( function () {

	const _start = new THREE.Vector3();

	const _end = new THREE.Vector3();

	const _start4 = new THREE.Vector4();

	const _end4 = new THREE.Vector4();

	const _ssOrigin = new THREE.Vector4();

	const _ssOrigin3 = new THREE.Vector3();

	const _mvMatrix = new THREE.Matrix4();

	const _line = new THREE.Line3();

	const _closestPoint = new THREE.Vector3();

	const _box = new THREE.Box3();

	const _sphere = new THREE.Sphere();

	const _clipToWorldVector = new THREE.Vector4(); // Returns the margin required to expand by in world space given the distance from the camera,
	// line width, resolution, and camera projection


	function getWorldSpaceHalfWidth( camera, distance, lineWidth, resolution ) {

		// transform into clip space, adjust the x and y values by the pixel width offset, then
		// transform back into world space to get world offset. Note clip space is [-1, 1] so full
		// width does not need to be halved.
		_clipToWorldVector.set( 0, 0, - distance, 1.0 ).applyMatrix4( camera.projectionMatrix );

		_clipToWorldVector.multiplyScalar( 1.0 / _clipToWorldVector.w );

		_clipToWorldVector.x = lineWidth / resolution.width;
		_clipToWorldVector.y = lineWidth / resolution.height;

		_clipToWorldVector.applyMatrix4( camera.projectionMatrixInverse );

		_clipToWorldVector.multiplyScalar( 1.0 / _clipToWorldVector.w );

		return Math.abs( Math.max( _clipToWorldVector.x, _clipToWorldVector.y ) );

	}

	class LineSegments2 extends THREE.Mesh {

		constructor( geometry = new THREE.LineSegmentsGeometry(), material = new THREE.LineMaterial( {
			color: Math.random() * 0xffffff
		} ) ) {

			super( geometry, material );
			this.type = 'LineSegments2';

		} // for backwards-compatability, but could be a method of THREE.LineSegmentsGeometry...


		computeLineDistances() {

			const geometry = this.geometry;
			const instanceStart = geometry.attributes.instanceStart;
			const instanceEnd = geometry.attributes.instanceEnd;
			const lineDistances = new Float32Array( 2 * instanceStart.count );

			for ( let i = 0, j = 0, l = instanceStart.count; i < l; i ++, j += 2 ) {

				_start.fromBufferAttribute( instanceStart, i );

				_end.fromBufferAttribute( instanceEnd, i );

				lineDistances[ j ] = j === 0 ? 0 : lineDistances[ j - 1 ];
				lineDistances[ j + 1 ] = lineDistances[ j ] + _start.distanceTo( _end );

			}

			const instanceDistanceBuffer = new THREE.InstancedInterleavedBuffer( lineDistances, 2, 1 ); // d0, d1

			geometry.setAttribute( 'instanceDistanceStart', new THREE.InterleavedBufferAttribute( instanceDistanceBuffer, 1, 0 ) ); // d0

			geometry.setAttribute( 'instanceDistanceEnd', new THREE.InterleavedBufferAttribute( instanceDistanceBuffer, 1, 1 ) ); // d1

			return this;

		}

		raycast( raycaster, intersects ) {

			if ( raycaster.camera === null ) {

				console.error( 'LineSegments2: "Raycaster.camera" needs to be set in order to raycast against LineSegments2.' );

			}

			const threshold = raycaster.params.Line2 !== undefined ? raycaster.params.Line2.threshold || 0 : 0;
			const ray = raycaster.ray;
			const camera = raycaster.camera;
			const projectionMatrix = camera.projectionMatrix;
			const matrixWorld = this.matrixWorld;
			const geometry = this.geometry;
			const material = this.material;
			const resolution = material.resolution;
			const lineWidth = material.linewidth + threshold;
			const instanceStart = geometry.attributes.instanceStart;
			const instanceEnd = geometry.attributes.instanceEnd; // camera forward is negative

			const near = - camera.near; //
			// check if we intersect the sphere bounds

			if ( geometry.boundingSphere === null ) {

				geometry.computeBoundingSphere();

			}

			_sphere.copy( geometry.boundingSphere ).applyMatrix4( matrixWorld );

			const distanceToSphere = Math.max( camera.near, _sphere.distanceToPoint( ray.origin ) ); // increase the sphere bounds by the worst case line screen space width

			const sphereMargin = getWorldSpaceHalfWidth( camera, distanceToSphere, lineWidth, resolution );
			_sphere.radius += sphereMargin;

			if ( raycaster.ray.intersectsSphere( _sphere ) === false ) {

				return;

			} //
			// check if we intersect the box bounds


			if ( geometry.boundingBox === null ) {

				geometry.computeBoundingBox();

			}

			_box.copy( geometry.boundingBox ).applyMatrix4( matrixWorld );

			const distanceToBox = Math.max( camera.near, _box.distanceToPoint( ray.origin ) ); // increase the box bounds by the worst case line screen space width

			const boxMargin = getWorldSpaceHalfWidth( camera, distanceToBox, lineWidth, resolution );
			_box.max.x += boxMargin;
			_box.max.y += boxMargin;
			_box.max.z += boxMargin;
			_box.min.x -= boxMargin;
			_box.min.y -= boxMargin;
			_box.min.z -= boxMargin;

			if ( raycaster.ray.intersectsBox( _box ) === false ) {

				return;

			} //
			// pick a point 1 unit out along the ray to avoid the ray origin
			// sitting at the camera origin which will cause "w" to be 0 when
			// applying the projection matrix.


			ray.at( 1, _ssOrigin ); // ndc space [ - 1.0, 1.0 ]

			_ssOrigin.w = 1;

			_ssOrigin.applyMatrix4( camera.matrixWorldInverse );

			_ssOrigin.applyMatrix4( projectionMatrix );

			_ssOrigin.multiplyScalar( 1 / _ssOrigin.w ); // screen space


			_ssOrigin.x *= resolution.x / 2;
			_ssOrigin.y *= resolution.y / 2;
			_ssOrigin.z = 0;

			_ssOrigin3.copy( _ssOrigin );

			_mvMatrix.multiplyMatrices( camera.matrixWorldInverse, matrixWorld );

			for ( let i = 0, l = instanceStart.count; i < l; i ++ ) {

				_start4.fromBufferAttribute( instanceStart, i );

				_end4.fromBufferAttribute( instanceEnd, i );

				_start4.w = 1;
				_end4.w = 1; // camera space

				_start4.applyMatrix4( _mvMatrix );

				_end4.applyMatrix4( _mvMatrix ); // skip the segment if it's entirely behind the camera


				var isBehindCameraNear = _start4.z > near && _end4.z > near;

				if ( isBehindCameraNear ) {

					continue;

				} // trim the segment if it extends behind camera near


				if ( _start4.z > near ) {

					const deltaDist = _start4.z - _end4.z;
					const t = ( _start4.z - near ) / deltaDist;

					_start4.lerp( _end4, t );

				} else if ( _end4.z > near ) {

					const deltaDist = _end4.z - _start4.z;
					const t = ( _end4.z - near ) / deltaDist;

					_end4.lerp( _start4, t );

				} // clip space


				_start4.applyMatrix4( projectionMatrix );

				_end4.applyMatrix4( projectionMatrix ); // ndc space [ - 1.0, 1.0 ]


				_start4.multiplyScalar( 1 / _start4.w );

				_end4.multiplyScalar( 1 / _end4.w ); // screen space


				_start4.x *= resolution.x / 2;
				_start4.y *= resolution.y / 2;
				_end4.x *= resolution.x / 2;
				_end4.y *= resolution.y / 2; // create 2d segment

				_line.start.copy( _start4 );

				_line.start.z = 0;

				_line.end.copy( _end4 );

				_line.end.z = 0; // get closest point on ray to segment

				const param = _line.closestPointToPointParameter( _ssOrigin3, true );

				_line.at( param, _closestPoint ); // check if the intersection point is within clip space


				const zPos = THREE.MathUtils.lerp( _start4.z, _end4.z, param );
				const isInClipSpace = zPos >= - 1 && zPos <= 1;
				const isInside = _ssOrigin3.distanceTo( _closestPoint ) < lineWidth * 0.5;

				if ( isInClipSpace && isInside ) {

					_line.start.fromBufferAttribute( instanceStart, i );

					_line.end.fromBufferAttribute( instanceEnd, i );

					_line.start.applyMatrix4( matrixWorld );

					_line.end.applyMatrix4( matrixWorld );

					const pointOnLine = new THREE.Vector3();
					const point = new THREE.Vector3();
					ray.distanceSqToSegment( _line.start, _line.end, point, pointOnLine );
					intersects.push( {
						point: point,
						pointOnLine: pointOnLine,
						distance: ray.origin.distanceTo( point ),
						object: this,
						face: null,
						faceIndex: i,
						uv: null,
						uv2: null
					} );

				}

			}

		}

	}

	LineSegments2.prototype.isLineSegments2 = true;

	THREE.LineSegments2 = LineSegments2;

} )();