| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 | import {	Vector3} from '../../../build/three.module.js';/** * Generates 2D-Coordinates in a very fast way. * * Based on work by: * @link http://www.openprocessing.org/sketch/15493 * * @param center     Center of Hilbert curve. * @param size       Total width of Hilbert curve. * @param iterations Number of subdivisions. * @param v0         Corner index -X, -Z. * @param v1         Corner index -X, +Z. * @param v2         Corner index +X, +Z. * @param v3         Corner index +X, -Z. */function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {	const half = size / 2;	const vec_s = [		new Vector3( center.x - half, center.y, center.z - half ),		new Vector3( center.x - half, center.y, center.z + half ),		new Vector3( center.x + half, center.y, center.z + half ),		new Vector3( center.x + half, center.y, center.z - half )	];	const vec = [		vec_s[ v0 ],		vec_s[ v1 ],		vec_s[ v2 ],		vec_s[ v3 ]	];	// Recurse iterations	if ( 0 <= -- iterations ) {		const tmp = [];		Array.prototype.push.apply( tmp, hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );		Array.prototype.push.apply( tmp, hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );		Array.prototype.push.apply( tmp, hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );		Array.prototype.push.apply( tmp, hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) );		// Return recursive call		return tmp;	}	// Return complete Hilbert Curve.	return vec;}/** * Generates 3D-Coordinates in a very fast way. * * Based on work by: * @link http://www.openprocessing.org/visuals/?visualID=15599 * * @param center     Center of Hilbert curve. * @param size       Total width of Hilbert curve. * @param iterations Number of subdivisions. * @param v0         Corner index -X, +Y, -Z. * @param v1         Corner index -X, +Y, +Z. * @param v2         Corner index -X, -Y, +Z. * @param v3         Corner index -X, -Y, -Z. * @param v4         Corner index +X, -Y, -Z. * @param v5         Corner index +X, -Y, +Z. * @param v6         Corner index +X, +Y, +Z. * @param v7         Corner index +X, +Y, -Z. */function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {	// Default Vars	const half = size / 2;	const vec_s = [		new Vector3( center.x - half, center.y + half, center.z - half ),		new Vector3( center.x - half, center.y + half, center.z + half ),		new Vector3( center.x - half, center.y - half, center.z + half ),		new Vector3( center.x - half, center.y - half, center.z - half ),		new Vector3( center.x + half, center.y - half, center.z - half ),		new Vector3( center.x + half, center.y - half, center.z + half ),		new Vector3( center.x + half, center.y + half, center.z + half ),		new Vector3( center.x + half, center.y + half, center.z - half )	];	const vec = [		vec_s[ v0 ],		vec_s[ v1 ],		vec_s[ v2 ],		vec_s[ v3 ],		vec_s[ v4 ],		vec_s[ v5 ],		vec_s[ v6 ],		vec_s[ v7 ]	];	// Recurse iterations	if ( -- iterations >= 0 ) {		const tmp = [];		Array.prototype.push.apply( tmp, hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );		Array.prototype.push.apply( tmp, hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );		Array.prototype.push.apply( tmp, hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );		Array.prototype.push.apply( tmp, hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );		Array.prototype.push.apply( tmp, hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );		Array.prototype.push.apply( tmp, hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );		Array.prototype.push.apply( tmp, hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );		Array.prototype.push.apply( tmp, hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );		// Return recursive call		return tmp;	}	// Return complete Hilbert Curve.	return vec;}/** * Generates a Gosper curve (lying in the XY plane) * * https://gist.github.com/nitaku/6521802 * * @param size The size of a single gosper island. */function gosper( size = 1 ) {	function fractalize( config ) {		let output;		let input = config.axiom;		for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {			output = '';			for ( let j = 0, jl = input.length; j < jl; j ++ ) {				const char = input[ j ];				if ( char in config.rules ) {					output += config.rules[ char ];				} else {					output += char;				}			}			input = output;		}		return output;	}	function toPoints( config ) {		let currX = 0, currY = 0;		let angle = 0;		const path = [ 0, 0, 0 ];		const fractal = config.fractal;		for ( let i = 0, l = fractal.length; i < l; i ++ ) {			const char = fractal[ i ];			if ( char === '+' ) {				angle += config.angle;			} else if ( char === '-' ) {				angle -= config.angle;			} else if ( char === 'F' ) {				currX += config.size * Math.cos( angle );				currY += - config.size * Math.sin( angle );				path.push( currX, currY, 0 );			}		}		return path;	}	//	const gosper = fractalize( {		axiom: 'A',		steps: 4,		rules: {			A: 'A+BF++BF-FA--FAFA-BF+',			B: '-FA+BFBF++BF+FA--FA-B'		}	} );	const points = toPoints( {		fractal: gosper,		size: size,		angle: Math.PI / 3 // 60 degrees	} );	return points;}export {	hilbert2D,	hilbert3D,	gosper,};
 |