( function () { const _start = new THREE.Vector3(); const _end = new THREE.Vector3(); const _start4 = new THREE.Vector4(); const _end4 = new THREE.Vector4(); const _ssOrigin = new THREE.Vector4(); const _ssOrigin3 = new THREE.Vector3(); const _mvMatrix = new THREE.Matrix4(); const _line = new THREE.Line3(); const _closestPoint = new THREE.Vector3(); const _box = new THREE.Box3(); const _sphere = new THREE.Sphere(); const _clipToWorldVector = new THREE.Vector4(); // Returns the margin required to expand by in world space given the distance from the camera, // line width, resolution, and camera projection function getWorldSpaceHalfWidth( camera, distance, lineWidth, resolution ) { // transform into clip space, adjust the x and y values by the pixel width offset, then // transform back into world space to get world offset. Note clip space is [-1, 1] so full // width does not need to be halved. _clipToWorldVector.set( 0, 0, - distance, 1.0 ).applyMatrix4( camera.projectionMatrix ); _clipToWorldVector.multiplyScalar( 1.0 / _clipToWorldVector.w ); _clipToWorldVector.x = lineWidth / resolution.width; _clipToWorldVector.y = lineWidth / resolution.height; _clipToWorldVector.applyMatrix4( camera.projectionMatrixInverse ); _clipToWorldVector.multiplyScalar( 1.0 / _clipToWorldVector.w ); return Math.abs( Math.max( _clipToWorldVector.x, _clipToWorldVector.y ) ); } class LineSegments2 extends THREE.Mesh { constructor( geometry = new THREE.LineSegmentsGeometry(), material = new THREE.LineMaterial( { color: Math.random() * 0xffffff } ) ) { super( geometry, material ); this.type = 'LineSegments2'; } // for backwards-compatability, but could be a method of THREE.LineSegmentsGeometry... computeLineDistances() { const geometry = this.geometry; const instanceStart = geometry.attributes.instanceStart; const instanceEnd = geometry.attributes.instanceEnd; const lineDistances = new Float32Array( 2 * instanceStart.count ); for ( let i = 0, j = 0, l = instanceStart.count; i < l; i ++, j += 2 ) { _start.fromBufferAttribute( instanceStart, i ); _end.fromBufferAttribute( instanceEnd, i ); lineDistances[ j ] = j === 0 ? 0 : lineDistances[ j - 1 ]; lineDistances[ j + 1 ] = lineDistances[ j ] + _start.distanceTo( _end ); } const instanceDistanceBuffer = new THREE.InstancedInterleavedBuffer( lineDistances, 2, 1 ); // d0, d1 geometry.setAttribute( 'instanceDistanceStart', new THREE.InterleavedBufferAttribute( instanceDistanceBuffer, 1, 0 ) ); // d0 geometry.setAttribute( 'instanceDistanceEnd', new THREE.InterleavedBufferAttribute( instanceDistanceBuffer, 1, 1 ) ); // d1 return this; } raycast( raycaster, intersects ) { if ( raycaster.camera === null ) { console.error( 'LineSegments2: "Raycaster.camera" needs to be set in order to raycast against LineSegments2.' ); } const threshold = raycaster.params.Line2 !== undefined ? raycaster.params.Line2.threshold || 0 : 0; const ray = raycaster.ray; const camera = raycaster.camera; const projectionMatrix = camera.projectionMatrix; const matrixWorld = this.matrixWorld; const geometry = this.geometry; const material = this.material; const resolution = material.resolution; const lineWidth = material.linewidth + threshold; const instanceStart = geometry.attributes.instanceStart; const instanceEnd = geometry.attributes.instanceEnd; // camera forward is negative const near = - camera.near; // // check if we intersect the sphere bounds if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } _sphere.copy( geometry.boundingSphere ).applyMatrix4( matrixWorld ); const distanceToSphere = Math.max( camera.near, _sphere.distanceToPoint( ray.origin ) ); // increase the sphere bounds by the worst case line screen space width const sphereMargin = getWorldSpaceHalfWidth( camera, distanceToSphere, lineWidth, resolution ); _sphere.radius += sphereMargin; if ( raycaster.ray.intersectsSphere( _sphere ) === false ) { return; } // // check if we intersect the box bounds if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } _box.copy( geometry.boundingBox ).applyMatrix4( matrixWorld ); const distanceToBox = Math.max( camera.near, _box.distanceToPoint( ray.origin ) ); // increase the box bounds by the worst case line screen space width const boxMargin = getWorldSpaceHalfWidth( camera, distanceToBox, lineWidth, resolution ); _box.max.x += boxMargin; _box.max.y += boxMargin; _box.max.z += boxMargin; _box.min.x -= boxMargin; _box.min.y -= boxMargin; _box.min.z -= boxMargin; if ( raycaster.ray.intersectsBox( _box ) === false ) { return; } // // pick a point 1 unit out along the ray to avoid the ray origin // sitting at the camera origin which will cause "w" to be 0 when // applying the projection matrix. ray.at( 1, _ssOrigin ); // ndc space [ - 1.0, 1.0 ] _ssOrigin.w = 1; _ssOrigin.applyMatrix4( camera.matrixWorldInverse ); _ssOrigin.applyMatrix4( projectionMatrix ); _ssOrigin.multiplyScalar( 1 / _ssOrigin.w ); // screen space _ssOrigin.x *= resolution.x / 2; _ssOrigin.y *= resolution.y / 2; _ssOrigin.z = 0; _ssOrigin3.copy( _ssOrigin ); _mvMatrix.multiplyMatrices( camera.matrixWorldInverse, matrixWorld ); for ( let i = 0, l = instanceStart.count; i < l; i ++ ) { _start4.fromBufferAttribute( instanceStart, i ); _end4.fromBufferAttribute( instanceEnd, i ); _start4.w = 1; _end4.w = 1; // camera space _start4.applyMatrix4( _mvMatrix ); _end4.applyMatrix4( _mvMatrix ); // skip the segment if it's entirely behind the camera var isBehindCameraNear = _start4.z > near && _end4.z > near; if ( isBehindCameraNear ) { continue; } // trim the segment if it extends behind camera near if ( _start4.z > near ) { const deltaDist = _start4.z - _end4.z; const t = ( _start4.z - near ) / deltaDist; _start4.lerp( _end4, t ); } else if ( _end4.z > near ) { const deltaDist = _end4.z - _start4.z; const t = ( _end4.z - near ) / deltaDist; _end4.lerp( _start4, t ); } // clip space _start4.applyMatrix4( projectionMatrix ); _end4.applyMatrix4( projectionMatrix ); // ndc space [ - 1.0, 1.0 ] _start4.multiplyScalar( 1 / _start4.w ); _end4.multiplyScalar( 1 / _end4.w ); // screen space _start4.x *= resolution.x / 2; _start4.y *= resolution.y / 2; _end4.x *= resolution.x / 2; _end4.y *= resolution.y / 2; // create 2d segment _line.start.copy( _start4 ); _line.start.z = 0; _line.end.copy( _end4 ); _line.end.z = 0; // get closest point on ray to segment const param = _line.closestPointToPointParameter( _ssOrigin3, true ); _line.at( param, _closestPoint ); // check if the intersection point is within clip space const zPos = THREE.MathUtils.lerp( _start4.z, _end4.z, param ); const isInClipSpace = zPos >= - 1 && zPos <= 1; const isInside = _ssOrigin3.distanceTo( _closestPoint ) < lineWidth * 0.5; if ( isInClipSpace && isInside ) { _line.start.fromBufferAttribute( instanceStart, i ); _line.end.fromBufferAttribute( instanceEnd, i ); _line.start.applyMatrix4( matrixWorld ); _line.end.applyMatrix4( matrixWorld ); const pointOnLine = new THREE.Vector3(); const point = new THREE.Vector3(); ray.distanceSqToSegment( _line.start, _line.end, point, pointOnLine ); intersects.push( { point: point, pointOnLine: pointOnLine, distance: ray.origin.distanceTo( point ), object: this, face: null, faceIndex: i, uv: null, uv2: null } ); } } } } LineSegments2.prototype.isLineSegments2 = true; THREE.LineSegments2 = LineSegments2; } )();