZ)); float sD=surfDist*cW; #else float viewRefractRayZ=viewPosition.z+s*(d1viewPosition.z-viewPosition.z); float sD=surfDist; #endif #ifdef FILL_HOLE // TODO: May can improve performance by check if INFINITE_THICK too. if(viewRefractRayZ<=vZ){ if(!isRough){ uvRough=uv; isRough=true; } } #endif bool hit; #ifdef INFINITE_THICK hit=viewRefractRayZ<=vZ; #else if(viewRefractRayZ-sD>vZ) continue; float away=pointToLineDistance(vP,viewPosition,d1viewPosition); hit=away<=sD; #endif if(hit){ setResultColor(uv); return; } } #ifdef FILL_HOLE if(isRough){ setResultColor(uvRough); } // else{ // gl_FragColor=texture2D(tDiffuse,vUv);//For afterward add color mix feature. // } #else // gl_FragColor=texture2D(tDiffuse,vUv);//For afterward add color mix feature. #endif } ` }; var SSRrDepthShader = { defines: { 'PERSPECTIVE_CAMERA': 1 }, uniforms: { 'tDepth': { value: null }, 'cameraNear': { value: null }, 'cameraFar': { value: null } }, vertexShader: /* glsl */ ` varying vec2 vUv; void main() { vUv = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); } `, fragmentShader: /* glsl */ ` uniform sampler2D tDepth; uniform float cameraNear; uniform float cameraFar; varying vec2 vUv; #include float getLinearDepth( const in vec2 uv ) { #if PERSPECTIVE_CAMERA == 1 float fragCoordZ = texture2D( tDepth, uv ).x; float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar ); return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar ); #else return texture2D( tDepth, uv ).x; #endif } void main() { float depth = getLinearDepth( vUv ); float d = 1.0 - depth; // d=(d-.999)*1000.; gl_FragColor = vec4( vec3( d ), 1.0 ); } ` }; THREE.SSRrDepthShader = SSRrDepthShader; THREE.SSRrShader = SSRrShader; } )();