( function () { /** * @fileoverview LightningStrike object for creating lightning strikes and voltaic arcs. * * * Usage * * var myRay = new LightningStrike( paramsObject ); * var myRayMesh = new THREE.Mesh( myRay, myMaterial ); * scene.add( myRayMesh ); * ... * myRay.update( currentTime ); * * The "currentTime" can vary its rate, go forwards, backwards or even jump, but it cannot be negative. * * You should normally leave the ray position to (0, 0, 0). You should control it by changing the sourceOffset and destOffset parameters. * * * LightningStrike parameters * * The paramsObject can contain any of the following parameters. * * Legend: * 'LightningStrike' (also called 'ray'): An independent voltaic arc with its ramifications and defined with a set of parameters. * 'Subray': A ramification of the ray. It is not a LightningStrike object. * 'Segment': A linear segment piece of a subray. * 'Leaf segment': A ray segment which cannot be smaller. * * * The following parameters can be changed any time and if they vary smoothly, the ray form will also change smoothly: * * @param {Vector3} sourceOffset The point where the ray starts. * * @param {Vector3} destOffset The point where the ray ends. * * @param {double} timeScale The rate at wich the ray form changes in time. Default: 1 * * @param {double} roughness From 0 to 1. The higher the value, the more wrinkled is the ray. Default: 0.9 * * @param {double} straightness From 0 to 1. The higher the value, the more straight will be a subray path. Default: 0.7 * * @param {Vector3} up0 Ray 'up' direction at the ray starting point. Must be normalized. It should be perpendicular to the ray forward direction but it doesn't matter much. * * @param {Vector3} up1 Like the up0 parameter but at the end of the ray. Must be normalized. * * @param {double} radius0 Radius of the main ray trunk at the start point. Default: 1 * * @param {double} radius1 Radius of the main ray trunk at the end point. Default: 1 * * @param {double} radius0Factor The radius0 of a subray is this factor times the radius0 of its parent subray. Default: 0.5 * * @param {double} radius1Factor The radius1 of a subray is this factor times the radius1 of its parent subray. Default: 0.2 * * @param {minRadius} Minimum value a subray radius0 or radius1 can get. Default: 0.1 * * * The following parameters should not be changed after lightning creation. They can be changed but the ray will change its form abruptly: * * @param {boolean} isEternal If true the ray never extinguishes. Otherwise its life is controlled by the 'birthTime' and 'deathTime' parameters. Default: true if any of those two parameters is undefined. * * @param {double} birthTime The time at which the ray starts its life and begins propagating. Only if isEternal is false. Default: None. * * @param {double} deathTime The time at which the ray ends vanishing and its life. Only if isEternal is false. Default: None. * * @param {double} propagationTimeFactor From 0 to 1. Lifetime factor at which the ray ends propagating and enters the steady phase. For example, 0.1 means it is propagating 1/10 of its lifetime. Default: 0.1 * * @param {double} vanishingTimeFactor From 0 to 1. Lifetime factor at which the ray ends the steady phase and begins vanishing. For example, 0.9 means it is vanishing 1/10 of its lifetime. Default: 0.9 * * @param {double} subrayPeriod Subrays cycle periodically. This is their time period. Default: 4 * * @param {double} subrayDutyCycle From 0 to 1. This is the fraction of time a subray is active. Default: 0.6 * * * These parameters cannot change after lightning creation: * * @param {integer} maxIterations: Greater than 0. The number of ray's leaf segments is 2**maxIterations. Default: 9 * * @param {boolean} isStatic Set to true only for rays which won't change over time and are not attached to moving objects (Rare case). It is used to set the vertex buffers non-dynamic. You can omit calling update() for these rays. * * @param {integer} ramification Greater than 0. Maximum number of child subrays a subray can have. Default: 5 * * @param {integer} maxSubrayRecursion Greater than 0. Maximum level of recursion (subray descendant generations). Default: 3 * * @param {double} recursionProbability From 0 to 1. The lower the value, the less chance each new generation of subrays has to generate new subrays. Default: 0.6 * * @param {boolean} generateUVs If true, the ray geometry will have uv coordinates generated. u runs along the ray, and v across its perimeter. Default: false. * * @param {Object} randomGenerator Set here your random number generator which will seed the THREE.SimplexNoise and other decisions during ray tree creation. * It can be used to generate repeatable rays. For that, set also the noiseSeed parameter, and each ray created with that generator and seed pair will be identical in time. * The randomGenerator parameter should be an object with a random() function similar to Math.random, but seedable. * It must have also a getSeed() method, which returns the current seed, and a setSeed( seed ) method, which accepts as seed a fractional number from 0 to 1, as well as any other number. * The default value is an internal generator for some uses and Math.random for others (It is non-repeatable even if noiseSeed is supplied) * * @param {double} noiseSeed Seed used to make repeatable rays (see the randomGenerator) * * @param {function} onDecideSubrayCreation Set this to change the callback which decides subray creation. You can look at the default callback in the code (createDefaultSubrayCreationCallbacks)for more info. * * @param {function} onSubrayCreation This is another callback, more simple than the previous one. It can be used to adapt the form of subrays or other parameters once a subray has been created and initialized. It is used in the examples to adapt subrays to a sphere or to a plane. * * */ class LightningStrike extends THREE.BufferGeometry { constructor( rayParameters = {} ) { super(); this.type = 'LightningStrike'; // Set parameters, and set undefined parameters to default values this.init( LightningStrike.copyParameters( rayParameters, rayParameters ) ); // Creates and populates the mesh this.createMesh(); } static createRandomGenerator() { const numSeeds = 2053; const seeds = []; for ( let i = 0; i < numSeeds; i ++ ) { seeds.push( Math.random() ); } const generator = { currentSeed: 0, random: function () { const value = seeds[ generator.currentSeed ]; generator.currentSeed = ( generator.currentSeed + 1 ) % numSeeds; return value; }, getSeed: function () { return generator.currentSeed / numSeeds; }, setSeed: function ( seed ) { generator.currentSeed = Math.floor( seed * numSeeds ) % numSeeds; } }; return generator; } static copyParameters( dest = {}, source = {} ) { const vecCopy = function ( v ) { if ( source === dest ) { return v; } else { return v.clone(); } }; dest.sourceOffset = source.sourceOffset !== undefined ? vecCopy( source.sourceOffset ) : new THREE.Vector3( 0, 100, 0 ), dest.destOffset = source.destOffset !== undefined ? vecCopy( source.destOffset ) : new THREE.Vector3( 0, 0, 0 ), dest.timeScale = source.timeScale !== undefined ? source.timeScale : 1, dest.roughness = source.roughness !== undefined ? source.roughness : 0.9, dest.straightness = source.straightness !== undefined ? source.straightness : 0.7, dest.up0 = source.up0 !== undefined ? vecCopy( source.up0 ) : new THREE.Vector3( 0, 0, 1 ); dest.up1 = source.up1 !== undefined ? vecCopy( source.up1 ) : new THREE.Vector3( 0, 0, 1 ), dest.radius0 = source.radius0 !== undefined ? source.radius0 : 1, dest.radius1 = source.radius1 !== undefined ? source.radius1 : 1, dest.radius0Factor = source.radius0Factor !== undefined ? source.radius0Factor : 0.5, dest.radius1Factor = source.radius1Factor !== undefined ? source.radius1Factor : 0.2, dest.minRadius = source.minRadius !== undefined ? source.minRadius : 0.2, // These parameters should not be changed after lightning creation. They can be changed but the ray will change its form abruptly: dest.isEternal = source.isEternal !== undefined ? source.isEternal : source.birthTime === undefined || source.deathTime === undefined, dest.birthTime = source.birthTime, dest.deathTime = source.deathTime, dest.propagationTimeFactor = source.propagationTimeFactor !== undefined ? source.propagationTimeFactor : 0.1, dest.vanishingTimeFactor = source.vanishingTimeFactor !== undefined ? source.vanishingTimeFactor : 0.9, dest.subrayPeriod = source.subrayPeriod !== undefined ? source.subrayPeriod : 4, dest.subrayDutyCycle = source.subrayDutyCycle !== undefined ? source.subrayDutyCycle : 0.6; // These parameters cannot change after lightning creation: dest.maxIterations = source.maxIterations !== undefined ? source.maxIterations : 9; dest.isStatic = source.isStatic !== undefined ? source.isStatic : false; dest.ramification = source.ramification !== undefined ? source.ramification : 5; dest.maxSubrayRecursion = source.maxSubrayRecursion !== undefined ? source.maxSubrayRecursion : 3; dest.recursionProbability = source.recursionProbability !== undefined ? source.recursionProbability : 0.6; dest.generateUVs = source.generateUVs !== undefined ? source.generateUVs : false; dest.randomGenerator = source.randomGenerator, dest.noiseSeed = source.noiseSeed, dest.onDecideSubrayCreation = source.onDecideSubrayCreation, dest.onSubrayCreation = source.onSubrayCreation; return dest; } update( time ) { if ( this.isStatic ) return; if ( this.rayParameters.isEternal || this.rayParameters.birthTime <= time && time <= this.rayParameters.deathTime ) { this.updateMesh( time ); if ( time < this.subrays[ 0 ].endPropagationTime ) { this.state = LightningStrike.RAY_PROPAGATING; } else if ( time > this.subrays[ 0 ].beginVanishingTime ) { this.state = LightningStrike.RAY_VANISHING; } else { this.state = LightningStrike.RAY_STEADY; } this.visible = true; } else { this.visible = false; if ( time < this.rayParameters.birthTime ) { this.state = LightningStrike.RAY_UNBORN; } else { this.state = LightningStrike.RAY_EXTINGUISHED; } } } init( rayParameters ) { // Init all the state from the parameters this.rayParameters = rayParameters; // These parameters cannot change after lightning creation: this.maxIterations = rayParameters.maxIterations !== undefined ? Math.floor( rayParameters.maxIterations ) : 9; rayParameters.maxIterations = this.maxIterations; this.isStatic = rayParameters.isStatic !== undefined ? rayParameters.isStatic : false; rayParameters.isStatic = this.isStatic; this.ramification = rayParameters.ramification !== undefined ? Math.floor( rayParameters.ramification ) : 5; rayParameters.ramification = this.ramification; this.maxSubrayRecursion = rayParameters.maxSubrayRecursion !== undefined ? Math.floor( rayParameters.maxSubrayRecursion ) : 3; rayParameters.maxSubrayRecursion = this.maxSubrayRecursion; this.recursionProbability = rayParameters.recursionProbability !== undefined ? rayParameters.recursionProbability : 0.6; rayParameters.recursionProbability = this.recursionProbability; this.generateUVs = rayParameters.generateUVs !== undefined ? rayParameters.generateUVs : false; rayParameters.generateUVs = this.generateUVs; // Random generator if ( rayParameters.randomGenerator !== undefined ) { this.randomGenerator = rayParameters.randomGenerator; this.seedGenerator = rayParameters.randomGenerator; if ( rayParameters.noiseSeed !== undefined ) { this.seedGenerator.setSeed( rayParameters.noiseSeed ); } } else { this.randomGenerator = LightningStrike.createRandomGenerator(); this.seedGenerator = Math; } // Ray creation callbacks if ( rayParameters.onDecideSubrayCreation !== undefined ) { this.onDecideSubrayCreation = rayParameters.onDecideSubrayCreation; } else { this.createDefaultSubrayCreationCallbacks(); if ( rayParameters.onSubrayCreation !== undefined ) { this.onSubrayCreation = rayParameters.onSubrayCreation; } } // Internal state this.state = LightningStrike.RAY_INITIALIZED; this.maxSubrays = Math.ceil( 1 + Math.pow( this.ramification, Math.max( 0, this.maxSubrayRecursion - 1 ) ) ); rayParameters.maxSubrays = this.maxSubrays; this.maxRaySegments = 2 * ( 1 << this.maxIterations ); this.subrays = []; for ( let i = 0; i < this.maxSubrays; i ++ ) { this.subrays.push( this.createSubray() ); } this.raySegments = []; for ( let i = 0; i < this.maxRaySegments; i ++ ) { this.raySegments.push( this.createSegment() ); } this.time = 0; this.timeFraction = 0; this.currentSegmentCallback = null; this.currentCreateTriangleVertices = this.generateUVs ? this.createTriangleVerticesWithUVs : this.createTriangleVerticesWithoutUVs; this.numSubrays = 0; this.currentSubray = null; this.currentSegmentIndex = 0; this.isInitialSegment = false; this.subrayProbability = 0; this.currentVertex = 0; this.currentIndex = 0; this.currentCoordinate = 0; this.currentUVCoordinate = 0; this.vertices = null; this.uvs = null; this.indices = null; this.positionAttribute = null; this.uvsAttribute = null; this.simplexX = new THREE.SimplexNoise( this.seedGenerator ); this.simplexY = new THREE.SimplexNoise( this.seedGenerator ); this.simplexZ = new THREE.SimplexNoise( this.seedGenerator ); // Temp vectors this.forwards = new THREE.Vector3(); this.forwardsFill = new THREE.Vector3(); this.side = new THREE.Vector3(); this.down = new THREE.Vector3(); this.middlePos = new THREE.Vector3(); this.middleLinPos = new THREE.Vector3(); this.newPos = new THREE.Vector3(); this.vPos = new THREE.Vector3(); this.cross1 = new THREE.Vector3(); } createMesh() { const maxDrawableSegmentsPerSubRay = 1 << this.maxIterations; const maxVerts = 3 * ( maxDrawableSegmentsPerSubRay + 1 ) * this.maxSubrays; const maxIndices = 18 * maxDrawableSegmentsPerSubRay * this.maxSubrays; this.vertices = new Float32Array( maxVerts * 3 ); this.indices = new Uint32Array( maxIndices ); if ( this.generateUVs ) { this.uvs = new Float32Array( maxVerts * 2 ); } // Populate the mesh this.fillMesh( 0 ); this.setIndex( new THREE.Uint32BufferAttribute( this.indices, 1 ) ); this.positionAttribute = new THREE.Float32BufferAttribute( this.vertices, 3 ); this.setAttribute( 'position', this.positionAttribute ); if ( this.generateUVs ) { this.uvsAttribute = new THREE.Float32BufferAttribute( new Float32Array( this.uvs ), 2 ); this.setAttribute( 'uv', this.uvsAttribute ); } if ( ! this.isStatic ) { this.index.usage = THREE.DynamicDrawUsage; this.positionAttribute.usage = THREE.DynamicDrawUsage; if ( this.generateUVs ) { this.uvsAttribute.usage = THREE.DynamicDrawUsage; } } // Store buffers for later modification this.vertices = this.positionAttribute.array; this.indices = this.index.array; if ( this.generateUVs ) { this.uvs = this.uvsAttribute.array; } } updateMesh( time ) { this.fillMesh( time ); this.drawRange.count = this.currentIndex; this.index.needsUpdate = true; this.positionAttribute.needsUpdate = true; if ( this.generateUVs ) { this.uvsAttribute.needsUpdate = true; } } fillMesh( time ) { const scope = this; this.currentVertex = 0; this.currentIndex = 0; this.currentCoordinate = 0; this.currentUVCoordinate = 0; this.fractalRay( time, function fillVertices( segment ) { const subray = scope.currentSubray; if ( time < subray.birthTime ) { //&& ( ! this.rayParameters.isEternal || scope.currentSubray.recursion > 0 ) ) { return; } else if ( this.rayParameters.isEternal && scope.currentSubray.recursion == 0 ) { // Eternal rays don't propagate nor vanish, but its subrays do scope.createPrism( segment ); scope.onDecideSubrayCreation( segment, scope ); } else if ( time < subray.endPropagationTime ) { if ( scope.timeFraction >= segment.fraction0 * subray.propagationTimeFactor ) { // Ray propagation has arrived to this segment scope.createPrism( segment ); scope.onDecideSubrayCreation( segment, scope ); } } else if ( time < subray.beginVanishingTime ) { // Ray is steady (nor propagating nor vanishing) scope.createPrism( segment ); scope.onDecideSubrayCreation( segment, scope ); } else { if ( scope.timeFraction <= subray.vanishingTimeFactor + segment.fraction1 * ( 1 - subray.vanishingTimeFactor ) ) { // Segment has not yet vanished scope.createPrism( segment ); } scope.onDecideSubrayCreation( segment, scope ); } } ); } addNewSubray() { return this.subrays[ this.numSubrays ++ ]; } initSubray( subray, rayParameters ) { subray.pos0.copy( rayParameters.sourceOffset ); subray.pos1.copy( rayParameters.destOffset ); subray.up0.copy( rayParameters.up0 ); subray.up1.copy( rayParameters.up1 ); subray.radius0 = rayParameters.radius0; subray.radius1 = rayParameters.radius1; subray.birthTime = rayParameters.birthTime; subray.deathTime = rayParameters.deathTime; subray.timeScale = rayParameters.timeScale; subray.roughness = rayParameters.roughness; subray.straightness = rayParameters.straightness; subray.propagationTimeFactor = rayParameters.propagationTimeFactor; subray.vanishingTimeFactor = rayParameters.vanishingTimeFactor; subray.maxIterations = this.maxIterations; subray.seed = rayParameters.noiseSeed !== undefined ? rayParameters.noiseSeed : 0; subray.recursion = 0; } fractalRay( time, segmentCallback ) { this.time = time; this.currentSegmentCallback = segmentCallback; this.numSubrays = 0; // Add the top level subray this.initSubray( this.addNewSubray(), this.rayParameters ); // Process all subrays that are being generated until consuming all of them for ( let subrayIndex = 0; subrayIndex < this.numSubrays; subrayIndex ++ ) { const subray = this.subrays[ subrayIndex ]; this.currentSubray = subray; this.randomGenerator.setSeed( subray.seed ); subray.endPropagationTime = THREE.MathUtils.lerp( subray.birthTime, subray.deathTime, subray.propagationTimeFactor ); subray.beginVanishingTime = THREE.MathUtils.lerp( subray.deathTime, subray.birthTime, 1 - subray.vanishingTimeFactor ); const random1 = this.randomGenerator.random; subray.linPos0.set( random1(), random1(), random1() ).multiplyScalar( 1000 ); subray.linPos1.set( random1(), random1(), random1() ).multiplyScalar( 1000 ); this.timeFraction = ( time - subray.birthTime ) / ( subray.deathTime - subray.birthTime ); this.currentSegmentIndex = 0; this.isInitialSegment = true; const segment = this.getNewSegment(); segment.iteration = 0; segment.pos0.copy( subray.pos0 ); segment.pos1.copy( subray.pos1 ); segment.linPos0.copy( subray.linPos0 ); segment.linPos1.copy( subray.linPos1 ); segment.up0.copy( subray.up0 ); segment.up1.copy( subray.up1 ); segment.radius0 = subray.radius0; segment.radius1 = subray.radius1; segment.fraction0 = 0; segment.fraction1 = 1; segment.positionVariationFactor = 1 - subray.straightness; this.subrayProbability = this.ramification * Math.pow( this.recursionProbability, subray.recursion ) / ( 1 << subray.maxIterations ); this.fractalRayRecursive( segment ); } this.currentSegmentCallback = null; this.currentSubray = null; } fractalRayRecursive( segment ) { // Leave recursion condition if ( segment.iteration >= this.currentSubray.maxIterations ) { this.currentSegmentCallback( segment ); return; } // Interpolation this.forwards.subVectors( segment.pos1, segment.pos0 ); let lForwards = this.forwards.length(); if ( lForwards < 0.000001 ) { this.forwards.set( 0, 0, 0.01 ); lForwards = this.forwards.length(); } const middleRadius = ( segment.radius0 + segment.radius1 ) * 0.5; const middleFraction = ( segment.fraction0 + segment.fraction1 ) * 0.5; const timeDimension = this.time * this.currentSubray.timeScale * Math.pow( 2, segment.iteration ); this.middlePos.lerpVectors( segment.pos0, segment.pos1, 0.5 ); this.middleLinPos.lerpVectors( segment.linPos0, segment.linPos1, 0.5 ); const p = this.middleLinPos; // Noise this.newPos.set( this.simplexX.noise4d( p.x, p.y, p.z, timeDimension ), this.simplexY.noise4d( p.x, p.y, p.z, timeDimension ), this.simplexZ.noise4d( p.x, p.y, p.z, timeDimension ) ); this.newPos.multiplyScalar( segment.positionVariationFactor * lForwards ); this.newPos.add( this.middlePos ); // Recursion const newSegment1 = this.getNewSegment(); newSegment1.pos0.copy( segment.pos0 ); newSegment1.pos1.copy( this.newPos ); newSegment1.linPos0.copy( segment.linPos0 ); newSegment1.linPos1.copy( this.middleLinPos ); newSegment1.up0.copy( segment.up0 ); newSegment1.up1.copy( segment.up1 ); newSegment1.radius0 = segment.radius0; newSegment1.radius1 = middleRadius; newSegment1.fraction0 = segment.fraction0; newSegment1.fraction1 = middleFraction; newSegment1.positionVariationFactor = segment.positionVariationFactor * this.currentSubray.roughness; newSegment1.iteration = segment.iteration + 1; const newSegment2 = this.getNewSegment(); newSegment2.pos0.copy( this.newPos ); newSegment2.pos1.copy( segment.pos1 ); newSegment2.linPos0.copy( this.middleLinPos ); newSegment2.linPos1.copy( segment.linPos1 ); this.cross1.crossVectors( segment.up0, this.forwards.normalize() ); newSegment2.up0.crossVectors( this.forwards, this.cross1 ).normalize(); newSegment2.up1.copy( segment.up1 ); newSegment2.radius0 = middleRadius; newSegment2.radius1 = segment.radius1; newSegment2.fraction0 = middleFraction; newSegment2.fraction1 = segment.fraction1; newSegment2.positionVariationFactor = segment.positionVariationFactor * this.currentSubray.roughness; newSegment2.iteration = segment.iteration + 1; this.fractalRayRecursive( newSegment1 ); this.fractalRayRecursive( newSegment2 ); } createPrism( segment ) { // Creates one triangular prism and its vertices at the segment this.forwardsFill.subVectors( segment.pos1, segment.pos0 ).normalize(); if ( this.isInitialSegment ) { this.currentCreateTriangleVertices( segment.pos0, segment.up0, this.forwardsFill, segment.radius0, 0 ); this.isInitialSegment = false; } this.currentCreateTriangleVertices( segment.pos1, segment.up0, this.forwardsFill, segment.radius1, segment.fraction1 ); this.createPrismFaces(); } createTriangleVerticesWithoutUVs( pos, up, forwards, radius ) { // Create an equilateral triangle (only vertices) this.side.crossVectors( up, forwards ).multiplyScalar( radius * LightningStrike.COS30DEG ); this.down.copy( up ).multiplyScalar( - radius * LightningStrike.SIN30DEG ); const p = this.vPos; const v = this.vertices; p.copy( pos ).sub( this.side ).add( this.down ); v[ this.currentCoordinate ++ ] = p.x; v[ this.currentCoordinate ++ ] = p.y; v[ this.currentCoordinate ++ ] = p.z; p.copy( pos ).add( this.side ).add( this.down ); v[ this.currentCoordinate ++ ] = p.x; v[ this.currentCoordinate ++ ] = p.y; v[ this.currentCoordinate ++ ] = p.z; p.copy( up ).multiplyScalar( radius ).add( pos ); v[ this.currentCoordinate ++ ] = p.x; v[ this.currentCoordinate ++ ] = p.y; v[ this.currentCoordinate ++ ] = p.z; this.currentVertex += 3; } createTriangleVerticesWithUVs( pos, up, forwards, radius, u ) { // Create an equilateral triangle (only vertices) this.side.crossVectors( up, forwards ).multiplyScalar( radius * LightningStrike.COS30DEG ); this.down.copy( up ).multiplyScalar( - radius * LightningStrike.SIN30DEG ); const p = this.vPos; const v = this.vertices; const uv = this.uvs; p.copy( pos ).sub( this.side ).add( this.down ); v[ this.currentCoordinate ++ ] = p.x; v[ this.currentCoordinate ++ ] = p.y; v[ this.currentCoordinate ++ ] = p.z; uv[ this.currentUVCoordinate ++ ] = u; uv[ this.currentUVCoordinate ++ ] = 0; p.copy( pos ).add( this.side ).add( this.down ); v[ this.currentCoordinate ++ ] = p.x; v[ this.currentCoordinate ++ ] = p.y; v[ this.currentCoordinate ++ ] = p.z; uv[ this.currentUVCoordinate ++ ] = u; uv[ this.currentUVCoordinate ++ ] = 0.5; p.copy( up ).multiplyScalar( radius ).add( pos ); v[ this.currentCoordinate ++ ] = p.x; v[ this.currentCoordinate ++ ] = p.y; v[ this.currentCoordinate ++ ] = p.z; uv[ this.currentUVCoordinate ++ ] = u; uv[ this.currentUVCoordinate ++ ] = 1; this.currentVertex += 3; } createPrismFaces( vertex /*, index*/ ) { const indices = this.indices; vertex = this.currentVertex - 6; indices[ this.currentIndex ++ ] = vertex + 1; indices[ this.currentIndex ++ ] = vertex + 2; indices[ this.currentIndex ++ ] = vertex + 5; indices[ this.currentIndex ++ ] = vertex + 1; indices[ this.currentIndex ++ ] = vertex + 5; indices[ this.currentIndex ++ ] = vertex + 4; indices[ this.currentIndex ++ ] = vertex + 0; indices[ this.currentIndex ++ ] = vertex + 1; indices[ this.currentIndex ++ ] = vertex + 4; indices[ this.currentIndex ++ ] = vertex + 0; indices[ this.currentIndex ++ ] = vertex + 4; indices[ this.currentIndex ++ ] = vertex + 3; indices[ this.currentIndex ++ ] = vertex + 2; indices[ this.currentIndex ++ ] = vertex + 0; indices[ this.currentIndex ++ ] = vertex + 3; indices[ this.currentIndex ++ ] = vertex + 2; indices[ this.currentIndex ++ ] = vertex + 3; indices[ this.currentIndex ++ ] = vertex + 5; } createDefaultSubrayCreationCallbacks() { const random1 = this.randomGenerator.random; this.onDecideSubrayCreation = function ( segment, lightningStrike ) { // Decide subrays creation at parent (sub)ray segment const subray = lightningStrike.currentSubray; const period = lightningStrike.rayParameters.subrayPeriod; const dutyCycle = lightningStrike.rayParameters.subrayDutyCycle; const phase0 = lightningStrike.rayParameters.isEternal && subray.recursion == 0 ? - random1() * period : THREE.MathUtils.lerp( subray.birthTime, subray.endPropagationTime, segment.fraction0 ) - random1() * period; const phase = lightningStrike.time - phase0; const currentCycle = Math.floor( phase / period ); const childSubraySeed = random1() * ( currentCycle + 1 ); const isActive = phase % period <= dutyCycle * period; let probability = 0; if ( isActive ) { probability = lightningStrike.subrayProbability; // Distribution test: probability *= segment.fraction0 > 0.5 && segment.fraction0 < 0.9 ? 1 / 0.4 : 0; } if ( subray.recursion < lightningStrike.maxSubrayRecursion && lightningStrike.numSubrays < lightningStrike.maxSubrays && random1() < probability ) { const childSubray = lightningStrike.addNewSubray(); const parentSeed = lightningStrike.randomGenerator.getSeed(); childSubray.seed = childSubraySeed; lightningStrike.randomGenerator.setSeed( childSubraySeed ); childSubray.recursion = subray.recursion + 1; childSubray.maxIterations = Math.max( 1, subray.maxIterations - 1 ); childSubray.linPos0.set( random1(), random1(), random1() ).multiplyScalar( 1000 ); childSubray.linPos1.set( random1(), random1(), random1() ).multiplyScalar( 1000 ); childSubray.up0.copy( subray.up0 ); childSubray.up1.copy( subray.up1 ); childSubray.radius0 = segment.radius0 * lightningStrike.rayParameters.radius0Factor; childSubray.radius1 = Math.min( lightningStrike.rayParameters.minRadius, segment.radius1 * lightningStrike.rayParameters.radius1Factor ); childSubray.birthTime = phase0 + currentCycle * period; childSubray.deathTime = childSubray.birthTime + period * dutyCycle; if ( ! lightningStrike.rayParameters.isEternal && subray.recursion == 0 ) { childSubray.birthTime = Math.max( childSubray.birthTime, subray.birthTime ); childSubray.deathTime = Math.min( childSubray.deathTime, subray.deathTime ); } childSubray.timeScale = subray.timeScale * 2; childSubray.roughness = subray.roughness; childSubray.straightness = subray.straightness; childSubray.propagationTimeFactor = subray.propagationTimeFactor; childSubray.vanishingTimeFactor = subray.vanishingTimeFactor; lightningStrike.onSubrayCreation( segment, subray, childSubray, lightningStrike ); lightningStrike.randomGenerator.setSeed( parentSeed ); } }; const vec1Pos = new THREE.Vector3(); const vec2Forward = new THREE.Vector3(); const vec3Side = new THREE.Vector3(); const vec4Up = new THREE.Vector3(); this.onSubrayCreation = function ( segment, parentSubray, childSubray, lightningStrike ) { // Decide childSubray origin and destination positions (pos0 and pos1) and possibly other properties of childSubray // Just use the default cone position generator lightningStrike.subrayCylinderPosition( segment, parentSubray, childSubray, 0.5, 0.6, 0.2 ); }; this.subrayConePosition = function ( segment, parentSubray, childSubray, heightFactor, sideWidthFactor, minSideWidthFactor ) { // Sets childSubray pos0 and pos1 in a cone childSubray.pos0.copy( segment.pos0 ); vec1Pos.subVectors( parentSubray.pos1, parentSubray.pos0 ); vec2Forward.copy( vec1Pos ).normalize(); vec1Pos.multiplyScalar( segment.fraction0 + ( 1 - segment.fraction0 ) * ( random1() * heightFactor ) ); const length = vec1Pos.length(); vec3Side.crossVectors( parentSubray.up0, vec2Forward ); const angle = 2 * Math.PI * random1(); vec3Side.multiplyScalar( Math.cos( angle ) ); vec4Up.copy( parentSubray.up0 ).multiplyScalar( Math.sin( angle ) ); childSubray.pos1.copy( vec3Side ).add( vec4Up ).multiplyScalar( length * sideWidthFactor * ( minSideWidthFactor + random1() * ( 1 - minSideWidthFactor ) ) ).add( vec1Pos ).add( parentSubray.pos0 ); }; this.subrayCylinderPosition = function ( segment, parentSubray, childSubray, heightFactor, sideWidthFactor, minSideWidthFactor ) { // Sets childSubray pos0 and pos1 in a cylinder childSubray.pos0.copy( segment.pos0 ); vec1Pos.subVectors( parentSubray.pos1, parentSubray.pos0 ); vec2Forward.copy( vec1Pos ).normalize(); vec1Pos.multiplyScalar( segment.fraction0 + ( 1 - segment.fraction0 ) * ( ( 2 * random1() - 1 ) * heightFactor ) ); const length = vec1Pos.length(); vec3Side.crossVectors( parentSubray.up0, vec2Forward ); const angle = 2 * Math.PI * random1(); vec3Side.multiplyScalar( Math.cos( angle ) ); vec4Up.copy( parentSubray.up0 ).multiplyScalar( Math.sin( angle ) ); childSubray.pos1.copy( vec3Side ).add( vec4Up ).multiplyScalar( length * sideWidthFactor * ( minSideWidthFactor + random1() * ( 1 - minSideWidthFactor ) ) ).add( vec1Pos ).add( parentSubray.pos0 ); }; } createSubray() { return { seed: 0, maxIterations: 0, recursion: 0, pos0: new THREE.Vector3(), pos1: new THREE.Vector3(), linPos0: new THREE.Vector3(), linPos1: new THREE.Vector3(), up0: new THREE.Vector3(), up1: new THREE.Vector3(), radius0: 0, radius1: 0, birthTime: 0, deathTime: 0, timeScale: 0, roughness: 0, straightness: 0, propagationTimeFactor: 0, vanishingTimeFactor: 0, endPropagationTime: 0, beginVanishingTime: 0 }; } createSegment() { return { iteration: 0, pos0: new THREE.Vector3(), pos1: new THREE.Vector3(), linPos0: new THREE.Vector3(), linPos1: new THREE.Vector3(), up0: new THREE.Vector3(), up1: new THREE.Vector3(), radius0: 0, radius1: 0, fraction0: 0, fraction1: 0, positionVariationFactor: 0 }; } getNewSegment() { return this.raySegments[ this.currentSegmentIndex ++ ]; } copy( source ) { super.copy( source ); this.init( LightningStrike.copyParameters( {}, source.rayParameters ) ); return this; } clone() { return new this.constructor( LightningStrike.copyParameters( {}, this.rayParameters ) ); } } LightningStrike.prototype.isLightningStrike = true; // Ray states LightningStrike.RAY_INITIALIZED = 0; LightningStrike.RAY_UNBORN = 1; LightningStrike.RAY_PROPAGATING = 2; LightningStrike.RAY_STEADY = 3; LightningStrike.RAY_VANISHING = 4; LightningStrike.RAY_EXTINGUISHED = 5; LightningStrike.COS30DEG = Math.cos( 30 * Math.PI / 180 ); LightningStrike.SIN30DEG = Math.sin( 30 * Math.PI / 180 ); THREE.LightningStrike = LightningStrike; } )();