Statistical.php 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745
  1. <?php
  2. /** PHPExcel root directory */
  3. if (!defined('PHPEXCEL_ROOT')) {
  4. /**
  5. * @ignore
  6. */
  7. define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../');
  8. require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php');
  9. }
  10. require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php';
  11. /** LOG_GAMMA_X_MAX_VALUE */
  12. define('LOG_GAMMA_X_MAX_VALUE', 2.55e305);
  13. /** XMININ */
  14. define('XMININ', 2.23e-308);
  15. /** EPS */
  16. define('EPS', 2.22e-16);
  17. /** SQRT2PI */
  18. define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099);
  19. /**
  20. * PHPExcel_Calculation_Statistical
  21. *
  22. * Copyright (c) 2006 - 2015 PHPExcel
  23. *
  24. * This library is free software; you can redistribute it and/or
  25. * modify it under the terms of the GNU Lesser General Public
  26. * License as published by the Free Software Foundation; either
  27. * version 2.1 of the License, or (at your option) any later version.
  28. *
  29. * This library is distributed in the hope that it will be useful,
  30. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  31. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  32. * Lesser General Public License for more details.
  33. *
  34. * You should have received a copy of the GNU Lesser General Public
  35. * License along with this library; if not, write to the Free Software
  36. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  37. *
  38. * @category PHPExcel
  39. * @package PHPExcel_Calculation
  40. * @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
  41. * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
  42. * @version ##VERSION##, ##DATE##
  43. */
  44. class PHPExcel_Calculation_Statistical
  45. {
  46. private static function checkTrendArrays(&$array1, &$array2)
  47. {
  48. if (!is_array($array1)) {
  49. $array1 = array($array1);
  50. }
  51. if (!is_array($array2)) {
  52. $array2 = array($array2);
  53. }
  54. $array1 = PHPExcel_Calculation_Functions::flattenArray($array1);
  55. $array2 = PHPExcel_Calculation_Functions::flattenArray($array2);
  56. foreach ($array1 as $key => $value) {
  57. if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
  58. unset($array1[$key]);
  59. unset($array2[$key]);
  60. }
  61. }
  62. foreach ($array2 as $key => $value) {
  63. if ((is_bool($value)) || (is_string($value)) || (is_null($value))) {
  64. unset($array1[$key]);
  65. unset($array2[$key]);
  66. }
  67. }
  68. $array1 = array_merge($array1);
  69. $array2 = array_merge($array2);
  70. return true;
  71. }
  72. /**
  73. * Beta function.
  74. *
  75. * @author Jaco van Kooten
  76. *
  77. * @param p require p>0
  78. * @param q require q>0
  79. * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
  80. */
  81. private static function beta($p, $q)
  82. {
  83. if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) {
  84. return 0.0;
  85. } else {
  86. return exp(self::logBeta($p, $q));
  87. }
  88. }
  89. /**
  90. * Incomplete beta function
  91. *
  92. * @author Jaco van Kooten
  93. * @author Paul Meagher
  94. *
  95. * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992).
  96. * @param x require 0<=x<=1
  97. * @param p require p>0
  98. * @param q require q>0
  99. * @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow
  100. */
  101. private static function incompleteBeta($x, $p, $q)
  102. {
  103. if ($x <= 0.0) {
  104. return 0.0;
  105. } elseif ($x >= 1.0) {
  106. return 1.0;
  107. } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
  108. return 0.0;
  109. }
  110. $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x));
  111. if ($x < ($p + 1.0) / ($p + $q + 2.0)) {
  112. return $beta_gam * self::betaFraction($x, $p, $q) / $p;
  113. } else {
  114. return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q);
  115. }
  116. }
  117. // Function cache for logBeta function
  118. private static $logBetaCacheP = 0.0;
  119. private static $logBetaCacheQ = 0.0;
  120. private static $logBetaCacheResult = 0.0;
  121. /**
  122. * The natural logarithm of the beta function.
  123. *
  124. * @param p require p>0
  125. * @param q require q>0
  126. * @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow
  127. * @author Jaco van Kooten
  128. */
  129. private static function logBeta($p, $q)
  130. {
  131. if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) {
  132. self::$logBetaCacheP = $p;
  133. self::$logBetaCacheQ = $q;
  134. if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) {
  135. self::$logBetaCacheResult = 0.0;
  136. } else {
  137. self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q);
  138. }
  139. }
  140. return self::$logBetaCacheResult;
  141. }
  142. /**
  143. * Evaluates of continued fraction part of incomplete beta function.
  144. * Based on an idea from Numerical Recipes (W.H. Press et al, 1992).
  145. * @author Jaco van Kooten
  146. */
  147. private static function betaFraction($x, $p, $q)
  148. {
  149. $c = 1.0;
  150. $sum_pq = $p + $q;
  151. $p_plus = $p + 1.0;
  152. $p_minus = $p - 1.0;
  153. $h = 1.0 - $sum_pq * $x / $p_plus;
  154. if (abs($h) < XMININ) {
  155. $h = XMININ;
  156. }
  157. $h = 1.0 / $h;
  158. $frac = $h;
  159. $m = 1;
  160. $delta = 0.0;
  161. while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION) {
  162. $m2 = 2 * $m;
  163. // even index for d
  164. $d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2));
  165. $h = 1.0 + $d * $h;
  166. if (abs($h) < XMININ) {
  167. $h = XMININ;
  168. }
  169. $h = 1.0 / $h;
  170. $c = 1.0 + $d / $c;
  171. if (abs($c) < XMININ) {
  172. $c = XMININ;
  173. }
  174. $frac *= $h * $c;
  175. // odd index for d
  176. $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2));
  177. $h = 1.0 + $d * $h;
  178. if (abs($h) < XMININ) {
  179. $h = XMININ;
  180. }
  181. $h = 1.0 / $h;
  182. $c = 1.0 + $d / $c;
  183. if (abs($c) < XMININ) {
  184. $c = XMININ;
  185. }
  186. $delta = $h * $c;
  187. $frac *= $delta;
  188. ++$m;
  189. }
  190. return $frac;
  191. }
  192. /**
  193. * logGamma function
  194. *
  195. * @version 1.1
  196. * @author Jaco van Kooten
  197. *
  198. * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.
  199. *
  200. * The natural logarithm of the gamma function. <br />
  201. * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br />
  202. * Applied Mathematics Division <br />
  203. * Argonne National Laboratory <br />
  204. * Argonne, IL 60439 <br />
  205. * <p>
  206. * References:
  207. * <ol>
  208. * <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural
  209. * Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li>
  210. * <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li>
  211. * <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li>
  212. * </ol>
  213. * </p>
  214. * <p>
  215. * From the original documentation:
  216. * </p>
  217. * <p>
  218. * This routine calculates the LOG(GAMMA) function for a positive real argument X.
  219. * Computation is based on an algorithm outlined in references 1 and 2.
  220. * The program uses rational functions that theoretically approximate LOG(GAMMA)
  221. * to at least 18 significant decimal digits. The approximation for X > 12 is from
  222. * reference 3, while approximations for X < 12.0 are similar to those in reference
  223. * 1, but are unpublished. The accuracy achieved depends on the arithmetic system,
  224. * the compiler, the intrinsic functions, and proper selection of the
  225. * machine-dependent constants.
  226. * </p>
  227. * <p>
  228. * Error returns: <br />
  229. * The program returns the value XINF for X .LE. 0.0 or when overflow would occur.
  230. * The computation is believed to be free of underflow and overflow.
  231. * </p>
  232. * @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305
  233. */
  234. // Function cache for logGamma
  235. private static $logGammaCacheResult = 0.0;
  236. private static $logGammaCacheX = 0.0;
  237. private static function logGamma($x)
  238. {
  239. // Log Gamma related constants
  240. static $lg_d1 = -0.5772156649015328605195174;
  241. static $lg_d2 = 0.4227843350984671393993777;
  242. static $lg_d4 = 1.791759469228055000094023;
  243. static $lg_p1 = array(
  244. 4.945235359296727046734888,
  245. 201.8112620856775083915565,
  246. 2290.838373831346393026739,
  247. 11319.67205903380828685045,
  248. 28557.24635671635335736389,
  249. 38484.96228443793359990269,
  250. 26377.48787624195437963534,
  251. 7225.813979700288197698961
  252. );
  253. static $lg_p2 = array(
  254. 4.974607845568932035012064,
  255. 542.4138599891070494101986,
  256. 15506.93864978364947665077,
  257. 184793.2904445632425417223,
  258. 1088204.76946882876749847,
  259. 3338152.967987029735917223,
  260. 5106661.678927352456275255,
  261. 3074109.054850539556250927
  262. );
  263. static $lg_p4 = array(
  264. 14745.02166059939948905062,
  265. 2426813.369486704502836312,
  266. 121475557.4045093227939592,
  267. 2663432449.630976949898078,
  268. 29403789566.34553899906876,
  269. 170266573776.5398868392998,
  270. 492612579337.743088758812,
  271. 560625185622.3951465078242
  272. );
  273. static $lg_q1 = array(
  274. 67.48212550303777196073036,
  275. 1113.332393857199323513008,
  276. 7738.757056935398733233834,
  277. 27639.87074403340708898585,
  278. 54993.10206226157329794414,
  279. 61611.22180066002127833352,
  280. 36351.27591501940507276287,
  281. 8785.536302431013170870835
  282. );
  283. static $lg_q2 = array(
  284. 183.0328399370592604055942,
  285. 7765.049321445005871323047,
  286. 133190.3827966074194402448,
  287. 1136705.821321969608938755,
  288. 5267964.117437946917577538,
  289. 13467014.54311101692290052,
  290. 17827365.30353274213975932,
  291. 9533095.591844353613395747
  292. );
  293. static $lg_q4 = array(
  294. 2690.530175870899333379843,
  295. 639388.5654300092398984238,
  296. 41355999.30241388052042842,
  297. 1120872109.61614794137657,
  298. 14886137286.78813811542398,
  299. 101680358627.2438228077304,
  300. 341747634550.7377132798597,
  301. 446315818741.9713286462081
  302. );
  303. static $lg_c = array(
  304. -0.001910444077728,
  305. 8.4171387781295e-4,
  306. -5.952379913043012e-4,
  307. 7.93650793500350248e-4,
  308. -0.002777777777777681622553,
  309. 0.08333333333333333331554247,
  310. 0.0057083835261
  311. );
  312. // Rough estimate of the fourth root of logGamma_xBig
  313. static $lg_frtbig = 2.25e76;
  314. static $pnt68 = 0.6796875;
  315. if ($x == self::$logGammaCacheX) {
  316. return self::$logGammaCacheResult;
  317. }
  318. $y = $x;
  319. if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) {
  320. if ($y <= EPS) {
  321. $res = -log(y);
  322. } elseif ($y <= 1.5) {
  323. // ---------------------
  324. // EPS .LT. X .LE. 1.5
  325. // ---------------------
  326. if ($y < $pnt68) {
  327. $corr = -log($y);
  328. $xm1 = $y;
  329. } else {
  330. $corr = 0.0;
  331. $xm1 = $y - 1.0;
  332. }
  333. if ($y <= 0.5 || $y >= $pnt68) {
  334. $xden = 1.0;
  335. $xnum = 0.0;
  336. for ($i = 0; $i < 8; ++$i) {
  337. $xnum = $xnum * $xm1 + $lg_p1[$i];
  338. $xden = $xden * $xm1 + $lg_q1[$i];
  339. }
  340. $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden));
  341. } else {
  342. $xm2 = $y - 1.0;
  343. $xden = 1.0;
  344. $xnum = 0.0;
  345. for ($i = 0; $i < 8; ++$i) {
  346. $xnum = $xnum * $xm2 + $lg_p2[$i];
  347. $xden = $xden * $xm2 + $lg_q2[$i];
  348. }
  349. $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
  350. }
  351. } elseif ($y <= 4.0) {
  352. // ---------------------
  353. // 1.5 .LT. X .LE. 4.0
  354. // ---------------------
  355. $xm2 = $y - 2.0;
  356. $xden = 1.0;
  357. $xnum = 0.0;
  358. for ($i = 0; $i < 8; ++$i) {
  359. $xnum = $xnum * $xm2 + $lg_p2[$i];
  360. $xden = $xden * $xm2 + $lg_q2[$i];
  361. }
  362. $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden));
  363. } elseif ($y <= 12.0) {
  364. // ----------------------
  365. // 4.0 .LT. X .LE. 12.0
  366. // ----------------------
  367. $xm4 = $y - 4.0;
  368. $xden = -1.0;
  369. $xnum = 0.0;
  370. for ($i = 0; $i < 8; ++$i) {
  371. $xnum = $xnum * $xm4 + $lg_p4[$i];
  372. $xden = $xden * $xm4 + $lg_q4[$i];
  373. }
  374. $res = $lg_d4 + $xm4 * ($xnum / $xden);
  375. } else {
  376. // ---------------------------------
  377. // Evaluate for argument .GE. 12.0
  378. // ---------------------------------
  379. $res = 0.0;
  380. if ($y <= $lg_frtbig) {
  381. $res = $lg_c[6];
  382. $ysq = $y * $y;
  383. for ($i = 0; $i < 6; ++$i) {
  384. $res = $res / $ysq + $lg_c[$i];
  385. }
  386. $res /= $y;
  387. $corr = log($y);
  388. $res = $res + log(SQRT2PI) - 0.5 * $corr;
  389. $res += $y * ($corr - 1.0);
  390. }
  391. }
  392. } else {
  393. // --------------------------
  394. // Return for bad arguments
  395. // --------------------------
  396. $res = MAX_VALUE;
  397. }
  398. // ------------------------------
  399. // Final adjustments and return
  400. // ------------------------------
  401. self::$logGammaCacheX = $x;
  402. self::$logGammaCacheResult = $res;
  403. return $res;
  404. }
  405. //
  406. // Private implementation of the incomplete Gamma function
  407. //
  408. private static function incompleteGamma($a, $x)
  409. {
  410. static $max = 32;
  411. $summer = 0;
  412. for ($n=0; $n<=$max; ++$n) {
  413. $divisor = $a;
  414. for ($i=1; $i<=$n; ++$i) {
  415. $divisor *= ($a + $i);
  416. }
  417. $summer += (pow($x, $n) / $divisor);
  418. }
  419. return pow($x, $a) * exp(0-$x) * $summer;
  420. }
  421. //
  422. // Private implementation of the Gamma function
  423. //
  424. private static function gamma($data)
  425. {
  426. if ($data == 0.0) {
  427. return 0;
  428. }
  429. static $p0 = 1.000000000190015;
  430. static $p = array(
  431. 1 => 76.18009172947146,
  432. 2 => -86.50532032941677,
  433. 3 => 24.01409824083091,
  434. 4 => -1.231739572450155,
  435. 5 => 1.208650973866179e-3,
  436. 6 => -5.395239384953e-6
  437. );
  438. $y = $x = $data;
  439. $tmp = $x + 5.5;
  440. $tmp -= ($x + 0.5) * log($tmp);
  441. $summer = $p0;
  442. for ($j=1; $j<=6; ++$j) {
  443. $summer += ($p[$j] / ++$y);
  444. }
  445. return exp(0 - $tmp + log(SQRT2PI * $summer / $x));
  446. }
  447. /***************************************************************************
  448. * inverse_ncdf.php
  449. * -------------------
  450. * begin : Friday, January 16, 2004
  451. * copyright : (C) 2004 Michael Nickerson
  452. * email : nickersonm@yahoo.com
  453. *
  454. ***************************************************************************/
  455. private static function inverseNcdf($p)
  456. {
  457. // Inverse ncdf approximation by Peter J. Acklam, implementation adapted to
  458. // PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as
  459. // a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html
  460. // I have not checked the accuracy of this implementation. Be aware that PHP
  461. // will truncate the coeficcients to 14 digits.
  462. // You have permission to use and distribute this function freely for
  463. // whatever purpose you want, but please show common courtesy and give credit
  464. // where credit is due.
  465. // Input paramater is $p - probability - where 0 < p < 1.
  466. // Coefficients in rational approximations
  467. static $a = array(
  468. 1 => -3.969683028665376e+01,
  469. 2 => 2.209460984245205e+02,
  470. 3 => -2.759285104469687e+02,
  471. 4 => 1.383577518672690e+02,
  472. 5 => -3.066479806614716e+01,
  473. 6 => 2.506628277459239e+00
  474. );
  475. static $b = array(
  476. 1 => -5.447609879822406e+01,
  477. 2 => 1.615858368580409e+02,
  478. 3 => -1.556989798598866e+02,
  479. 4 => 6.680131188771972e+01,
  480. 5 => -1.328068155288572e+01
  481. );
  482. static $c = array(
  483. 1 => -7.784894002430293e-03,
  484. 2 => -3.223964580411365e-01,
  485. 3 => -2.400758277161838e+00,
  486. 4 => -2.549732539343734e+00,
  487. 5 => 4.374664141464968e+00,
  488. 6 => 2.938163982698783e+00
  489. );
  490. static $d = array(
  491. 1 => 7.784695709041462e-03,
  492. 2 => 3.224671290700398e-01,
  493. 3 => 2.445134137142996e+00,
  494. 4 => 3.754408661907416e+00
  495. );
  496. // Define lower and upper region break-points.
  497. $p_low = 0.02425; //Use lower region approx. below this
  498. $p_high = 1 - $p_low; //Use upper region approx. above this
  499. if (0 < $p && $p < $p_low) {
  500. // Rational approximation for lower region.
  501. $q = sqrt(-2 * log($p));
  502. return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
  503. (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
  504. } elseif ($p_low <= $p && $p <= $p_high) {
  505. // Rational approximation for central region.
  506. $q = $p - 0.5;
  507. $r = $q * $q;
  508. return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q /
  509. ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1);
  510. } elseif ($p_high < $p && $p < 1) {
  511. // Rational approximation for upper region.
  512. $q = sqrt(-2 * log(1 - $p));
  513. return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) /
  514. (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1);
  515. }
  516. // If 0 < p < 1, return a null value
  517. return PHPExcel_Calculation_Functions::NULL();
  518. }
  519. private static function inverseNcdf2($prob)
  520. {
  521. // Approximation of inverse standard normal CDF developed by
  522. // B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58.
  523. $a1 = 2.50662823884;
  524. $a2 = -18.61500062529;
  525. $a3 = 41.39119773534;
  526. $a4 = -25.44106049637;
  527. $b1 = -8.4735109309;
  528. $b2 = 23.08336743743;
  529. $b3 = -21.06224101826;
  530. $b4 = 3.13082909833;
  531. $c1 = 0.337475482272615;
  532. $c2 = 0.976169019091719;
  533. $c3 = 0.160797971491821;
  534. $c4 = 2.76438810333863E-02;
  535. $c5 = 3.8405729373609E-03;
  536. $c6 = 3.951896511919E-04;
  537. $c7 = 3.21767881768E-05;
  538. $c8 = 2.888167364E-07;
  539. $c9 = 3.960315187E-07;
  540. $y = $prob - 0.5;
  541. if (abs($y) < 0.42) {
  542. $z = ($y * $y);
  543. $z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1);
  544. } else {
  545. if ($y > 0) {
  546. $z = log(-log(1 - $prob));
  547. } else {
  548. $z = log(-log($prob));
  549. }
  550. $z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9)))))));
  551. if ($y < 0) {
  552. $z = -$z;
  553. }
  554. }
  555. return $z;
  556. } // function inverseNcdf2()
  557. private static function inverseNcdf3($p)
  558. {
  559. // ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3.
  560. // Produces the normal deviate Z corresponding to a given lower
  561. // tail area of P; Z is accurate to about 1 part in 10**16.
  562. //
  563. // This is a PHP version of the original FORTRAN code that can
  564. // be found at http://lib.stat.cmu.edu/apstat/
  565. $split1 = 0.425;
  566. $split2 = 5;
  567. $const1 = 0.180625;
  568. $const2 = 1.6;
  569. // coefficients for p close to 0.5
  570. $a0 = 3.3871328727963666080;
  571. $a1 = 1.3314166789178437745E+2;
  572. $a2 = 1.9715909503065514427E+3;
  573. $a3 = 1.3731693765509461125E+4;
  574. $a4 = 4.5921953931549871457E+4;
  575. $a5 = 6.7265770927008700853E+4;
  576. $a6 = 3.3430575583588128105E+4;
  577. $a7 = 2.5090809287301226727E+3;
  578. $b1 = 4.2313330701600911252E+1;
  579. $b2 = 6.8718700749205790830E+2;
  580. $b3 = 5.3941960214247511077E+3;
  581. $b4 = 2.1213794301586595867E+4;
  582. $b5 = 3.9307895800092710610E+4;
  583. $b6 = 2.8729085735721942674E+4;
  584. $b7 = 5.2264952788528545610E+3;
  585. // coefficients for p not close to 0, 0.5 or 1.
  586. $c0 = 1.42343711074968357734;
  587. $c1 = 4.63033784615654529590;
  588. $c2 = 5.76949722146069140550;
  589. $c3 = 3.64784832476320460504;
  590. $c4 = 1.27045825245236838258;
  591. $c5 = 2.41780725177450611770E-1;
  592. $c6 = 2.27238449892691845833E-2;
  593. $c7 = 7.74545014278341407640E-4;
  594. $d1 = 2.05319162663775882187;
  595. $d2 = 1.67638483018380384940;
  596. $d3 = 6.89767334985100004550E-1;
  597. $d4 = 1.48103976427480074590E-1;
  598. $d5 = 1.51986665636164571966E-2;
  599. $d6 = 5.47593808499534494600E-4;
  600. $d7 = 1.05075007164441684324E-9;
  601. // coefficients for p near 0 or 1.
  602. $e0 = 6.65790464350110377720;
  603. $e1 = 5.46378491116411436990;
  604. $e2 = 1.78482653991729133580;
  605. $e3 = 2.96560571828504891230E-1;
  606. $e4 = 2.65321895265761230930E-2;
  607. $e5 = 1.24266094738807843860E-3;
  608. $e6 = 2.71155556874348757815E-5;
  609. $e7 = 2.01033439929228813265E-7;
  610. $f1 = 5.99832206555887937690E-1;
  611. $f2 = 1.36929880922735805310E-1;
  612. $f3 = 1.48753612908506148525E-2;
  613. $f4 = 7.86869131145613259100E-4;
  614. $f5 = 1.84631831751005468180E-5;
  615. $f6 = 1.42151175831644588870E-7;
  616. $f7 = 2.04426310338993978564E-15;
  617. $q = $p - 0.5;
  618. // computation for p close to 0.5
  619. if (abs($q) <= split1) {
  620. $R = $const1 - $q * $q;
  621. $z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) /
  622. ((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1);
  623. } else {
  624. if ($q < 0) {
  625. $R = $p;
  626. } else {
  627. $R = 1 - $p;
  628. }
  629. $R = pow(-log($R), 2);
  630. // computation for p not close to 0, 0.5 or 1.
  631. if ($R <= $split2) {
  632. $R = $R - $const2;
  633. $z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) /
  634. ((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1);
  635. } else {
  636. // computation for p near 0 or 1.
  637. $R = $R - $split2;
  638. $z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) /
  639. ((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1);
  640. }
  641. if ($q < 0) {
  642. $z = -$z;
  643. }
  644. }
  645. return $z;
  646. }
  647. /**
  648. * AVEDEV
  649. *
  650. * Returns the average of the absolute deviations of data points from their mean.
  651. * AVEDEV is a measure of the variability in a data set.
  652. *
  653. * Excel Function:
  654. * AVEDEV(value1[,value2[, ...]])
  655. *
  656. * @access public
  657. * @category Statistical Functions
  658. * @param mixed $arg,... Data values
  659. * @return float
  660. */
  661. public static function AVEDEV()
  662. {
  663. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  664. // Return value
  665. $returnValue = null;
  666. $aMean = self::AVERAGE($aArgs);
  667. if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
  668. $aCount = 0;
  669. foreach ($aArgs as $k => $arg) {
  670. if ((is_bool($arg)) &&
  671. ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
  672. $arg = (integer) $arg;
  673. }
  674. // Is it a numeric value?
  675. if ((is_numeric($arg)) && (!is_string($arg))) {
  676. if (is_null($returnValue)) {
  677. $returnValue = abs($arg - $aMean);
  678. } else {
  679. $returnValue += abs($arg - $aMean);
  680. }
  681. ++$aCount;
  682. }
  683. }
  684. // Return
  685. if ($aCount == 0) {
  686. return PHPExcel_Calculation_Functions::DIV0();
  687. }
  688. return $returnValue / $aCount;
  689. }
  690. return PHPExcel_Calculation_Functions::NaN();
  691. }
  692. /**
  693. * AVERAGE
  694. *
  695. * Returns the average (arithmetic mean) of the arguments
  696. *
  697. * Excel Function:
  698. * AVERAGE(value1[,value2[, ...]])
  699. *
  700. * @access public
  701. * @category Statistical Functions
  702. * @param mixed $arg,... Data values
  703. * @return float
  704. */
  705. public static function AVERAGE()
  706. {
  707. $returnValue = $aCount = 0;
  708. // Loop through arguments
  709. foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {
  710. if ((is_bool($arg)) &&
  711. ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
  712. $arg = (integer) $arg;
  713. }
  714. // Is it a numeric value?
  715. if ((is_numeric($arg)) && (!is_string($arg))) {
  716. if (is_null($returnValue)) {
  717. $returnValue = $arg;
  718. } else {
  719. $returnValue += $arg;
  720. }
  721. ++$aCount;
  722. }
  723. }
  724. // Return
  725. if ($aCount > 0) {
  726. return $returnValue / $aCount;
  727. } else {
  728. return PHPExcel_Calculation_Functions::DIV0();
  729. }
  730. }
  731. /**
  732. * AVERAGEA
  733. *
  734. * Returns the average of its arguments, including numbers, text, and logical values
  735. *
  736. * Excel Function:
  737. * AVERAGEA(value1[,value2[, ...]])
  738. *
  739. * @access public
  740. * @category Statistical Functions
  741. * @param mixed $arg,... Data values
  742. * @return float
  743. */
  744. public static function AVERAGEA()
  745. {
  746. $returnValue = null;
  747. $aCount = 0;
  748. // Loop through arguments
  749. foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) {
  750. if ((is_bool($arg)) &&
  751. (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
  752. } else {
  753. if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
  754. if (is_bool($arg)) {
  755. $arg = (integer) $arg;
  756. } elseif (is_string($arg)) {
  757. $arg = 0;
  758. }
  759. if (is_null($returnValue)) {
  760. $returnValue = $arg;
  761. } else {
  762. $returnValue += $arg;
  763. }
  764. ++$aCount;
  765. }
  766. }
  767. }
  768. if ($aCount > 0) {
  769. return $returnValue / $aCount;
  770. } else {
  771. return PHPExcel_Calculation_Functions::DIV0();
  772. }
  773. }
  774. /**
  775. * AVERAGEIF
  776. *
  777. * Returns the average value from a range of cells that contain numbers within the list of arguments
  778. *
  779. * Excel Function:
  780. * AVERAGEIF(value1[,value2[, ...]],condition)
  781. *
  782. * @access public
  783. * @category Mathematical and Trigonometric Functions
  784. * @param mixed $arg,... Data values
  785. * @param string $condition The criteria that defines which cells will be checked.
  786. * @param mixed[] $averageArgs Data values
  787. * @return float
  788. */
  789. public static function AVERAGEIF($aArgs, $condition, $averageArgs = array())
  790. {
  791. $returnValue = 0;
  792. $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
  793. $averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs);
  794. if (empty($averageArgs)) {
  795. $averageArgs = $aArgs;
  796. }
  797. $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
  798. // Loop through arguments
  799. $aCount = 0;
  800. foreach ($aArgs as $key => $arg) {
  801. if (!is_numeric($arg)) {
  802. $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
  803. }
  804. $testCondition = '='.$arg.$condition;
  805. if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
  806. if ((is_null($returnValue)) || ($arg > $returnValue)) {
  807. $returnValue += $arg;
  808. ++$aCount;
  809. }
  810. }
  811. }
  812. if ($aCount > 0) {
  813. return $returnValue / $aCount;
  814. }
  815. return PHPExcel_Calculation_Functions::DIV0();
  816. }
  817. /**
  818. * BETADIST
  819. *
  820. * Returns the beta distribution.
  821. *
  822. * @param float $value Value at which you want to evaluate the distribution
  823. * @param float $alpha Parameter to the distribution
  824. * @param float $beta Parameter to the distribution
  825. * @param boolean $cumulative
  826. * @return float
  827. *
  828. */
  829. public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1)
  830. {
  831. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  832. $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
  833. $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
  834. $rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);
  835. $rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);
  836. if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
  837. if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) {
  838. return PHPExcel_Calculation_Functions::NaN();
  839. }
  840. if ($rMin > $rMax) {
  841. $tmp = $rMin;
  842. $rMin = $rMax;
  843. $rMax = $tmp;
  844. }
  845. $value -= $rMin;
  846. $value /= ($rMax - $rMin);
  847. return self::incompleteBeta($value, $alpha, $beta);
  848. }
  849. return PHPExcel_Calculation_Functions::VALUE();
  850. }
  851. /**
  852. * BETAINV
  853. *
  854. * Returns the inverse of the beta distribution.
  855. *
  856. * @param float $probability Probability at which you want to evaluate the distribution
  857. * @param float $alpha Parameter to the distribution
  858. * @param float $beta Parameter to the distribution
  859. * @param float $rMin Minimum value
  860. * @param float $rMax Maximum value
  861. * @param boolean $cumulative
  862. * @return float
  863. *
  864. */
  865. public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1)
  866. {
  867. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  868. $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
  869. $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
  870. $rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin);
  871. $rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax);
  872. if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) {
  873. if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) {
  874. return PHPExcel_Calculation_Functions::NaN();
  875. }
  876. if ($rMin > $rMax) {
  877. $tmp = $rMin;
  878. $rMin = $rMax;
  879. $rMax = $tmp;
  880. }
  881. $a = 0;
  882. $b = 2;
  883. $i = 0;
  884. while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
  885. $guess = ($a + $b) / 2;
  886. $result = self::BETADIST($guess, $alpha, $beta);
  887. if (($result == $probability) || ($result == 0)) {
  888. $b = $a;
  889. } elseif ($result > $probability) {
  890. $b = $guess;
  891. } else {
  892. $a = $guess;
  893. }
  894. }
  895. if ($i == MAX_ITERATIONS) {
  896. return PHPExcel_Calculation_Functions::NA();
  897. }
  898. return round($rMin + $guess * ($rMax - $rMin), 12);
  899. }
  900. return PHPExcel_Calculation_Functions::VALUE();
  901. }
  902. /**
  903. * BINOMDIST
  904. *
  905. * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with
  906. * a fixed number of tests or trials, when the outcomes of any trial are only success or failure,
  907. * when trials are independent, and when the probability of success is constant throughout the
  908. * experiment. For example, BINOMDIST can calculate the probability that two of the next three
  909. * babies born are male.
  910. *
  911. * @param float $value Number of successes in trials
  912. * @param float $trials Number of trials
  913. * @param float $probability Probability of success on each trial
  914. * @param boolean $cumulative
  915. * @return float
  916. *
  917. * @todo Cumulative distribution function
  918. *
  919. */
  920. public static function BINOMDIST($value, $trials, $probability, $cumulative)
  921. {
  922. $value = floor(PHPExcel_Calculation_Functions::flattenSingleValue($value));
  923. $trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));
  924. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  925. if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) {
  926. if (($value < 0) || ($value > $trials)) {
  927. return PHPExcel_Calculation_Functions::NaN();
  928. }
  929. if (($probability < 0) || ($probability > 1)) {
  930. return PHPExcel_Calculation_Functions::NaN();
  931. }
  932. if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
  933. if ($cumulative) {
  934. $summer = 0;
  935. for ($i = 0; $i <= $value; ++$i) {
  936. $summer += PHPExcel_Calculation_MathTrig::COMBIN($trials, $i) * pow($probability, $i) * pow(1 - $probability, $trials - $i);
  937. }
  938. return $summer;
  939. } else {
  940. return PHPExcel_Calculation_MathTrig::COMBIN($trials, $value) * pow($probability, $value) * pow(1 - $probability, $trials - $value) ;
  941. }
  942. }
  943. }
  944. return PHPExcel_Calculation_Functions::VALUE();
  945. }
  946. /**
  947. * CHIDIST
  948. *
  949. * Returns the one-tailed probability of the chi-squared distribution.
  950. *
  951. * @param float $value Value for the function
  952. * @param float $degrees degrees of freedom
  953. * @return float
  954. */
  955. public static function CHIDIST($value, $degrees)
  956. {
  957. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  958. $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
  959. if ((is_numeric($value)) && (is_numeric($degrees))) {
  960. if ($degrees < 1) {
  961. return PHPExcel_Calculation_Functions::NaN();
  962. }
  963. if ($value < 0) {
  964. if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {
  965. return 1;
  966. }
  967. return PHPExcel_Calculation_Functions::NaN();
  968. }
  969. return 1 - (self::incompleteGamma($degrees/2, $value/2) / self::gamma($degrees/2));
  970. }
  971. return PHPExcel_Calculation_Functions::VALUE();
  972. }
  973. /**
  974. * CHIINV
  975. *
  976. * Returns the one-tailed probability of the chi-squared distribution.
  977. *
  978. * @param float $probability Probability for the function
  979. * @param float $degrees degrees of freedom
  980. * @return float
  981. */
  982. public static function CHIINV($probability, $degrees)
  983. {
  984. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  985. $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
  986. if ((is_numeric($probability)) && (is_numeric($degrees))) {
  987. $xLo = 100;
  988. $xHi = 0;
  989. $x = $xNew = 1;
  990. $dx = 1;
  991. $i = 0;
  992. while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
  993. // Apply Newton-Raphson step
  994. $result = self::CHIDIST($x, $degrees);
  995. $error = $result - $probability;
  996. if ($error == 0.0) {
  997. $dx = 0;
  998. } elseif ($error < 0.0) {
  999. $xLo = $x;
  1000. } else {
  1001. $xHi = $x;
  1002. }
  1003. // Avoid division by zero
  1004. if ($result != 0.0) {
  1005. $dx = $error / $result;
  1006. $xNew = $x - $dx;
  1007. }
  1008. // If the NR fails to converge (which for example may be the
  1009. // case if the initial guess is too rough) we apply a bisection
  1010. // step to determine a more narrow interval around the root.
  1011. if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
  1012. $xNew = ($xLo + $xHi) / 2;
  1013. $dx = $xNew - $x;
  1014. }
  1015. $x = $xNew;
  1016. }
  1017. if ($i == MAX_ITERATIONS) {
  1018. return PHPExcel_Calculation_Functions::NA();
  1019. }
  1020. return round($x, 12);
  1021. }
  1022. return PHPExcel_Calculation_Functions::VALUE();
  1023. }
  1024. /**
  1025. * CONFIDENCE
  1026. *
  1027. * Returns the confidence interval for a population mean
  1028. *
  1029. * @param float $alpha
  1030. * @param float $stdDev Standard Deviation
  1031. * @param float $size
  1032. * @return float
  1033. *
  1034. */
  1035. public static function CONFIDENCE($alpha, $stdDev, $size)
  1036. {
  1037. $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
  1038. $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
  1039. $size = floor(PHPExcel_Calculation_Functions::flattenSingleValue($size));
  1040. if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) {
  1041. if (($alpha <= 0) || ($alpha >= 1)) {
  1042. return PHPExcel_Calculation_Functions::NaN();
  1043. }
  1044. if (($stdDev <= 0) || ($size < 1)) {
  1045. return PHPExcel_Calculation_Functions::NaN();
  1046. }
  1047. return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size);
  1048. }
  1049. return PHPExcel_Calculation_Functions::VALUE();
  1050. }
  1051. /**
  1052. * CORREL
  1053. *
  1054. * Returns covariance, the average of the products of deviations for each data point pair.
  1055. *
  1056. * @param array of mixed Data Series Y
  1057. * @param array of mixed Data Series X
  1058. * @return float
  1059. */
  1060. public static function CORREL($yValues, $xValues = null)
  1061. {
  1062. if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) {
  1063. return PHPExcel_Calculation_Functions::VALUE();
  1064. }
  1065. if (!self::checkTrendArrays($yValues, $xValues)) {
  1066. return PHPExcel_Calculation_Functions::VALUE();
  1067. }
  1068. $yValueCount = count($yValues);
  1069. $xValueCount = count($xValues);
  1070. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  1071. return PHPExcel_Calculation_Functions::NA();
  1072. } elseif ($yValueCount == 1) {
  1073. return PHPExcel_Calculation_Functions::DIV0();
  1074. }
  1075. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
  1076. return $bestFitLinear->getCorrelation();
  1077. }
  1078. /**
  1079. * COUNT
  1080. *
  1081. * Counts the number of cells that contain numbers within the list of arguments
  1082. *
  1083. * Excel Function:
  1084. * COUNT(value1[,value2[, ...]])
  1085. *
  1086. * @access public
  1087. * @category Statistical Functions
  1088. * @param mixed $arg,... Data values
  1089. * @return int
  1090. */
  1091. public static function COUNT()
  1092. {
  1093. $returnValue = 0;
  1094. // Loop through arguments
  1095. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  1096. foreach ($aArgs as $k => $arg) {
  1097. if ((is_bool($arg)) &&
  1098. ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
  1099. $arg = (integer) $arg;
  1100. }
  1101. // Is it a numeric value?
  1102. if ((is_numeric($arg)) && (!is_string($arg))) {
  1103. ++$returnValue;
  1104. }
  1105. }
  1106. return $returnValue;
  1107. }
  1108. /**
  1109. * COUNTA
  1110. *
  1111. * Counts the number of cells that are not empty within the list of arguments
  1112. *
  1113. * Excel Function:
  1114. * COUNTA(value1[,value2[, ...]])
  1115. *
  1116. * @access public
  1117. * @category Statistical Functions
  1118. * @param mixed $arg,... Data values
  1119. * @return int
  1120. */
  1121. public static function COUNTA()
  1122. {
  1123. $returnValue = 0;
  1124. // Loop through arguments
  1125. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  1126. foreach ($aArgs as $arg) {
  1127. // Is it a numeric, boolean or string value?
  1128. if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
  1129. ++$returnValue;
  1130. }
  1131. }
  1132. return $returnValue;
  1133. }
  1134. /**
  1135. * COUNTBLANK
  1136. *
  1137. * Counts the number of empty cells within the list of arguments
  1138. *
  1139. * Excel Function:
  1140. * COUNTBLANK(value1[,value2[, ...]])
  1141. *
  1142. * @access public
  1143. * @category Statistical Functions
  1144. * @param mixed $arg,... Data values
  1145. * @return int
  1146. */
  1147. public static function COUNTBLANK()
  1148. {
  1149. $returnValue = 0;
  1150. // Loop through arguments
  1151. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  1152. foreach ($aArgs as $arg) {
  1153. // Is it a blank cell?
  1154. if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) {
  1155. ++$returnValue;
  1156. }
  1157. }
  1158. return $returnValue;
  1159. }
  1160. /**
  1161. * COUNTIF
  1162. *
  1163. * Counts the number of cells that contain numbers within the list of arguments
  1164. *
  1165. * Excel Function:
  1166. * COUNTIF(value1[,value2[, ...]],condition)
  1167. *
  1168. * @access public
  1169. * @category Statistical Functions
  1170. * @param mixed $arg,... Data values
  1171. * @param string $condition The criteria that defines which cells will be counted.
  1172. * @return int
  1173. */
  1174. public static function COUNTIF($aArgs, $condition)
  1175. {
  1176. $returnValue = 0;
  1177. $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
  1178. $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
  1179. // Loop through arguments
  1180. foreach ($aArgs as $arg) {
  1181. if (!is_numeric($arg)) {
  1182. $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
  1183. }
  1184. $testCondition = '='.$arg.$condition;
  1185. if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
  1186. // Is it a value within our criteria
  1187. ++$returnValue;
  1188. }
  1189. }
  1190. return $returnValue;
  1191. }
  1192. /**
  1193. * COVAR
  1194. *
  1195. * Returns covariance, the average of the products of deviations for each data point pair.
  1196. *
  1197. * @param array of mixed Data Series Y
  1198. * @param array of mixed Data Series X
  1199. * @return float
  1200. */
  1201. public static function COVAR($yValues, $xValues)
  1202. {
  1203. if (!self::checkTrendArrays($yValues, $xValues)) {
  1204. return PHPExcel_Calculation_Functions::VALUE();
  1205. }
  1206. $yValueCount = count($yValues);
  1207. $xValueCount = count($xValues);
  1208. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  1209. return PHPExcel_Calculation_Functions::NA();
  1210. } elseif ($yValueCount == 1) {
  1211. return PHPExcel_Calculation_Functions::DIV0();
  1212. }
  1213. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
  1214. return $bestFitLinear->getCovariance();
  1215. }
  1216. /**
  1217. * CRITBINOM
  1218. *
  1219. * Returns the smallest value for which the cumulative binomial distribution is greater
  1220. * than or equal to a criterion value
  1221. *
  1222. * See http://support.microsoft.com/kb/828117/ for details of the algorithm used
  1223. *
  1224. * @param float $trials number of Bernoulli trials
  1225. * @param float $probability probability of a success on each trial
  1226. * @param float $alpha criterion value
  1227. * @return int
  1228. *
  1229. * @todo Warning. This implementation differs from the algorithm detailed on the MS
  1230. * web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess
  1231. * This eliminates a potential endless loop error, but may have an adverse affect on the
  1232. * accuracy of the function (although all my tests have so far returned correct results).
  1233. *
  1234. */
  1235. public static function CRITBINOM($trials, $probability, $alpha)
  1236. {
  1237. $trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials));
  1238. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  1239. $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
  1240. if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) {
  1241. if ($trials < 0) {
  1242. return PHPExcel_Calculation_Functions::NaN();
  1243. } elseif (($probability < 0) || ($probability > 1)) {
  1244. return PHPExcel_Calculation_Functions::NaN();
  1245. } elseif (($alpha < 0) || ($alpha > 1)) {
  1246. return PHPExcel_Calculation_Functions::NaN();
  1247. } elseif ($alpha <= 0.5) {
  1248. $t = sqrt(log(1 / ($alpha * $alpha)));
  1249. $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t));
  1250. } else {
  1251. $t = sqrt(log(1 / pow(1 - $alpha, 2)));
  1252. $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t);
  1253. }
  1254. $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability)));
  1255. if ($Guess < 0) {
  1256. $Guess = 0;
  1257. } elseif ($Guess > $trials) {
  1258. $Guess = $trials;
  1259. }
  1260. $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0;
  1261. $EssentiallyZero = 10e-12;
  1262. $m = floor($trials * $probability);
  1263. ++$TotalUnscaledProbability;
  1264. if ($m == $Guess) {
  1265. ++$UnscaledPGuess;
  1266. }
  1267. if ($m <= $Guess) {
  1268. ++$UnscaledCumPGuess;
  1269. }
  1270. $PreviousValue = 1;
  1271. $Done = false;
  1272. $k = $m + 1;
  1273. while ((!$Done) && ($k <= $trials)) {
  1274. $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability));
  1275. $TotalUnscaledProbability += $CurrentValue;
  1276. if ($k == $Guess) {
  1277. $UnscaledPGuess += $CurrentValue;
  1278. }
  1279. if ($k <= $Guess) {
  1280. $UnscaledCumPGuess += $CurrentValue;
  1281. }
  1282. if ($CurrentValue <= $EssentiallyZero) {
  1283. $Done = true;
  1284. }
  1285. $PreviousValue = $CurrentValue;
  1286. ++$k;
  1287. }
  1288. $PreviousValue = 1;
  1289. $Done = false;
  1290. $k = $m - 1;
  1291. while ((!$Done) && ($k >= 0)) {
  1292. $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability);
  1293. $TotalUnscaledProbability += $CurrentValue;
  1294. if ($k == $Guess) {
  1295. $UnscaledPGuess += $CurrentValue;
  1296. }
  1297. if ($k <= $Guess) {
  1298. $UnscaledCumPGuess += $CurrentValue;
  1299. }
  1300. if ($CurrentValue <= $EssentiallyZero) {
  1301. $Done = true;
  1302. }
  1303. $PreviousValue = $CurrentValue;
  1304. --$k;
  1305. }
  1306. $PGuess = $UnscaledPGuess / $TotalUnscaledProbability;
  1307. $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability;
  1308. // $CumPGuessMinus1 = $CumPGuess - $PGuess;
  1309. $CumPGuessMinus1 = $CumPGuess - 1;
  1310. while (true) {
  1311. if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) {
  1312. return $Guess;
  1313. } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) {
  1314. $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability);
  1315. $CumPGuessMinus1 = $CumPGuess;
  1316. $CumPGuess = $CumPGuess + $PGuessPlus1;
  1317. $PGuess = $PGuessPlus1;
  1318. ++$Guess;
  1319. } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) {
  1320. $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability;
  1321. $CumPGuess = $CumPGuessMinus1;
  1322. $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess;
  1323. $PGuess = $PGuessMinus1;
  1324. --$Guess;
  1325. }
  1326. }
  1327. }
  1328. return PHPExcel_Calculation_Functions::VALUE();
  1329. }
  1330. /**
  1331. * DEVSQ
  1332. *
  1333. * Returns the sum of squares of deviations of data points from their sample mean.
  1334. *
  1335. * Excel Function:
  1336. * DEVSQ(value1[,value2[, ...]])
  1337. *
  1338. * @access public
  1339. * @category Statistical Functions
  1340. * @param mixed $arg,... Data values
  1341. * @return float
  1342. */
  1343. public static function DEVSQ()
  1344. {
  1345. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  1346. // Return value
  1347. $returnValue = null;
  1348. $aMean = self::AVERAGE($aArgs);
  1349. if ($aMean != PHPExcel_Calculation_Functions::DIV0()) {
  1350. $aCount = -1;
  1351. foreach ($aArgs as $k => $arg) {
  1352. // Is it a numeric value?
  1353. if ((is_bool($arg)) &&
  1354. ((!PHPExcel_Calculation_Functions::isCellValue($k)) ||
  1355. (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
  1356. $arg = (integer) $arg;
  1357. }
  1358. if ((is_numeric($arg)) && (!is_string($arg))) {
  1359. if (is_null($returnValue)) {
  1360. $returnValue = pow(($arg - $aMean), 2);
  1361. } else {
  1362. $returnValue += pow(($arg - $aMean), 2);
  1363. }
  1364. ++$aCount;
  1365. }
  1366. }
  1367. // Return
  1368. if (is_null($returnValue)) {
  1369. return PHPExcel_Calculation_Functions::NaN();
  1370. } else {
  1371. return $returnValue;
  1372. }
  1373. }
  1374. return self::NA();
  1375. }
  1376. /**
  1377. * EXPONDIST
  1378. *
  1379. * Returns the exponential distribution. Use EXPONDIST to model the time between events,
  1380. * such as how long an automated bank teller takes to deliver cash. For example, you can
  1381. * use EXPONDIST to determine the probability that the process takes at most 1 minute.
  1382. *
  1383. * @param float $value Value of the function
  1384. * @param float $lambda The parameter value
  1385. * @param boolean $cumulative
  1386. * @return float
  1387. */
  1388. public static function EXPONDIST($value, $lambda, $cumulative)
  1389. {
  1390. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  1391. $lambda = PHPExcel_Calculation_Functions::flattenSingleValue($lambda);
  1392. $cumulative = PHPExcel_Calculation_Functions::flattenSingleValue($cumulative);
  1393. if ((is_numeric($value)) && (is_numeric($lambda))) {
  1394. if (($value < 0) || ($lambda < 0)) {
  1395. return PHPExcel_Calculation_Functions::NaN();
  1396. }
  1397. if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
  1398. if ($cumulative) {
  1399. return 1 - exp(0-$value*$lambda);
  1400. } else {
  1401. return $lambda * exp(0-$value*$lambda);
  1402. }
  1403. }
  1404. }
  1405. return PHPExcel_Calculation_Functions::VALUE();
  1406. }
  1407. /**
  1408. * FISHER
  1409. *
  1410. * Returns the Fisher transformation at x. This transformation produces a function that
  1411. * is normally distributed rather than skewed. Use this function to perform hypothesis
  1412. * testing on the correlation coefficient.
  1413. *
  1414. * @param float $value
  1415. * @return float
  1416. */
  1417. public static function FISHER($value)
  1418. {
  1419. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  1420. if (is_numeric($value)) {
  1421. if (($value <= -1) || ($value >= 1)) {
  1422. return PHPExcel_Calculation_Functions::NaN();
  1423. }
  1424. return 0.5 * log((1+$value)/(1-$value));
  1425. }
  1426. return PHPExcel_Calculation_Functions::VALUE();
  1427. }
  1428. /**
  1429. * FISHERINV
  1430. *
  1431. * Returns the inverse of the Fisher transformation. Use this transformation when
  1432. * analyzing correlations between ranges or arrays of data. If y = FISHER(x), then
  1433. * FISHERINV(y) = x.
  1434. *
  1435. * @param float $value
  1436. * @return float
  1437. */
  1438. public static function FISHERINV($value)
  1439. {
  1440. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  1441. if (is_numeric($value)) {
  1442. return (exp(2 * $value) - 1) / (exp(2 * $value) + 1);
  1443. }
  1444. return PHPExcel_Calculation_Functions::VALUE();
  1445. }
  1446. /**
  1447. * FORECAST
  1448. *
  1449. * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value.
  1450. *
  1451. * @param float Value of X for which we want to find Y
  1452. * @param array of mixed Data Series Y
  1453. * @param array of mixed Data Series X
  1454. * @return float
  1455. */
  1456. public static function FORECAST($xValue, $yValues, $xValues)
  1457. {
  1458. $xValue = PHPExcel_Calculation_Functions::flattenSingleValue($xValue);
  1459. if (!is_numeric($xValue)) {
  1460. return PHPExcel_Calculation_Functions::VALUE();
  1461. } elseif (!self::checkTrendArrays($yValues, $xValues)) {
  1462. return PHPExcel_Calculation_Functions::VALUE();
  1463. }
  1464. $yValueCount = count($yValues);
  1465. $xValueCount = count($xValues);
  1466. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  1467. return PHPExcel_Calculation_Functions::NA();
  1468. } elseif ($yValueCount == 1) {
  1469. return PHPExcel_Calculation_Functions::DIV0();
  1470. }
  1471. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
  1472. return $bestFitLinear->getValueOfYForX($xValue);
  1473. }
  1474. /**
  1475. * GAMMADIST
  1476. *
  1477. * Returns the gamma distribution.
  1478. *
  1479. * @param float $value Value at which you want to evaluate the distribution
  1480. * @param float $a Parameter to the distribution
  1481. * @param float $b Parameter to the distribution
  1482. * @param boolean $cumulative
  1483. * @return float
  1484. *
  1485. */
  1486. public static function GAMMADIST($value, $a, $b, $cumulative)
  1487. {
  1488. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  1489. $a = PHPExcel_Calculation_Functions::flattenSingleValue($a);
  1490. $b = PHPExcel_Calculation_Functions::flattenSingleValue($b);
  1491. if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) {
  1492. if (($value < 0) || ($a <= 0) || ($b <= 0)) {
  1493. return PHPExcel_Calculation_Functions::NaN();
  1494. }
  1495. if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
  1496. if ($cumulative) {
  1497. return self::incompleteGamma($a, $value / $b) / self::gamma($a);
  1498. } else {
  1499. return (1 / (pow($b, $a) * self::gamma($a))) * pow($value, $a-1) * exp(0-($value / $b));
  1500. }
  1501. }
  1502. }
  1503. return PHPExcel_Calculation_Functions::VALUE();
  1504. }
  1505. /**
  1506. * GAMMAINV
  1507. *
  1508. * Returns the inverse of the beta distribution.
  1509. *
  1510. * @param float $probability Probability at which you want to evaluate the distribution
  1511. * @param float $alpha Parameter to the distribution
  1512. * @param float $beta Parameter to the distribution
  1513. * @return float
  1514. *
  1515. */
  1516. public static function GAMMAINV($probability, $alpha, $beta)
  1517. {
  1518. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  1519. $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
  1520. $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
  1521. if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) {
  1522. if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) {
  1523. return PHPExcel_Calculation_Functions::NaN();
  1524. }
  1525. $xLo = 0;
  1526. $xHi = $alpha * $beta * 5;
  1527. $x = $xNew = 1;
  1528. $error = $pdf = 0;
  1529. $dx = 1024;
  1530. $i = 0;
  1531. while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
  1532. // Apply Newton-Raphson step
  1533. $error = self::GAMMADIST($x, $alpha, $beta, true) - $probability;
  1534. if ($error < 0.0) {
  1535. $xLo = $x;
  1536. } else {
  1537. $xHi = $x;
  1538. }
  1539. $pdf = self::GAMMADIST($x, $alpha, $beta, false);
  1540. // Avoid division by zero
  1541. if ($pdf != 0.0) {
  1542. $dx = $error / $pdf;
  1543. $xNew = $x - $dx;
  1544. }
  1545. // If the NR fails to converge (which for example may be the
  1546. // case if the initial guess is too rough) we apply a bisection
  1547. // step to determine a more narrow interval around the root.
  1548. if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) {
  1549. $xNew = ($xLo + $xHi) / 2;
  1550. $dx = $xNew - $x;
  1551. }
  1552. $x = $xNew;
  1553. }
  1554. if ($i == MAX_ITERATIONS) {
  1555. return PHPExcel_Calculation_Functions::NA();
  1556. }
  1557. return $x;
  1558. }
  1559. return PHPExcel_Calculation_Functions::VALUE();
  1560. }
  1561. /**
  1562. * GAMMALN
  1563. *
  1564. * Returns the natural logarithm of the gamma function.
  1565. *
  1566. * @param float $value
  1567. * @return float
  1568. */
  1569. public static function GAMMALN($value)
  1570. {
  1571. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  1572. if (is_numeric($value)) {
  1573. if ($value <= 0) {
  1574. return PHPExcel_Calculation_Functions::NaN();
  1575. }
  1576. return log(self::gamma($value));
  1577. }
  1578. return PHPExcel_Calculation_Functions::VALUE();
  1579. }
  1580. /**
  1581. * GEOMEAN
  1582. *
  1583. * Returns the geometric mean of an array or range of positive data. For example, you
  1584. * can use GEOMEAN to calculate average growth rate given compound interest with
  1585. * variable rates.
  1586. *
  1587. * Excel Function:
  1588. * GEOMEAN(value1[,value2[, ...]])
  1589. *
  1590. * @access public
  1591. * @category Statistical Functions
  1592. * @param mixed $arg,... Data values
  1593. * @return float
  1594. */
  1595. public static function GEOMEAN()
  1596. {
  1597. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  1598. $aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs);
  1599. if (is_numeric($aMean) && ($aMean > 0)) {
  1600. $aCount = self::COUNT($aArgs) ;
  1601. if (self::MIN($aArgs) > 0) {
  1602. return pow($aMean, (1 / $aCount));
  1603. }
  1604. }
  1605. return PHPExcel_Calculation_Functions::NaN();
  1606. }
  1607. /**
  1608. * GROWTH
  1609. *
  1610. * Returns values along a predicted emponential trend
  1611. *
  1612. * @param array of mixed Data Series Y
  1613. * @param array of mixed Data Series X
  1614. * @param array of mixed Values of X for which we want to find Y
  1615. * @param boolean A logical value specifying whether to force the intersect to equal 0.
  1616. * @return array of float
  1617. */
  1618. public static function GROWTH($yValues, $xValues = array(), $newValues = array(), $const = true)
  1619. {
  1620. $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);
  1621. $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);
  1622. $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);
  1623. $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
  1624. $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL, $yValues, $xValues, $const);
  1625. if (empty($newValues)) {
  1626. $newValues = $bestFitExponential->getXValues();
  1627. }
  1628. $returnArray = array();
  1629. foreach ($newValues as $xValue) {
  1630. $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue);
  1631. }
  1632. return $returnArray;
  1633. }
  1634. /**
  1635. * HARMEAN
  1636. *
  1637. * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the
  1638. * arithmetic mean of reciprocals.
  1639. *
  1640. * Excel Function:
  1641. * HARMEAN(value1[,value2[, ...]])
  1642. *
  1643. * @access public
  1644. * @category Statistical Functions
  1645. * @param mixed $arg,... Data values
  1646. * @return float
  1647. */
  1648. public static function HARMEAN()
  1649. {
  1650. // Return value
  1651. $returnValue = PHPExcel_Calculation_Functions::NA();
  1652. // Loop through arguments
  1653. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  1654. if (self::MIN($aArgs) < 0) {
  1655. return PHPExcel_Calculation_Functions::NaN();
  1656. }
  1657. $aCount = 0;
  1658. foreach ($aArgs as $arg) {
  1659. // Is it a numeric value?
  1660. if ((is_numeric($arg)) && (!is_string($arg))) {
  1661. if ($arg <= 0) {
  1662. return PHPExcel_Calculation_Functions::NaN();
  1663. }
  1664. if (is_null($returnValue)) {
  1665. $returnValue = (1 / $arg);
  1666. } else {
  1667. $returnValue += (1 / $arg);
  1668. }
  1669. ++$aCount;
  1670. }
  1671. }
  1672. // Return
  1673. if ($aCount > 0) {
  1674. return 1 / ($returnValue / $aCount);
  1675. } else {
  1676. return $returnValue;
  1677. }
  1678. }
  1679. /**
  1680. * HYPGEOMDIST
  1681. *
  1682. * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of
  1683. * sample successes, given the sample size, population successes, and population size.
  1684. *
  1685. * @param float $sampleSuccesses Number of successes in the sample
  1686. * @param float $sampleNumber Size of the sample
  1687. * @param float $populationSuccesses Number of successes in the population
  1688. * @param float $populationNumber Population size
  1689. * @return float
  1690. *
  1691. */
  1692. public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber)
  1693. {
  1694. $sampleSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses));
  1695. $sampleNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber));
  1696. $populationSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses));
  1697. $populationNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber));
  1698. if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) {
  1699. if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) {
  1700. return PHPExcel_Calculation_Functions::NaN();
  1701. }
  1702. if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) {
  1703. return PHPExcel_Calculation_Functions::NaN();
  1704. }
  1705. if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) {
  1706. return PHPExcel_Calculation_Functions::NaN();
  1707. }
  1708. return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) *
  1709. PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) /
  1710. PHPExcel_Calculation_MathTrig::COMBIN($populationNumber, $sampleNumber);
  1711. }
  1712. return PHPExcel_Calculation_Functions::VALUE();
  1713. }
  1714. /**
  1715. * INTERCEPT
  1716. *
  1717. * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.
  1718. *
  1719. * @param array of mixed Data Series Y
  1720. * @param array of mixed Data Series X
  1721. * @return float
  1722. */
  1723. public static function INTERCEPT($yValues, $xValues)
  1724. {
  1725. if (!self::checkTrendArrays($yValues, $xValues)) {
  1726. return PHPExcel_Calculation_Functions::VALUE();
  1727. }
  1728. $yValueCount = count($yValues);
  1729. $xValueCount = count($xValues);
  1730. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  1731. return PHPExcel_Calculation_Functions::NA();
  1732. } elseif ($yValueCount == 1) {
  1733. return PHPExcel_Calculation_Functions::DIV0();
  1734. }
  1735. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
  1736. return $bestFitLinear->getIntersect();
  1737. }
  1738. /**
  1739. * KURT
  1740. *
  1741. * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness
  1742. * or flatness of a distribution compared with the normal distribution. Positive
  1743. * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a
  1744. * relatively flat distribution.
  1745. *
  1746. * @param array Data Series
  1747. * @return float
  1748. */
  1749. public static function KURT()
  1750. {
  1751. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  1752. $mean = self::AVERAGE($aArgs);
  1753. $stdDev = self::STDEV($aArgs);
  1754. if ($stdDev > 0) {
  1755. $count = $summer = 0;
  1756. // Loop through arguments
  1757. foreach ($aArgs as $k => $arg) {
  1758. if ((is_bool($arg)) &&
  1759. (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
  1760. } else {
  1761. // Is it a numeric value?
  1762. if ((is_numeric($arg)) && (!is_string($arg))) {
  1763. $summer += pow((($arg - $mean) / $stdDev), 4);
  1764. ++$count;
  1765. }
  1766. }
  1767. }
  1768. // Return
  1769. if ($count > 3) {
  1770. return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1, 2) / (($count-2) * ($count-3)));
  1771. }
  1772. }
  1773. return PHPExcel_Calculation_Functions::DIV0();
  1774. }
  1775. /**
  1776. * LARGE
  1777. *
  1778. * Returns the nth largest value in a data set. You can use this function to
  1779. * select a value based on its relative standing.
  1780. *
  1781. * Excel Function:
  1782. * LARGE(value1[,value2[, ...]],entry)
  1783. *
  1784. * @access public
  1785. * @category Statistical Functions
  1786. * @param mixed $arg,... Data values
  1787. * @param int $entry Position (ordered from the largest) in the array or range of data to return
  1788. * @return float
  1789. *
  1790. */
  1791. public static function LARGE()
  1792. {
  1793. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  1794. // Calculate
  1795. $entry = floor(array_pop($aArgs));
  1796. if ((is_numeric($entry)) && (!is_string($entry))) {
  1797. $mArgs = array();
  1798. foreach ($aArgs as $arg) {
  1799. // Is it a numeric value?
  1800. if ((is_numeric($arg)) && (!is_string($arg))) {
  1801. $mArgs[] = $arg;
  1802. }
  1803. }
  1804. $count = self::COUNT($mArgs);
  1805. $entry = floor(--$entry);
  1806. if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
  1807. return PHPExcel_Calculation_Functions::NaN();
  1808. }
  1809. rsort($mArgs);
  1810. return $mArgs[$entry];
  1811. }
  1812. return PHPExcel_Calculation_Functions::VALUE();
  1813. }
  1814. /**
  1815. * LINEST
  1816. *
  1817. * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data,
  1818. * and then returns an array that describes the line.
  1819. *
  1820. * @param array of mixed Data Series Y
  1821. * @param array of mixed Data Series X
  1822. * @param boolean A logical value specifying whether to force the intersect to equal 0.
  1823. * @param boolean A logical value specifying whether to return additional regression statistics.
  1824. * @return array
  1825. */
  1826. public static function LINEST($yValues, $xValues = null, $const = true, $stats = false)
  1827. {
  1828. $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
  1829. $stats = (is_null($stats)) ? false : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);
  1830. if (is_null($xValues)) {
  1831. $xValues = range(1, count(PHPExcel_Calculation_Functions::flattenArray($yValues)));
  1832. }
  1833. if (!self::checkTrendArrays($yValues, $xValues)) {
  1834. return PHPExcel_Calculation_Functions::VALUE();
  1835. }
  1836. $yValueCount = count($yValues);
  1837. $xValueCount = count($xValues);
  1838. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  1839. return PHPExcel_Calculation_Functions::NA();
  1840. } elseif ($yValueCount == 1) {
  1841. return 0;
  1842. }
  1843. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues, $const);
  1844. if ($stats) {
  1845. return array(
  1846. array(
  1847. $bestFitLinear->getSlope(),
  1848. $bestFitLinear->getSlopeSE(),
  1849. $bestFitLinear->getGoodnessOfFit(),
  1850. $bestFitLinear->getF(),
  1851. $bestFitLinear->getSSRegression(),
  1852. ),
  1853. array(
  1854. $bestFitLinear->getIntersect(),
  1855. $bestFitLinear->getIntersectSE(),
  1856. $bestFitLinear->getStdevOfResiduals(),
  1857. $bestFitLinear->getDFResiduals(),
  1858. $bestFitLinear->getSSResiduals()
  1859. )
  1860. );
  1861. } else {
  1862. return array(
  1863. $bestFitLinear->getSlope(),
  1864. $bestFitLinear->getIntersect()
  1865. );
  1866. }
  1867. }
  1868. /**
  1869. * LOGEST
  1870. *
  1871. * Calculates an exponential curve that best fits the X and Y data series,
  1872. * and then returns an array that describes the line.
  1873. *
  1874. * @param array of mixed Data Series Y
  1875. * @param array of mixed Data Series X
  1876. * @param boolean A logical value specifying whether to force the intersect to equal 0.
  1877. * @param boolean A logical value specifying whether to return additional regression statistics.
  1878. * @return array
  1879. */
  1880. public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false)
  1881. {
  1882. $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
  1883. $stats = (is_null($stats)) ? false : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats);
  1884. if (is_null($xValues)) {
  1885. $xValues = range(1, count(PHPExcel_Calculation_Functions::flattenArray($yValues)));
  1886. }
  1887. if (!self::checkTrendArrays($yValues, $xValues)) {
  1888. return PHPExcel_Calculation_Functions::VALUE();
  1889. }
  1890. $yValueCount = count($yValues);
  1891. $xValueCount = count($xValues);
  1892. foreach ($yValues as $value) {
  1893. if ($value <= 0.0) {
  1894. return PHPExcel_Calculation_Functions::NaN();
  1895. }
  1896. }
  1897. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  1898. return PHPExcel_Calculation_Functions::NA();
  1899. } elseif ($yValueCount == 1) {
  1900. return 1;
  1901. }
  1902. $bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL, $yValues, $xValues, $const);
  1903. if ($stats) {
  1904. return array(
  1905. array(
  1906. $bestFitExponential->getSlope(),
  1907. $bestFitExponential->getSlopeSE(),
  1908. $bestFitExponential->getGoodnessOfFit(),
  1909. $bestFitExponential->getF(),
  1910. $bestFitExponential->getSSRegression(),
  1911. ),
  1912. array(
  1913. $bestFitExponential->getIntersect(),
  1914. $bestFitExponential->getIntersectSE(),
  1915. $bestFitExponential->getStdevOfResiduals(),
  1916. $bestFitExponential->getDFResiduals(),
  1917. $bestFitExponential->getSSResiduals()
  1918. )
  1919. );
  1920. } else {
  1921. return array(
  1922. $bestFitExponential->getSlope(),
  1923. $bestFitExponential->getIntersect()
  1924. );
  1925. }
  1926. }
  1927. /**
  1928. * LOGINV
  1929. *
  1930. * Returns the inverse of the normal cumulative distribution
  1931. *
  1932. * @param float $probability
  1933. * @param float $mean
  1934. * @param float $stdDev
  1935. * @return float
  1936. *
  1937. * @todo Try implementing P J Acklam's refinement algorithm for greater
  1938. * accuracy if I can get my head round the mathematics
  1939. * (as described at) http://home.online.no/~pjacklam/notes/invnorm/
  1940. */
  1941. public static function LOGINV($probability, $mean, $stdDev)
  1942. {
  1943. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  1944. $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
  1945. $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
  1946. if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
  1947. if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) {
  1948. return PHPExcel_Calculation_Functions::NaN();
  1949. }
  1950. return exp($mean + $stdDev * self::NORMSINV($probability));
  1951. }
  1952. return PHPExcel_Calculation_Functions::VALUE();
  1953. }
  1954. /**
  1955. * LOGNORMDIST
  1956. *
  1957. * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed
  1958. * with parameters mean and standard_dev.
  1959. *
  1960. * @param float $value
  1961. * @param float $mean
  1962. * @param float $stdDev
  1963. * @return float
  1964. */
  1965. public static function LOGNORMDIST($value, $mean, $stdDev)
  1966. {
  1967. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  1968. $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
  1969. $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
  1970. if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
  1971. if (($value <= 0) || ($stdDev <= 0)) {
  1972. return PHPExcel_Calculation_Functions::NaN();
  1973. }
  1974. return self::NORMSDIST((log($value) - $mean) / $stdDev);
  1975. }
  1976. return PHPExcel_Calculation_Functions::VALUE();
  1977. }
  1978. /**
  1979. * MAX
  1980. *
  1981. * MAX returns the value of the element of the values passed that has the highest value,
  1982. * with negative numbers considered smaller than positive numbers.
  1983. *
  1984. * Excel Function:
  1985. * MAX(value1[,value2[, ...]])
  1986. *
  1987. * @access public
  1988. * @category Statistical Functions
  1989. * @param mixed $arg,... Data values
  1990. * @return float
  1991. */
  1992. public static function MAX()
  1993. {
  1994. $returnValue = null;
  1995. // Loop through arguments
  1996. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  1997. foreach ($aArgs as $arg) {
  1998. // Is it a numeric value?
  1999. if ((is_numeric($arg)) && (!is_string($arg))) {
  2000. if ((is_null($returnValue)) || ($arg > $returnValue)) {
  2001. $returnValue = $arg;
  2002. }
  2003. }
  2004. }
  2005. if (is_null($returnValue)) {
  2006. return 0;
  2007. }
  2008. return $returnValue;
  2009. }
  2010. /**
  2011. * MAXA
  2012. *
  2013. * Returns the greatest value in a list of arguments, including numbers, text, and logical values
  2014. *
  2015. * Excel Function:
  2016. * MAXA(value1[,value2[, ...]])
  2017. *
  2018. * @access public
  2019. * @category Statistical Functions
  2020. * @param mixed $arg,... Data values
  2021. * @return float
  2022. */
  2023. public static function MAXA()
  2024. {
  2025. $returnValue = null;
  2026. // Loop through arguments
  2027. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  2028. foreach ($aArgs as $arg) {
  2029. // Is it a numeric value?
  2030. if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
  2031. if (is_bool($arg)) {
  2032. $arg = (integer) $arg;
  2033. } elseif (is_string($arg)) {
  2034. $arg = 0;
  2035. }
  2036. if ((is_null($returnValue)) || ($arg > $returnValue)) {
  2037. $returnValue = $arg;
  2038. }
  2039. }
  2040. }
  2041. if (is_null($returnValue)) {
  2042. return 0;
  2043. }
  2044. return $returnValue;
  2045. }
  2046. /**
  2047. * MAXIF
  2048. *
  2049. * Counts the maximum value within a range of cells that contain numbers within the list of arguments
  2050. *
  2051. * Excel Function:
  2052. * MAXIF(value1[,value2[, ...]],condition)
  2053. *
  2054. * @access public
  2055. * @category Mathematical and Trigonometric Functions
  2056. * @param mixed $arg,... Data values
  2057. * @param string $condition The criteria that defines which cells will be checked.
  2058. * @return float
  2059. */
  2060. public static function MAXIF($aArgs, $condition, $sumArgs = array())
  2061. {
  2062. $returnValue = null;
  2063. $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
  2064. $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);
  2065. if (empty($sumArgs)) {
  2066. $sumArgs = $aArgs;
  2067. }
  2068. $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
  2069. // Loop through arguments
  2070. foreach ($aArgs as $key => $arg) {
  2071. if (!is_numeric($arg)) {
  2072. $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
  2073. }
  2074. $testCondition = '='.$arg.$condition;
  2075. if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
  2076. if ((is_null($returnValue)) || ($arg > $returnValue)) {
  2077. $returnValue = $arg;
  2078. }
  2079. }
  2080. }
  2081. return $returnValue;
  2082. }
  2083. /**
  2084. * MEDIAN
  2085. *
  2086. * Returns the median of the given numbers. The median is the number in the middle of a set of numbers.
  2087. *
  2088. * Excel Function:
  2089. * MEDIAN(value1[,value2[, ...]])
  2090. *
  2091. * @access public
  2092. * @category Statistical Functions
  2093. * @param mixed $arg,... Data values
  2094. * @return float
  2095. */
  2096. public static function MEDIAN()
  2097. {
  2098. $returnValue = PHPExcel_Calculation_Functions::NaN();
  2099. $mArgs = array();
  2100. // Loop through arguments
  2101. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  2102. foreach ($aArgs as $arg) {
  2103. // Is it a numeric value?
  2104. if ((is_numeric($arg)) && (!is_string($arg))) {
  2105. $mArgs[] = $arg;
  2106. }
  2107. }
  2108. $mValueCount = count($mArgs);
  2109. if ($mValueCount > 0) {
  2110. sort($mArgs, SORT_NUMERIC);
  2111. $mValueCount = $mValueCount / 2;
  2112. if ($mValueCount == floor($mValueCount)) {
  2113. $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2;
  2114. } else {
  2115. $mValueCount = floor($mValueCount);
  2116. $returnValue = $mArgs[$mValueCount];
  2117. }
  2118. }
  2119. return $returnValue;
  2120. }
  2121. /**
  2122. * MIN
  2123. *
  2124. * MIN returns the value of the element of the values passed that has the smallest value,
  2125. * with negative numbers considered smaller than positive numbers.
  2126. *
  2127. * Excel Function:
  2128. * MIN(value1[,value2[, ...]])
  2129. *
  2130. * @access public
  2131. * @category Statistical Functions
  2132. * @param mixed $arg,... Data values
  2133. * @return float
  2134. */
  2135. public static function MIN()
  2136. {
  2137. $returnValue = null;
  2138. // Loop through arguments
  2139. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  2140. foreach ($aArgs as $arg) {
  2141. // Is it a numeric value?
  2142. if ((is_numeric($arg)) && (!is_string($arg))) {
  2143. if ((is_null($returnValue)) || ($arg < $returnValue)) {
  2144. $returnValue = $arg;
  2145. }
  2146. }
  2147. }
  2148. if (is_null($returnValue)) {
  2149. return 0;
  2150. }
  2151. return $returnValue;
  2152. }
  2153. /**
  2154. * MINA
  2155. *
  2156. * Returns the smallest value in a list of arguments, including numbers, text, and logical values
  2157. *
  2158. * Excel Function:
  2159. * MINA(value1[,value2[, ...]])
  2160. *
  2161. * @access public
  2162. * @category Statistical Functions
  2163. * @param mixed $arg,... Data values
  2164. * @return float
  2165. */
  2166. public static function MINA()
  2167. {
  2168. $returnValue = null;
  2169. // Loop through arguments
  2170. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  2171. foreach ($aArgs as $arg) {
  2172. // Is it a numeric value?
  2173. if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) {
  2174. if (is_bool($arg)) {
  2175. $arg = (integer) $arg;
  2176. } elseif (is_string($arg)) {
  2177. $arg = 0;
  2178. }
  2179. if ((is_null($returnValue)) || ($arg < $returnValue)) {
  2180. $returnValue = $arg;
  2181. }
  2182. }
  2183. }
  2184. if (is_null($returnValue)) {
  2185. return 0;
  2186. }
  2187. return $returnValue;
  2188. }
  2189. /**
  2190. * MINIF
  2191. *
  2192. * Returns the minimum value within a range of cells that contain numbers within the list of arguments
  2193. *
  2194. * Excel Function:
  2195. * MINIF(value1[,value2[, ...]],condition)
  2196. *
  2197. * @access public
  2198. * @category Mathematical and Trigonometric Functions
  2199. * @param mixed $arg,... Data values
  2200. * @param string $condition The criteria that defines which cells will be checked.
  2201. * @return float
  2202. */
  2203. public static function MINIF($aArgs, $condition, $sumArgs = array())
  2204. {
  2205. $returnValue = null;
  2206. $aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs);
  2207. $sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs);
  2208. if (empty($sumArgs)) {
  2209. $sumArgs = $aArgs;
  2210. }
  2211. $condition = PHPExcel_Calculation_Functions::ifCondition($condition);
  2212. // Loop through arguments
  2213. foreach ($aArgs as $key => $arg) {
  2214. if (!is_numeric($arg)) {
  2215. $arg = PHPExcel_Calculation::wrapResult(strtoupper($arg));
  2216. }
  2217. $testCondition = '='.$arg.$condition;
  2218. if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) {
  2219. if ((is_null($returnValue)) || ($arg < $returnValue)) {
  2220. $returnValue = $arg;
  2221. }
  2222. }
  2223. }
  2224. return $returnValue;
  2225. }
  2226. //
  2227. // Special variant of array_count_values that isn't limited to strings and integers,
  2228. // but can work with floating point numbers as values
  2229. //
  2230. private static function modeCalc($data)
  2231. {
  2232. $frequencyArray = array();
  2233. foreach ($data as $datum) {
  2234. $found = false;
  2235. foreach ($frequencyArray as $key => $value) {
  2236. if ((string) $value['value'] == (string) $datum) {
  2237. ++$frequencyArray[$key]['frequency'];
  2238. $found = true;
  2239. break;
  2240. }
  2241. }
  2242. if (!$found) {
  2243. $frequencyArray[] = array(
  2244. 'value' => $datum,
  2245. 'frequency' => 1
  2246. );
  2247. }
  2248. }
  2249. foreach ($frequencyArray as $key => $value) {
  2250. $frequencyList[$key] = $value['frequency'];
  2251. $valueList[$key] = $value['value'];
  2252. }
  2253. array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray);
  2254. if ($frequencyArray[0]['frequency'] == 1) {
  2255. return PHPExcel_Calculation_Functions::NA();
  2256. }
  2257. return $frequencyArray[0]['value'];
  2258. }
  2259. /**
  2260. * MODE
  2261. *
  2262. * Returns the most frequently occurring, or repetitive, value in an array or range of data
  2263. *
  2264. * Excel Function:
  2265. * MODE(value1[,value2[, ...]])
  2266. *
  2267. * @access public
  2268. * @category Statistical Functions
  2269. * @param mixed $arg,... Data values
  2270. * @return float
  2271. */
  2272. public static function MODE()
  2273. {
  2274. $returnValue = PHPExcel_Calculation_Functions::NA();
  2275. // Loop through arguments
  2276. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  2277. $mArgs = array();
  2278. foreach ($aArgs as $arg) {
  2279. // Is it a numeric value?
  2280. if ((is_numeric($arg)) && (!is_string($arg))) {
  2281. $mArgs[] = $arg;
  2282. }
  2283. }
  2284. if (!empty($mArgs)) {
  2285. return self::modeCalc($mArgs);
  2286. }
  2287. return $returnValue;
  2288. }
  2289. /**
  2290. * NEGBINOMDIST
  2291. *
  2292. * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that
  2293. * there will be number_f failures before the number_s-th success, when the constant
  2294. * probability of a success is probability_s. This function is similar to the binomial
  2295. * distribution, except that the number of successes is fixed, and the number of trials is
  2296. * variable. Like the binomial, trials are assumed to be independent.
  2297. *
  2298. * @param float $failures Number of Failures
  2299. * @param float $successes Threshold number of Successes
  2300. * @param float $probability Probability of success on each trial
  2301. * @return float
  2302. *
  2303. */
  2304. public static function NEGBINOMDIST($failures, $successes, $probability)
  2305. {
  2306. $failures = floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures));
  2307. $successes = floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes));
  2308. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  2309. if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) {
  2310. if (($failures < 0) || ($successes < 1)) {
  2311. return PHPExcel_Calculation_Functions::NaN();
  2312. } elseif (($probability < 0) || ($probability > 1)) {
  2313. return PHPExcel_Calculation_Functions::NaN();
  2314. }
  2315. if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) {
  2316. if (($failures + $successes - 1) <= 0) {
  2317. return PHPExcel_Calculation_Functions::NaN();
  2318. }
  2319. }
  2320. return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * (pow($probability, $successes)) * (pow(1 - $probability, $failures));
  2321. }
  2322. return PHPExcel_Calculation_Functions::VALUE();
  2323. }
  2324. /**
  2325. * NORMDIST
  2326. *
  2327. * Returns the normal distribution for the specified mean and standard deviation. This
  2328. * function has a very wide range of applications in statistics, including hypothesis
  2329. * testing.
  2330. *
  2331. * @param float $value
  2332. * @param float $mean Mean Value
  2333. * @param float $stdDev Standard Deviation
  2334. * @param boolean $cumulative
  2335. * @return float
  2336. *
  2337. */
  2338. public static function NORMDIST($value, $mean, $stdDev, $cumulative)
  2339. {
  2340. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  2341. $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
  2342. $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
  2343. if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
  2344. if ($stdDev < 0) {
  2345. return PHPExcel_Calculation_Functions::NaN();
  2346. }
  2347. if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
  2348. if ($cumulative) {
  2349. return 0.5 * (1 + PHPExcel_Calculation_Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2))));
  2350. } else {
  2351. return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean, 2) / (2 * ($stdDev * $stdDev))));
  2352. }
  2353. }
  2354. }
  2355. return PHPExcel_Calculation_Functions::VALUE();
  2356. }
  2357. /**
  2358. * NORMINV
  2359. *
  2360. * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.
  2361. *
  2362. * @param float $value
  2363. * @param float $mean Mean Value
  2364. * @param float $stdDev Standard Deviation
  2365. * @return float
  2366. *
  2367. */
  2368. public static function NORMINV($probability, $mean, $stdDev)
  2369. {
  2370. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  2371. $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
  2372. $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
  2373. if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
  2374. if (($probability < 0) || ($probability > 1)) {
  2375. return PHPExcel_Calculation_Functions::NaN();
  2376. }
  2377. if ($stdDev < 0) {
  2378. return PHPExcel_Calculation_Functions::NaN();
  2379. }
  2380. return (self::inverseNcdf($probability) * $stdDev) + $mean;
  2381. }
  2382. return PHPExcel_Calculation_Functions::VALUE();
  2383. }
  2384. /**
  2385. * NORMSDIST
  2386. *
  2387. * Returns the standard normal cumulative distribution function. The distribution has
  2388. * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a
  2389. * table of standard normal curve areas.
  2390. *
  2391. * @param float $value
  2392. * @return float
  2393. */
  2394. public static function NORMSDIST($value)
  2395. {
  2396. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  2397. return self::NORMDIST($value, 0, 1, true);
  2398. }
  2399. /**
  2400. * NORMSINV
  2401. *
  2402. * Returns the inverse of the standard normal cumulative distribution
  2403. *
  2404. * @param float $value
  2405. * @return float
  2406. */
  2407. public static function NORMSINV($value)
  2408. {
  2409. return self::NORMINV($value, 0, 1);
  2410. }
  2411. /**
  2412. * PERCENTILE
  2413. *
  2414. * Returns the nth percentile of values in a range..
  2415. *
  2416. * Excel Function:
  2417. * PERCENTILE(value1[,value2[, ...]],entry)
  2418. *
  2419. * @access public
  2420. * @category Statistical Functions
  2421. * @param mixed $arg,... Data values
  2422. * @param float $entry Percentile value in the range 0..1, inclusive.
  2423. * @return float
  2424. */
  2425. public static function PERCENTILE()
  2426. {
  2427. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  2428. // Calculate
  2429. $entry = array_pop($aArgs);
  2430. if ((is_numeric($entry)) && (!is_string($entry))) {
  2431. if (($entry < 0) || ($entry > 1)) {
  2432. return PHPExcel_Calculation_Functions::NaN();
  2433. }
  2434. $mArgs = array();
  2435. foreach ($aArgs as $arg) {
  2436. // Is it a numeric value?
  2437. if ((is_numeric($arg)) && (!is_string($arg))) {
  2438. $mArgs[] = $arg;
  2439. }
  2440. }
  2441. $mValueCount = count($mArgs);
  2442. if ($mValueCount > 0) {
  2443. sort($mArgs);
  2444. $count = self::COUNT($mArgs);
  2445. $index = $entry * ($count-1);
  2446. $iBase = floor($index);
  2447. if ($index == $iBase) {
  2448. return $mArgs[$index];
  2449. } else {
  2450. $iNext = $iBase + 1;
  2451. $iProportion = $index - $iBase;
  2452. return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ;
  2453. }
  2454. }
  2455. }
  2456. return PHPExcel_Calculation_Functions::VALUE();
  2457. }
  2458. /**
  2459. * PERCENTRANK
  2460. *
  2461. * Returns the rank of a value in a data set as a percentage of the data set.
  2462. *
  2463. * @param array of number An array of, or a reference to, a list of numbers.
  2464. * @param number The number whose rank you want to find.
  2465. * @param number The number of significant digits for the returned percentage value.
  2466. * @return float
  2467. */
  2468. public static function PERCENTRANK($valueSet, $value, $significance = 3)
  2469. {
  2470. $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);
  2471. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  2472. $significance = (is_null($significance)) ? 3 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance);
  2473. foreach ($valueSet as $key => $valueEntry) {
  2474. if (!is_numeric($valueEntry)) {
  2475. unset($valueSet[$key]);
  2476. }
  2477. }
  2478. sort($valueSet, SORT_NUMERIC);
  2479. $valueCount = count($valueSet);
  2480. if ($valueCount == 0) {
  2481. return PHPExcel_Calculation_Functions::NaN();
  2482. }
  2483. $valueAdjustor = $valueCount - 1;
  2484. if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) {
  2485. return PHPExcel_Calculation_Functions::NA();
  2486. }
  2487. $pos = array_search($value, $valueSet);
  2488. if ($pos === false) {
  2489. $pos = 0;
  2490. $testValue = $valueSet[0];
  2491. while ($testValue < $value) {
  2492. $testValue = $valueSet[++$pos];
  2493. }
  2494. --$pos;
  2495. $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos]));
  2496. }
  2497. return round($pos / $valueAdjustor, $significance);
  2498. }
  2499. /**
  2500. * PERMUT
  2501. *
  2502. * Returns the number of permutations for a given number of objects that can be
  2503. * selected from number objects. A permutation is any set or subset of objects or
  2504. * events where internal order is significant. Permutations are different from
  2505. * combinations, for which the internal order is not significant. Use this function
  2506. * for lottery-style probability calculations.
  2507. *
  2508. * @param int $numObjs Number of different objects
  2509. * @param int $numInSet Number of objects in each permutation
  2510. * @return int Number of permutations
  2511. */
  2512. public static function PERMUT($numObjs, $numInSet)
  2513. {
  2514. $numObjs = PHPExcel_Calculation_Functions::flattenSingleValue($numObjs);
  2515. $numInSet = PHPExcel_Calculation_Functions::flattenSingleValue($numInSet);
  2516. if ((is_numeric($numObjs)) && (is_numeric($numInSet))) {
  2517. $numInSet = floor($numInSet);
  2518. if ($numObjs < $numInSet) {
  2519. return PHPExcel_Calculation_Functions::NaN();
  2520. }
  2521. return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet));
  2522. }
  2523. return PHPExcel_Calculation_Functions::VALUE();
  2524. }
  2525. /**
  2526. * POISSON
  2527. *
  2528. * Returns the Poisson distribution. A common application of the Poisson distribution
  2529. * is predicting the number of events over a specific time, such as the number of
  2530. * cars arriving at a toll plaza in 1 minute.
  2531. *
  2532. * @param float $value
  2533. * @param float $mean Mean Value
  2534. * @param boolean $cumulative
  2535. * @return float
  2536. *
  2537. */
  2538. public static function POISSON($value, $mean, $cumulative)
  2539. {
  2540. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  2541. $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
  2542. if ((is_numeric($value)) && (is_numeric($mean))) {
  2543. if (($value < 0) || ($mean <= 0)) {
  2544. return PHPExcel_Calculation_Functions::NaN();
  2545. }
  2546. if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
  2547. if ($cumulative) {
  2548. $summer = 0;
  2549. for ($i = 0; $i <= floor($value); ++$i) {
  2550. $summer += pow($mean, $i) / PHPExcel_Calculation_MathTrig::FACT($i);
  2551. }
  2552. return exp(0-$mean) * $summer;
  2553. } else {
  2554. return (exp(0-$mean) * pow($mean, $value)) / PHPExcel_Calculation_MathTrig::FACT($value);
  2555. }
  2556. }
  2557. }
  2558. return PHPExcel_Calculation_Functions::VALUE();
  2559. }
  2560. /**
  2561. * QUARTILE
  2562. *
  2563. * Returns the quartile of a data set.
  2564. *
  2565. * Excel Function:
  2566. * QUARTILE(value1[,value2[, ...]],entry)
  2567. *
  2568. * @access public
  2569. * @category Statistical Functions
  2570. * @param mixed $arg,... Data values
  2571. * @param int $entry Quartile value in the range 1..3, inclusive.
  2572. * @return float
  2573. */
  2574. public static function QUARTILE()
  2575. {
  2576. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  2577. // Calculate
  2578. $entry = floor(array_pop($aArgs));
  2579. if ((is_numeric($entry)) && (!is_string($entry))) {
  2580. $entry /= 4;
  2581. if (($entry < 0) || ($entry > 1)) {
  2582. return PHPExcel_Calculation_Functions::NaN();
  2583. }
  2584. return self::PERCENTILE($aArgs, $entry);
  2585. }
  2586. return PHPExcel_Calculation_Functions::VALUE();
  2587. }
  2588. /**
  2589. * RANK
  2590. *
  2591. * Returns the rank of a number in a list of numbers.
  2592. *
  2593. * @param number The number whose rank you want to find.
  2594. * @param array of number An array of, or a reference to, a list of numbers.
  2595. * @param mixed Order to sort the values in the value set
  2596. * @return float
  2597. */
  2598. public static function RANK($value, $valueSet, $order = 0)
  2599. {
  2600. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  2601. $valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet);
  2602. $order = (is_null($order)) ? 0 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($order);
  2603. foreach ($valueSet as $key => $valueEntry) {
  2604. if (!is_numeric($valueEntry)) {
  2605. unset($valueSet[$key]);
  2606. }
  2607. }
  2608. if ($order == 0) {
  2609. rsort($valueSet, SORT_NUMERIC);
  2610. } else {
  2611. sort($valueSet, SORT_NUMERIC);
  2612. }
  2613. $pos = array_search($value, $valueSet);
  2614. if ($pos === false) {
  2615. return PHPExcel_Calculation_Functions::NA();
  2616. }
  2617. return ++$pos;
  2618. }
  2619. /**
  2620. * RSQ
  2621. *
  2622. * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's.
  2623. *
  2624. * @param array of mixed Data Series Y
  2625. * @param array of mixed Data Series X
  2626. * @return float
  2627. */
  2628. public static function RSQ($yValues, $xValues)
  2629. {
  2630. if (!self::checkTrendArrays($yValues, $xValues)) {
  2631. return PHPExcel_Calculation_Functions::VALUE();
  2632. }
  2633. $yValueCount = count($yValues);
  2634. $xValueCount = count($xValues);
  2635. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  2636. return PHPExcel_Calculation_Functions::NA();
  2637. } elseif ($yValueCount == 1) {
  2638. return PHPExcel_Calculation_Functions::DIV0();
  2639. }
  2640. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
  2641. return $bestFitLinear->getGoodnessOfFit();
  2642. }
  2643. /**
  2644. * SKEW
  2645. *
  2646. * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry
  2647. * of a distribution around its mean. Positive skewness indicates a distribution with an
  2648. * asymmetric tail extending toward more positive values. Negative skewness indicates a
  2649. * distribution with an asymmetric tail extending toward more negative values.
  2650. *
  2651. * @param array Data Series
  2652. * @return float
  2653. */
  2654. public static function SKEW()
  2655. {
  2656. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  2657. $mean = self::AVERAGE($aArgs);
  2658. $stdDev = self::STDEV($aArgs);
  2659. $count = $summer = 0;
  2660. // Loop through arguments
  2661. foreach ($aArgs as $k => $arg) {
  2662. if ((is_bool($arg)) &&
  2663. (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
  2664. } else {
  2665. // Is it a numeric value?
  2666. if ((is_numeric($arg)) && (!is_string($arg))) {
  2667. $summer += pow((($arg - $mean) / $stdDev), 3);
  2668. ++$count;
  2669. }
  2670. }
  2671. }
  2672. if ($count > 2) {
  2673. return $summer * ($count / (($count-1) * ($count-2)));
  2674. }
  2675. return PHPExcel_Calculation_Functions::DIV0();
  2676. }
  2677. /**
  2678. * SLOPE
  2679. *
  2680. * Returns the slope of the linear regression line through data points in known_y's and known_x's.
  2681. *
  2682. * @param array of mixed Data Series Y
  2683. * @param array of mixed Data Series X
  2684. * @return float
  2685. */
  2686. public static function SLOPE($yValues, $xValues)
  2687. {
  2688. if (!self::checkTrendArrays($yValues, $xValues)) {
  2689. return PHPExcel_Calculation_Functions::VALUE();
  2690. }
  2691. $yValueCount = count($yValues);
  2692. $xValueCount = count($xValues);
  2693. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  2694. return PHPExcel_Calculation_Functions::NA();
  2695. } elseif ($yValueCount == 1) {
  2696. return PHPExcel_Calculation_Functions::DIV0();
  2697. }
  2698. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
  2699. return $bestFitLinear->getSlope();
  2700. }
  2701. /**
  2702. * SMALL
  2703. *
  2704. * Returns the nth smallest value in a data set. You can use this function to
  2705. * select a value based on its relative standing.
  2706. *
  2707. * Excel Function:
  2708. * SMALL(value1[,value2[, ...]],entry)
  2709. *
  2710. * @access public
  2711. * @category Statistical Functions
  2712. * @param mixed $arg,... Data values
  2713. * @param int $entry Position (ordered from the smallest) in the array or range of data to return
  2714. * @return float
  2715. */
  2716. public static function SMALL()
  2717. {
  2718. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  2719. // Calculate
  2720. $entry = array_pop($aArgs);
  2721. if ((is_numeric($entry)) && (!is_string($entry))) {
  2722. $mArgs = array();
  2723. foreach ($aArgs as $arg) {
  2724. // Is it a numeric value?
  2725. if ((is_numeric($arg)) && (!is_string($arg))) {
  2726. $mArgs[] = $arg;
  2727. }
  2728. }
  2729. $count = self::COUNT($mArgs);
  2730. $entry = floor(--$entry);
  2731. if (($entry < 0) || ($entry >= $count) || ($count == 0)) {
  2732. return PHPExcel_Calculation_Functions::NaN();
  2733. }
  2734. sort($mArgs);
  2735. return $mArgs[$entry];
  2736. }
  2737. return PHPExcel_Calculation_Functions::VALUE();
  2738. }
  2739. /**
  2740. * STANDARDIZE
  2741. *
  2742. * Returns a normalized value from a distribution characterized by mean and standard_dev.
  2743. *
  2744. * @param float $value Value to normalize
  2745. * @param float $mean Mean Value
  2746. * @param float $stdDev Standard Deviation
  2747. * @return float Standardized value
  2748. */
  2749. public static function STANDARDIZE($value, $mean, $stdDev)
  2750. {
  2751. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  2752. $mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean);
  2753. $stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev);
  2754. if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) {
  2755. if ($stdDev <= 0) {
  2756. return PHPExcel_Calculation_Functions::NaN();
  2757. }
  2758. return ($value - $mean) / $stdDev ;
  2759. }
  2760. return PHPExcel_Calculation_Functions::VALUE();
  2761. }
  2762. /**
  2763. * STDEV
  2764. *
  2765. * Estimates standard deviation based on a sample. The standard deviation is a measure of how
  2766. * widely values are dispersed from the average value (the mean).
  2767. *
  2768. * Excel Function:
  2769. * STDEV(value1[,value2[, ...]])
  2770. *
  2771. * @access public
  2772. * @category Statistical Functions
  2773. * @param mixed $arg,... Data values
  2774. * @return float
  2775. */
  2776. public static function STDEV()
  2777. {
  2778. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  2779. // Return value
  2780. $returnValue = null;
  2781. $aMean = self::AVERAGE($aArgs);
  2782. if (!is_null($aMean)) {
  2783. $aCount = -1;
  2784. foreach ($aArgs as $k => $arg) {
  2785. if ((is_bool($arg)) &&
  2786. ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
  2787. $arg = (integer) $arg;
  2788. }
  2789. // Is it a numeric value?
  2790. if ((is_numeric($arg)) && (!is_string($arg))) {
  2791. if (is_null($returnValue)) {
  2792. $returnValue = pow(($arg - $aMean), 2);
  2793. } else {
  2794. $returnValue += pow(($arg - $aMean), 2);
  2795. }
  2796. ++$aCount;
  2797. }
  2798. }
  2799. // Return
  2800. if (($aCount > 0) && ($returnValue >= 0)) {
  2801. return sqrt($returnValue / $aCount);
  2802. }
  2803. }
  2804. return PHPExcel_Calculation_Functions::DIV0();
  2805. }
  2806. /**
  2807. * STDEVA
  2808. *
  2809. * Estimates standard deviation based on a sample, including numbers, text, and logical values
  2810. *
  2811. * Excel Function:
  2812. * STDEVA(value1[,value2[, ...]])
  2813. *
  2814. * @access public
  2815. * @category Statistical Functions
  2816. * @param mixed $arg,... Data values
  2817. * @return float
  2818. */
  2819. public static function STDEVA()
  2820. {
  2821. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  2822. $returnValue = null;
  2823. $aMean = self::AVERAGEA($aArgs);
  2824. if (!is_null($aMean)) {
  2825. $aCount = -1;
  2826. foreach ($aArgs as $k => $arg) {
  2827. if ((is_bool($arg)) &&
  2828. (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
  2829. } else {
  2830. // Is it a numeric value?
  2831. if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
  2832. if (is_bool($arg)) {
  2833. $arg = (integer) $arg;
  2834. } elseif (is_string($arg)) {
  2835. $arg = 0;
  2836. }
  2837. if (is_null($returnValue)) {
  2838. $returnValue = pow(($arg - $aMean), 2);
  2839. } else {
  2840. $returnValue += pow(($arg - $aMean), 2);
  2841. }
  2842. ++$aCount;
  2843. }
  2844. }
  2845. }
  2846. if (($aCount > 0) && ($returnValue >= 0)) {
  2847. return sqrt($returnValue / $aCount);
  2848. }
  2849. }
  2850. return PHPExcel_Calculation_Functions::DIV0();
  2851. }
  2852. /**
  2853. * STDEVP
  2854. *
  2855. * Calculates standard deviation based on the entire population
  2856. *
  2857. * Excel Function:
  2858. * STDEVP(value1[,value2[, ...]])
  2859. *
  2860. * @access public
  2861. * @category Statistical Functions
  2862. * @param mixed $arg,... Data values
  2863. * @return float
  2864. */
  2865. public static function STDEVP()
  2866. {
  2867. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  2868. $returnValue = null;
  2869. $aMean = self::AVERAGE($aArgs);
  2870. if (!is_null($aMean)) {
  2871. $aCount = 0;
  2872. foreach ($aArgs as $k => $arg) {
  2873. if ((is_bool($arg)) &&
  2874. ((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) {
  2875. $arg = (integer) $arg;
  2876. }
  2877. // Is it a numeric value?
  2878. if ((is_numeric($arg)) && (!is_string($arg))) {
  2879. if (is_null($returnValue)) {
  2880. $returnValue = pow(($arg - $aMean), 2);
  2881. } else {
  2882. $returnValue += pow(($arg - $aMean), 2);
  2883. }
  2884. ++$aCount;
  2885. }
  2886. }
  2887. if (($aCount > 0) && ($returnValue >= 0)) {
  2888. return sqrt($returnValue / $aCount);
  2889. }
  2890. }
  2891. return PHPExcel_Calculation_Functions::DIV0();
  2892. }
  2893. /**
  2894. * STDEVPA
  2895. *
  2896. * Calculates standard deviation based on the entire population, including numbers, text, and logical values
  2897. *
  2898. * Excel Function:
  2899. * STDEVPA(value1[,value2[, ...]])
  2900. *
  2901. * @access public
  2902. * @category Statistical Functions
  2903. * @param mixed $arg,... Data values
  2904. * @return float
  2905. */
  2906. public static function STDEVPA()
  2907. {
  2908. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  2909. $returnValue = null;
  2910. $aMean = self::AVERAGEA($aArgs);
  2911. if (!is_null($aMean)) {
  2912. $aCount = 0;
  2913. foreach ($aArgs as $k => $arg) {
  2914. if ((is_bool($arg)) &&
  2915. (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
  2916. } else {
  2917. // Is it a numeric value?
  2918. if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
  2919. if (is_bool($arg)) {
  2920. $arg = (integer) $arg;
  2921. } elseif (is_string($arg)) {
  2922. $arg = 0;
  2923. }
  2924. if (is_null($returnValue)) {
  2925. $returnValue = pow(($arg - $aMean), 2);
  2926. } else {
  2927. $returnValue += pow(($arg - $aMean), 2);
  2928. }
  2929. ++$aCount;
  2930. }
  2931. }
  2932. }
  2933. if (($aCount > 0) && ($returnValue >= 0)) {
  2934. return sqrt($returnValue / $aCount);
  2935. }
  2936. }
  2937. return PHPExcel_Calculation_Functions::DIV0();
  2938. }
  2939. /**
  2940. * STEYX
  2941. *
  2942. * Returns the standard error of the predicted y-value for each x in the regression.
  2943. *
  2944. * @param array of mixed Data Series Y
  2945. * @param array of mixed Data Series X
  2946. * @return float
  2947. */
  2948. public static function STEYX($yValues, $xValues)
  2949. {
  2950. if (!self::checkTrendArrays($yValues, $xValues)) {
  2951. return PHPExcel_Calculation_Functions::VALUE();
  2952. }
  2953. $yValueCount = count($yValues);
  2954. $xValueCount = count($xValues);
  2955. if (($yValueCount == 0) || ($yValueCount != $xValueCount)) {
  2956. return PHPExcel_Calculation_Functions::NA();
  2957. } elseif ($yValueCount == 1) {
  2958. return PHPExcel_Calculation_Functions::DIV0();
  2959. }
  2960. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues);
  2961. return $bestFitLinear->getStdevOfResiduals();
  2962. }
  2963. /**
  2964. * TDIST
  2965. *
  2966. * Returns the probability of Student's T distribution.
  2967. *
  2968. * @param float $value Value for the function
  2969. * @param float $degrees degrees of freedom
  2970. * @param float $tails number of tails (1 or 2)
  2971. * @return float
  2972. */
  2973. public static function TDIST($value, $degrees, $tails)
  2974. {
  2975. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  2976. $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
  2977. $tails = floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails));
  2978. if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) {
  2979. if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) {
  2980. return PHPExcel_Calculation_Functions::NaN();
  2981. }
  2982. // tdist, which finds the probability that corresponds to a given value
  2983. // of t with k degrees of freedom. This algorithm is translated from a
  2984. // pascal function on p81 of "Statistical Computing in Pascal" by D
  2985. // Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd:
  2986. // London). The above Pascal algorithm is itself a translation of the
  2987. // fortran algoritm "AS 3" by B E Cooper of the Atlas Computer
  2988. // Laboratory as reported in (among other places) "Applied Statistics
  2989. // Algorithms", editied by P Griffiths and I D Hill (1985; Ellis
  2990. // Horwood Ltd.; W. Sussex, England).
  2991. $tterm = $degrees;
  2992. $ttheta = atan2($value, sqrt($tterm));
  2993. $tc = cos($ttheta);
  2994. $ts = sin($ttheta);
  2995. $tsum = 0;
  2996. if (($degrees % 2) == 1) {
  2997. $ti = 3;
  2998. $tterm = $tc;
  2999. } else {
  3000. $ti = 2;
  3001. $tterm = 1;
  3002. }
  3003. $tsum = $tterm;
  3004. while ($ti < $degrees) {
  3005. $tterm *= $tc * $tc * ($ti - 1) / $ti;
  3006. $tsum += $tterm;
  3007. $ti += 2;
  3008. }
  3009. $tsum *= $ts;
  3010. if (($degrees % 2) == 1) {
  3011. $tsum = M_2DIVPI * ($tsum + $ttheta);
  3012. }
  3013. $tValue = 0.5 * (1 + $tsum);
  3014. if ($tails == 1) {
  3015. return 1 - abs($tValue);
  3016. } else {
  3017. return 1 - abs((1 - $tValue) - $tValue);
  3018. }
  3019. }
  3020. return PHPExcel_Calculation_Functions::VALUE();
  3021. }
  3022. /**
  3023. * TINV
  3024. *
  3025. * Returns the one-tailed probability of the chi-squared distribution.
  3026. *
  3027. * @param float $probability Probability for the function
  3028. * @param float $degrees degrees of freedom
  3029. * @return float
  3030. */
  3031. public static function TINV($probability, $degrees)
  3032. {
  3033. $probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability);
  3034. $degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees));
  3035. if ((is_numeric($probability)) && (is_numeric($degrees))) {
  3036. $xLo = 100;
  3037. $xHi = 0;
  3038. $x = $xNew = 1;
  3039. $dx = 1;
  3040. $i = 0;
  3041. while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) {
  3042. // Apply Newton-Raphson step
  3043. $result = self::TDIST($x, $degrees, 2);
  3044. $error = $result - $probability;
  3045. if ($error == 0.0) {
  3046. $dx = 0;
  3047. } elseif ($error < 0.0) {
  3048. $xLo = $x;
  3049. } else {
  3050. $xHi = $x;
  3051. }
  3052. // Avoid division by zero
  3053. if ($result != 0.0) {
  3054. $dx = $error / $result;
  3055. $xNew = $x - $dx;
  3056. }
  3057. // If the NR fails to converge (which for example may be the
  3058. // case if the initial guess is too rough) we apply a bisection
  3059. // step to determine a more narrow interval around the root.
  3060. if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) {
  3061. $xNew = ($xLo + $xHi) / 2;
  3062. $dx = $xNew - $x;
  3063. }
  3064. $x = $xNew;
  3065. }
  3066. if ($i == MAX_ITERATIONS) {
  3067. return PHPExcel_Calculation_Functions::NA();
  3068. }
  3069. return round($x, 12);
  3070. }
  3071. return PHPExcel_Calculation_Functions::VALUE();
  3072. }
  3073. /**
  3074. * TREND
  3075. *
  3076. * Returns values along a linear trend
  3077. *
  3078. * @param array of mixed Data Series Y
  3079. * @param array of mixed Data Series X
  3080. * @param array of mixed Values of X for which we want to find Y
  3081. * @param boolean A logical value specifying whether to force the intersect to equal 0.
  3082. * @return array of float
  3083. */
  3084. public static function TREND($yValues, $xValues = array(), $newValues = array(), $const = true)
  3085. {
  3086. $yValues = PHPExcel_Calculation_Functions::flattenArray($yValues);
  3087. $xValues = PHPExcel_Calculation_Functions::flattenArray($xValues);
  3088. $newValues = PHPExcel_Calculation_Functions::flattenArray($newValues);
  3089. $const = (is_null($const)) ? true : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const);
  3090. $bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR, $yValues, $xValues, $const);
  3091. if (empty($newValues)) {
  3092. $newValues = $bestFitLinear->getXValues();
  3093. }
  3094. $returnArray = array();
  3095. foreach ($newValues as $xValue) {
  3096. $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue);
  3097. }
  3098. return $returnArray;
  3099. }
  3100. /**
  3101. * TRIMMEAN
  3102. *
  3103. * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean
  3104. * taken by excluding a percentage of data points from the top and bottom tails
  3105. * of a data set.
  3106. *
  3107. * Excel Function:
  3108. * TRIMEAN(value1[,value2[, ...]], $discard)
  3109. *
  3110. * @access public
  3111. * @category Statistical Functions
  3112. * @param mixed $arg,... Data values
  3113. * @param float $discard Percentage to discard
  3114. * @return float
  3115. */
  3116. public static function TRIMMEAN()
  3117. {
  3118. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  3119. // Calculate
  3120. $percent = array_pop($aArgs);
  3121. if ((is_numeric($percent)) && (!is_string($percent))) {
  3122. if (($percent < 0) || ($percent > 1)) {
  3123. return PHPExcel_Calculation_Functions::NaN();
  3124. }
  3125. $mArgs = array();
  3126. foreach ($aArgs as $arg) {
  3127. // Is it a numeric value?
  3128. if ((is_numeric($arg)) && (!is_string($arg))) {
  3129. $mArgs[] = $arg;
  3130. }
  3131. }
  3132. $discard = floor(self::COUNT($mArgs) * $percent / 2);
  3133. sort($mArgs);
  3134. for ($i=0; $i < $discard; ++$i) {
  3135. array_pop($mArgs);
  3136. array_shift($mArgs);
  3137. }
  3138. return self::AVERAGE($mArgs);
  3139. }
  3140. return PHPExcel_Calculation_Functions::VALUE();
  3141. }
  3142. /**
  3143. * VARFunc
  3144. *
  3145. * Estimates variance based on a sample.
  3146. *
  3147. * Excel Function:
  3148. * VAR(value1[,value2[, ...]])
  3149. *
  3150. * @access public
  3151. * @category Statistical Functions
  3152. * @param mixed $arg,... Data values
  3153. * @return float
  3154. */
  3155. public static function VARFunc()
  3156. {
  3157. $returnValue = PHPExcel_Calculation_Functions::DIV0();
  3158. $summerA = $summerB = 0;
  3159. // Loop through arguments
  3160. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  3161. $aCount = 0;
  3162. foreach ($aArgs as $arg) {
  3163. if (is_bool($arg)) {
  3164. $arg = (integer) $arg;
  3165. }
  3166. // Is it a numeric value?
  3167. if ((is_numeric($arg)) && (!is_string($arg))) {
  3168. $summerA += ($arg * $arg);
  3169. $summerB += $arg;
  3170. ++$aCount;
  3171. }
  3172. }
  3173. if ($aCount > 1) {
  3174. $summerA *= $aCount;
  3175. $summerB *= $summerB;
  3176. $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
  3177. }
  3178. return $returnValue;
  3179. }
  3180. /**
  3181. * VARA
  3182. *
  3183. * Estimates variance based on a sample, including numbers, text, and logical values
  3184. *
  3185. * Excel Function:
  3186. * VARA(value1[,value2[, ...]])
  3187. *
  3188. * @access public
  3189. * @category Statistical Functions
  3190. * @param mixed $arg,... Data values
  3191. * @return float
  3192. */
  3193. public static function VARA()
  3194. {
  3195. $returnValue = PHPExcel_Calculation_Functions::DIV0();
  3196. $summerA = $summerB = 0;
  3197. // Loop through arguments
  3198. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  3199. $aCount = 0;
  3200. foreach ($aArgs as $k => $arg) {
  3201. if ((is_string($arg)) &&
  3202. (PHPExcel_Calculation_Functions::isValue($k))) {
  3203. return PHPExcel_Calculation_Functions::VALUE();
  3204. } elseif ((is_string($arg)) &&
  3205. (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
  3206. } else {
  3207. // Is it a numeric value?
  3208. if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
  3209. if (is_bool($arg)) {
  3210. $arg = (integer) $arg;
  3211. } elseif (is_string($arg)) {
  3212. $arg = 0;
  3213. }
  3214. $summerA += ($arg * $arg);
  3215. $summerB += $arg;
  3216. ++$aCount;
  3217. }
  3218. }
  3219. }
  3220. if ($aCount > 1) {
  3221. $summerA *= $aCount;
  3222. $summerB *= $summerB;
  3223. $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1));
  3224. }
  3225. return $returnValue;
  3226. }
  3227. /**
  3228. * VARP
  3229. *
  3230. * Calculates variance based on the entire population
  3231. *
  3232. * Excel Function:
  3233. * VARP(value1[,value2[, ...]])
  3234. *
  3235. * @access public
  3236. * @category Statistical Functions
  3237. * @param mixed $arg,... Data values
  3238. * @return float
  3239. */
  3240. public static function VARP()
  3241. {
  3242. // Return value
  3243. $returnValue = PHPExcel_Calculation_Functions::DIV0();
  3244. $summerA = $summerB = 0;
  3245. // Loop through arguments
  3246. $aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args());
  3247. $aCount = 0;
  3248. foreach ($aArgs as $arg) {
  3249. if (is_bool($arg)) {
  3250. $arg = (integer) $arg;
  3251. }
  3252. // Is it a numeric value?
  3253. if ((is_numeric($arg)) && (!is_string($arg))) {
  3254. $summerA += ($arg * $arg);
  3255. $summerB += $arg;
  3256. ++$aCount;
  3257. }
  3258. }
  3259. if ($aCount > 0) {
  3260. $summerA *= $aCount;
  3261. $summerB *= $summerB;
  3262. $returnValue = ($summerA - $summerB) / ($aCount * $aCount);
  3263. }
  3264. return $returnValue;
  3265. }
  3266. /**
  3267. * VARPA
  3268. *
  3269. * Calculates variance based on the entire population, including numbers, text, and logical values
  3270. *
  3271. * Excel Function:
  3272. * VARPA(value1[,value2[, ...]])
  3273. *
  3274. * @access public
  3275. * @category Statistical Functions
  3276. * @param mixed $arg,... Data values
  3277. * @return float
  3278. */
  3279. public static function VARPA()
  3280. {
  3281. $returnValue = PHPExcel_Calculation_Functions::DIV0();
  3282. $summerA = $summerB = 0;
  3283. // Loop through arguments
  3284. $aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args());
  3285. $aCount = 0;
  3286. foreach ($aArgs as $k => $arg) {
  3287. if ((is_string($arg)) &&
  3288. (PHPExcel_Calculation_Functions::isValue($k))) {
  3289. return PHPExcel_Calculation_Functions::VALUE();
  3290. } elseif ((is_string($arg)) &&
  3291. (!PHPExcel_Calculation_Functions::isMatrixValue($k))) {
  3292. } else {
  3293. // Is it a numeric value?
  3294. if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) {
  3295. if (is_bool($arg)) {
  3296. $arg = (integer) $arg;
  3297. } elseif (is_string($arg)) {
  3298. $arg = 0;
  3299. }
  3300. $summerA += ($arg * $arg);
  3301. $summerB += $arg;
  3302. ++$aCount;
  3303. }
  3304. }
  3305. }
  3306. if ($aCount > 0) {
  3307. $summerA *= $aCount;
  3308. $summerB *= $summerB;
  3309. $returnValue = ($summerA - $summerB) / ($aCount * $aCount);
  3310. }
  3311. return $returnValue;
  3312. }
  3313. /**
  3314. * WEIBULL
  3315. *
  3316. * Returns the Weibull distribution. Use this distribution in reliability
  3317. * analysis, such as calculating a device's mean time to failure.
  3318. *
  3319. * @param float $value
  3320. * @param float $alpha Alpha Parameter
  3321. * @param float $beta Beta Parameter
  3322. * @param boolean $cumulative
  3323. * @return float
  3324. *
  3325. */
  3326. public static function WEIBULL($value, $alpha, $beta, $cumulative)
  3327. {
  3328. $value = PHPExcel_Calculation_Functions::flattenSingleValue($value);
  3329. $alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha);
  3330. $beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta);
  3331. if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) {
  3332. if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) {
  3333. return PHPExcel_Calculation_Functions::NaN();
  3334. }
  3335. if ((is_numeric($cumulative)) || (is_bool($cumulative))) {
  3336. if ($cumulative) {
  3337. return 1 - exp(0 - pow($value / $beta, $alpha));
  3338. } else {
  3339. return ($alpha / pow($beta, $alpha)) * pow($value, $alpha - 1) * exp(0 - pow($value / $beta, $alpha));
  3340. }
  3341. }
  3342. }
  3343. return PHPExcel_Calculation_Functions::VALUE();
  3344. }
  3345. /**
  3346. * ZTEST
  3347. *
  3348. * Returns the Weibull distribution. Use this distribution in reliability
  3349. * analysis, such as calculating a device's mean time to failure.
  3350. *
  3351. * @param float $dataSet
  3352. * @param float $m0 Alpha Parameter
  3353. * @param float $sigma Beta Parameter
  3354. * @param boolean $cumulative
  3355. * @return float
  3356. *
  3357. */
  3358. public static function ZTEST($dataSet, $m0, $sigma = null)
  3359. {
  3360. $dataSet = PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet);
  3361. $m0 = PHPExcel_Calculation_Functions::flattenSingleValue($m0);
  3362. $sigma = PHPExcel_Calculation_Functions::flattenSingleValue($sigma);
  3363. if (is_null($sigma)) {
  3364. $sigma = self::STDEV($dataSet);
  3365. }
  3366. $n = count($dataSet);
  3367. return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / SQRT($n)));
  3368. }
  3369. }