( function () { function computeTangents( geometry ) { geometry.computeTangents(); console.warn( 'THREE.BufferGeometryUtils: .computeTangents() has been removed. Use THREE.BufferGeometry.computeTangents() instead.' ); } /** * @param {Array} geometries * @param {Boolean} useGroups * @return {BufferGeometry} */ function mergeBufferGeometries( geometries, useGroups = false ) { const isIndexed = geometries[ 0 ].index !== null; const attributesUsed = new Set( Object.keys( geometries[ 0 ].attributes ) ); const morphAttributesUsed = new Set( Object.keys( geometries[ 0 ].morphAttributes ) ); const attributes = {}; const morphAttributes = {}; const morphTargetsRelative = geometries[ 0 ].morphTargetsRelative; const mergedGeometry = new THREE.BufferGeometry(); let offset = 0; for ( let i = 0; i < geometries.length; ++ i ) { const geometry = geometries[ i ]; let attributesCount = 0; // ensure that all geometries are indexed, or none if ( isIndexed !== ( geometry.index !== null ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them.' ); return null; } // gather attributes, exit early if they're different for ( const name in geometry.attributes ) { if ( ! attributesUsed.has( name ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.' ); return null; } if ( attributes[ name ] === undefined ) attributes[ name ] = []; attributes[ name ].push( geometry.attributes[ name ] ); attributesCount ++; } // ensure geometries have the same number of attributes if ( attributesCount !== attributesUsed.size ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. Make sure all geometries have the same number of attributes.' ); return null; } // gather morph attributes, exit early if they're different if ( morphTargetsRelative !== geometry.morphTargetsRelative ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. .morphTargetsRelative must be consistent throughout all geometries.' ); return null; } for ( const name in geometry.morphAttributes ) { if ( ! morphAttributesUsed.has( name ) ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. .morphAttributes must be consistent throughout all geometries.' ); return null; } if ( morphAttributes[ name ] === undefined ) morphAttributes[ name ] = []; morphAttributes[ name ].push( geometry.morphAttributes[ name ] ); } // gather .userData mergedGeometry.userData.mergedUserData = mergedGeometry.userData.mergedUserData || []; mergedGeometry.userData.mergedUserData.push( geometry.userData ); if ( useGroups ) { let count; if ( isIndexed ) { count = geometry.index.count; } else if ( geometry.attributes.position !== undefined ) { count = geometry.attributes.position.count; } else { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed with geometry at index ' + i + '. The geometry must have either an index or a position attribute' ); return null; } mergedGeometry.addGroup( offset, count, i ); offset += count; } } // merge indices if ( isIndexed ) { let indexOffset = 0; const mergedIndex = []; for ( let i = 0; i < geometries.length; ++ i ) { const index = geometries[ i ].index; for ( let j = 0; j < index.count; ++ j ) { mergedIndex.push( index.getX( j ) + indexOffset ); } indexOffset += geometries[ i ].attributes.position.count; } mergedGeometry.setIndex( mergedIndex ); } // merge attributes for ( const name in attributes ) { const mergedAttribute = mergeBufferAttributes( attributes[ name ] ); if ( ! mergedAttribute ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed while trying to merge the ' + name + ' attribute.' ); return null; } mergedGeometry.setAttribute( name, mergedAttribute ); } // merge morph attributes for ( const name in morphAttributes ) { const numMorphTargets = morphAttributes[ name ][ 0 ].length; if ( numMorphTargets === 0 ) break; mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {}; mergedGeometry.morphAttributes[ name ] = []; for ( let i = 0; i < numMorphTargets; ++ i ) { const morphAttributesToMerge = []; for ( let j = 0; j < morphAttributes[ name ].length; ++ j ) { morphAttributesToMerge.push( morphAttributes[ name ][ j ][ i ] ); } const mergedMorphAttribute = mergeBufferAttributes( morphAttributesToMerge ); if ( ! mergedMorphAttribute ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferGeometries() failed while trying to merge the ' + name + ' morphAttribute.' ); return null; } mergedGeometry.morphAttributes[ name ].push( mergedMorphAttribute ); } } return mergedGeometry; } /** * @param {Array} attributes * @return {BufferAttribute} */ function mergeBufferAttributes( attributes ) { let TypedArray; let itemSize; let normalized; let arrayLength = 0; for ( let i = 0; i < attributes.length; ++ i ) { const attribute = attributes[ i ]; if ( attribute.isInterleavedBufferAttribute ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferAttributes() failed. InterleavedBufferAttributes are not supported.' ); return null; } if ( TypedArray === undefined ) TypedArray = attribute.array.constructor; if ( TypedArray !== attribute.array.constructor ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferAttributes() failed. THREE.BufferAttribute.array must be of consistent array types across matching attributes.' ); return null; } if ( itemSize === undefined ) itemSize = attribute.itemSize; if ( itemSize !== attribute.itemSize ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferAttributes() failed. THREE.BufferAttribute.itemSize must be consistent across matching attributes.' ); return null; } if ( normalized === undefined ) normalized = attribute.normalized; if ( normalized !== attribute.normalized ) { console.error( 'THREE.BufferGeometryUtils: .mergeBufferAttributes() failed. THREE.BufferAttribute.normalized must be consistent across matching attributes.' ); return null; } arrayLength += attribute.array.length; } const array = new TypedArray( arrayLength ); let offset = 0; for ( let i = 0; i < attributes.length; ++ i ) { array.set( attributes[ i ].array, offset ); offset += attributes[ i ].array.length; } return new THREE.BufferAttribute( array, itemSize, normalized ); } /** * @param {Array} attributes * @return {Array} */ function interleaveAttributes( attributes ) { // Interleaves the provided attributes into an THREE.InterleavedBuffer and returns // a set of InterleavedBufferAttributes for each attribute let TypedArray; let arrayLength = 0; let stride = 0; // calculate the the length and type of the interleavedBuffer for ( let i = 0, l = attributes.length; i < l; ++ i ) { const attribute = attributes[ i ]; if ( TypedArray === undefined ) TypedArray = attribute.array.constructor; if ( TypedArray !== attribute.array.constructor ) { console.error( 'AttributeBuffers of different types cannot be interleaved' ); return null; } arrayLength += attribute.array.length; stride += attribute.itemSize; } // Create the set of buffer attributes const interleavedBuffer = new THREE.InterleavedBuffer( new TypedArray( arrayLength ), stride ); let offset = 0; const res = []; const getters = [ 'getX', 'getY', 'getZ', 'getW' ]; const setters = [ 'setX', 'setY', 'setZ', 'setW' ]; for ( let j = 0, l = attributes.length; j < l; j ++ ) { const attribute = attributes[ j ]; const itemSize = attribute.itemSize; const count = attribute.count; const iba = new THREE.InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, attribute.normalized ); res.push( iba ); offset += itemSize; // Move the data for each attribute into the new interleavedBuffer // at the appropriate offset for ( let c = 0; c < count; c ++ ) { for ( let k = 0; k < itemSize; k ++ ) { iba[ setters[ k ] ]( c, attribute[ getters[ k ] ]( c ) ); } } } return res; } /** * @param {Array} geometry * @return {number} */ function estimateBytesUsed( geometry ) { // Return the estimated memory used by this geometry in bytes // Calculate using itemSize, count, and BYTES_PER_ELEMENT to account // for InterleavedBufferAttributes. let mem = 0; for ( const name in geometry.attributes ) { const attr = geometry.getAttribute( name ); mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT; } const indices = geometry.getIndex(); mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0; return mem; } /** * @param {BufferGeometry} geometry * @param {number} tolerance * @return {BufferGeometry>} */ function mergeVertices( geometry, tolerance = 1e-4 ) { tolerance = Math.max( tolerance, Number.EPSILON ); // Generate an index buffer if the geometry doesn't have one, or optimize it // if it's already available. const hashToIndex = {}; const indices = geometry.getIndex(); const positions = geometry.getAttribute( 'position' ); const vertexCount = indices ? indices.count : positions.count; // next value for triangle indices let nextIndex = 0; // attributes and new attribute arrays const attributeNames = Object.keys( geometry.attributes ); const attrArrays = {}; const morphAttrsArrays = {}; const newIndices = []; const getters = [ 'getX', 'getY', 'getZ', 'getW' ]; // initialize the arrays for ( let i = 0, l = attributeNames.length; i < l; i ++ ) { const name = attributeNames[ i ]; attrArrays[ name ] = []; const morphAttr = geometry.morphAttributes[ name ]; if ( morphAttr ) { morphAttrsArrays[ name ] = new Array( morphAttr.length ).fill().map( () => [] ); } } // convert the error tolerance to an amount of decimal places to truncate to const decimalShift = Math.log10( 1 / tolerance ); const shiftMultiplier = Math.pow( 10, decimalShift ); for ( let i = 0; i < vertexCount; i ++ ) { const index = indices ? indices.getX( i ) : i; // Generate a hash for the vertex attributes at the current index 'i' let hash = ''; for ( let j = 0, l = attributeNames.length; j < l; j ++ ) { const name = attributeNames[ j ]; const attribute = geometry.getAttribute( name ); const itemSize = attribute.itemSize; for ( let k = 0; k < itemSize; k ++ ) { // double tilde truncates the decimal value hash += `${~ ~ ( attribute[ getters[ k ] ]( index ) * shiftMultiplier )},`; } } // Add another reference to the vertex if it's already // used by another index if ( hash in hashToIndex ) { newIndices.push( hashToIndex[ hash ] ); } else { // copy data to the new index in the attribute arrays for ( let j = 0, l = attributeNames.length; j < l; j ++ ) { const name = attributeNames[ j ]; const attribute = geometry.getAttribute( name ); const morphAttr = geometry.morphAttributes[ name ]; const itemSize = attribute.itemSize; const newarray = attrArrays[ name ]; const newMorphArrays = morphAttrsArrays[ name ]; for ( let k = 0; k < itemSize; k ++ ) { const getterFunc = getters[ k ]; newarray.push( attribute[ getterFunc ]( index ) ); if ( morphAttr ) { for ( let m = 0, ml = morphAttr.length; m < ml; m ++ ) { newMorphArrays[ m ].push( morphAttr[ m ][ getterFunc ]( index ) ); } } } } hashToIndex[ hash ] = nextIndex; newIndices.push( nextIndex ); nextIndex ++; } } // Generate typed arrays from new attribute arrays and update // the attributeBuffers const result = geometry.clone(); for ( let i = 0, l = attributeNames.length; i < l; i ++ ) { const name = attributeNames[ i ]; const oldAttribute = geometry.getAttribute( name ); const buffer = new oldAttribute.array.constructor( attrArrays[ name ] ); const attribute = new THREE.BufferAttribute( buffer, oldAttribute.itemSize, oldAttribute.normalized ); result.setAttribute( name, attribute ); // Update the attribute arrays if ( name in morphAttrsArrays ) { for ( let j = 0; j < morphAttrsArrays[ name ].length; j ++ ) { const oldMorphAttribute = geometry.morphAttributes[ name ][ j ]; const buffer = new oldMorphAttribute.array.constructor( morphAttrsArrays[ name ][ j ] ); const morphAttribute = new THREE.BufferAttribute( buffer, oldMorphAttribute.itemSize, oldMorphAttribute.normalized ); result.morphAttributes[ name ][ j ] = morphAttribute; } } } // indices result.setIndex( newIndices ); return result; } /** * @param {BufferGeometry} geometry * @param {number} drawMode * @return {BufferGeometry>} */ function toTrianglesDrawMode( geometry, drawMode ) { if ( drawMode === THREE.TrianglesDrawMode ) { console.warn( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles.' ); return geometry; } if ( drawMode === THREE.TriangleFanDrawMode || drawMode === THREE.TriangleStripDrawMode ) { let index = geometry.getIndex(); // generate index if not present if ( index === null ) { const indices = []; const position = geometry.getAttribute( 'position' ); if ( position !== undefined ) { for ( let i = 0; i < position.count; i ++ ) { indices.push( i ); } geometry.setIndex( indices ); index = geometry.getIndex(); } else { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' ); return geometry; } } // const numberOfTriangles = index.count - 2; const newIndices = []; if ( drawMode === THREE.TriangleFanDrawMode ) { // gl.TRIANGLE_FAN for ( let i = 1; i <= numberOfTriangles; i ++ ) { newIndices.push( index.getX( 0 ) ); newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); } } else { // gl.TRIANGLE_STRIP for ( let i = 0; i < numberOfTriangles; i ++ ) { if ( i % 2 === 0 ) { newIndices.push( index.getX( i ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i + 2 ) ); } else { newIndices.push( index.getX( i + 2 ) ); newIndices.push( index.getX( i + 1 ) ); newIndices.push( index.getX( i ) ); } } } if ( newIndices.length / 3 !== numberOfTriangles ) { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' ); } // build final geometry const newGeometry = geometry.clone(); newGeometry.setIndex( newIndices ); newGeometry.clearGroups(); return newGeometry; } else { console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:', drawMode ); return geometry; } } /** * Calculates the morphed attributes of a morphed/skinned THREE.BufferGeometry. * Helpful for Raytracing or Decals. * @param {Mesh | Line | Points} object An instance of Mesh, Line or Points. * @return {Object} An Object with original position/normal attributes and morphed ones. */ function computeMorphedAttributes( object ) { if ( object.geometry.isBufferGeometry !== true ) { console.error( 'THREE.BufferGeometryUtils: Geometry is not of type THREE.BufferGeometry.' ); return null; } const _vA = new THREE.Vector3(); const _vB = new THREE.Vector3(); const _vC = new THREE.Vector3(); const _tempA = new THREE.Vector3(); const _tempB = new THREE.Vector3(); const _tempC = new THREE.Vector3(); const _morphA = new THREE.Vector3(); const _morphB = new THREE.Vector3(); const _morphC = new THREE.Vector3(); function _calculateMorphedAttributeData( object, material, attribute, morphAttribute, morphTargetsRelative, a, b, c, modifiedAttributeArray ) { _vA.fromBufferAttribute( attribute, a ); _vB.fromBufferAttribute( attribute, b ); _vC.fromBufferAttribute( attribute, c ); const morphInfluences = object.morphTargetInfluences; if ( material.morphTargets && morphAttribute && morphInfluences ) { _morphA.set( 0, 0, 0 ); _morphB.set( 0, 0, 0 ); _morphC.set( 0, 0, 0 ); for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) { const influence = morphInfluences[ i ]; const morph = morphAttribute[ i ]; if ( influence === 0 ) continue; _tempA.fromBufferAttribute( morph, a ); _tempB.fromBufferAttribute( morph, b ); _tempC.fromBufferAttribute( morph, c ); if ( morphTargetsRelative ) { _morphA.addScaledVector( _tempA, influence ); _morphB.addScaledVector( _tempB, influence ); _morphC.addScaledVector( _tempC, influence ); } else { _morphA.addScaledVector( _tempA.sub( _vA ), influence ); _morphB.addScaledVector( _tempB.sub( _vB ), influence ); _morphC.addScaledVector( _tempC.sub( _vC ), influence ); } } _vA.add( _morphA ); _vB.add( _morphB ); _vC.add( _morphC ); } if ( object.isSkinnedMesh ) { object.boneTransform( a, _vA ); object.boneTransform( b, _vB ); object.boneTransform( c, _vC ); } modifiedAttributeArray[ a * 3 + 0 ] = _vA.x; modifiedAttributeArray[ a * 3 + 1 ] = _vA.y; modifiedAttributeArray[ a * 3 + 2 ] = _vA.z; modifiedAttributeArray[ b * 3 + 0 ] = _vB.x; modifiedAttributeArray[ b * 3 + 1 ] = _vB.y; modifiedAttributeArray[ b * 3 + 2 ] = _vB.z; modifiedAttributeArray[ c * 3 + 0 ] = _vC.x; modifiedAttributeArray[ c * 3 + 1 ] = _vC.y; modifiedAttributeArray[ c * 3 + 2 ] = _vC.z; } const geometry = object.geometry; const material = object.material; let a, b, c; const index = geometry.index; const positionAttribute = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const normalAttribute = geometry.attributes.normal; const morphNormal = geometry.morphAttributes.position; const groups = geometry.groups; const drawRange = geometry.drawRange; let i, j, il, jl; let group, groupMaterial; let start, end; const modifiedPosition = new Float32Array( positionAttribute.count * positionAttribute.itemSize ); const modifiedNormal = new Float32Array( normalAttribute.count * normalAttribute.itemSize ); if ( index !== null ) { // indexed buffer geometry if ( Array.isArray( material ) ) { for ( i = 0, il = groups.length; i < il; i ++ ) { group = groups[ i ]; groupMaterial = material[ group.materialIndex ]; start = Math.max( group.start, drawRange.start ); end = Math.min( group.start + group.count, drawRange.start + drawRange.count ); for ( j = start, jl = end; j < jl; j += 3 ) { a = index.getX( j ); b = index.getX( j + 1 ); c = index.getX( j + 2 ); _calculateMorphedAttributeData( object, groupMaterial, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, groupMaterial, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max( 0, drawRange.start ); end = Math.min( index.count, drawRange.start + drawRange.count ); for ( i = start, il = end; i < il; i += 3 ) { a = index.getX( i ); b = index.getX( i + 1 ); c = index.getX( i + 2 ); _calculateMorphedAttributeData( object, material, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, material, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else if ( positionAttribute !== undefined ) { // non-indexed buffer geometry if ( Array.isArray( material ) ) { for ( i = 0, il = groups.length; i < il; i ++ ) { group = groups[ i ]; groupMaterial = material[ group.materialIndex ]; start = Math.max( group.start, drawRange.start ); end = Math.min( group.start + group.count, drawRange.start + drawRange.count ); for ( j = start, jl = end; j < jl; j += 3 ) { a = j; b = j + 1; c = j + 2; _calculateMorphedAttributeData( object, groupMaterial, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, groupMaterial, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max( 0, drawRange.start ); end = Math.min( positionAttribute.count, drawRange.start + drawRange.count ); for ( i = start, il = end; i < il; i += 3 ) { a = i; b = i + 1; c = i + 2; _calculateMorphedAttributeData( object, material, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, material, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } const morphedPositionAttribute = new THREE.Float32BufferAttribute( modifiedPosition, 3 ); const morphedNormalAttribute = new THREE.Float32BufferAttribute( modifiedNormal, 3 ); return { positionAttribute: positionAttribute, normalAttribute: normalAttribute, morphedPositionAttribute: morphedPositionAttribute, morphedNormalAttribute: morphedNormalAttribute }; } THREE.BufferGeometryUtils = {}; THREE.BufferGeometryUtils.computeMorphedAttributes = computeMorphedAttributes; THREE.BufferGeometryUtils.computeTangents = computeTangents; THREE.BufferGeometryUtils.estimateBytesUsed = estimateBytesUsed; THREE.BufferGeometryUtils.interleaveAttributes = interleaveAttributes; THREE.BufferGeometryUtils.mergeBufferAttributes = mergeBufferAttributes; THREE.BufferGeometryUtils.mergeBufferGeometries = mergeBufferGeometries; THREE.BufferGeometryUtils.mergeVertices = mergeVertices; THREE.BufferGeometryUtils.toTrianglesDrawMode = toTrianglesDrawMode; } )();