| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 | import {	Color,	LinearFilter,	MathUtils,	Matrix4,	Mesh,	PerspectiveCamera,	Plane,	Quaternion,	RGBFormat,	ShaderMaterial,	UniformsUtils,	Vector3,	Vector4,	WebGLRenderTarget} from '../../../build/three.module.js';class Refractor extends Mesh {	constructor( geometry, options = {} ) {		super( geometry );		this.type = 'Refractor';		const scope = this;		const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0x7F7F7F );		const textureWidth = options.textureWidth || 512;		const textureHeight = options.textureHeight || 512;		const clipBias = options.clipBias || 0;		const shader = options.shader || Refractor.RefractorShader;		//		const virtualCamera = new PerspectiveCamera();		virtualCamera.matrixAutoUpdate = false;		virtualCamera.userData.refractor = true;		//		const refractorPlane = new Plane();		const textureMatrix = new Matrix4();		// render target		const parameters = {			minFilter: LinearFilter,			magFilter: LinearFilter,			format: RGBFormat		};		const renderTarget = new WebGLRenderTarget( textureWidth, textureHeight, parameters );		if ( ! MathUtils.isPowerOfTwo( textureWidth ) || ! MathUtils.isPowerOfTwo( textureHeight ) ) {			renderTarget.texture.generateMipmaps = false;		}		// material		this.material = new ShaderMaterial( {			uniforms: UniformsUtils.clone( shader.uniforms ),			vertexShader: shader.vertexShader,			fragmentShader: shader.fragmentShader,			transparent: true // ensures, refractors are drawn from farthest to closest		} );		this.material.uniforms[ 'color' ].value = color;		this.material.uniforms[ 'tDiffuse' ].value = renderTarget.texture;		this.material.uniforms[ 'textureMatrix' ].value = textureMatrix;		// functions		const visible = ( function () {			const refractorWorldPosition = new Vector3();			const cameraWorldPosition = new Vector3();			const rotationMatrix = new Matrix4();			const view = new Vector3();			const normal = new Vector3();			return function visible( camera ) {				refractorWorldPosition.setFromMatrixPosition( scope.matrixWorld );				cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );				view.subVectors( refractorWorldPosition, cameraWorldPosition );				rotationMatrix.extractRotation( scope.matrixWorld );				normal.set( 0, 0, 1 );				normal.applyMatrix4( rotationMatrix );				return view.dot( normal ) < 0;			};		} )();		const updateRefractorPlane = ( function () {			const normal = new Vector3();			const position = new Vector3();			const quaternion = new Quaternion();			const scale = new Vector3();			return function updateRefractorPlane() {				scope.matrixWorld.decompose( position, quaternion, scale );				normal.set( 0, 0, 1 ).applyQuaternion( quaternion ).normalize();				// flip the normal because we want to cull everything above the plane				normal.negate();				refractorPlane.setFromNormalAndCoplanarPoint( normal, position );			};		} )();		const updateVirtualCamera = ( function () {			const clipPlane = new Plane();			const clipVector = new Vector4();			const q = new Vector4();			return function updateVirtualCamera( camera ) {				virtualCamera.matrixWorld.copy( camera.matrixWorld );				virtualCamera.matrixWorldInverse.copy( virtualCamera.matrixWorld ).invert();				virtualCamera.projectionMatrix.copy( camera.projectionMatrix );				virtualCamera.far = camera.far; // used in WebGLBackground				// The following code creates an oblique view frustum for clipping.				// see: Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping”.				// Journal of Game Development, Vol. 1, No. 2 (2005), Charles River Media, pp. 5–16				clipPlane.copy( refractorPlane );				clipPlane.applyMatrix4( virtualCamera.matrixWorldInverse );				clipVector.set( clipPlane.normal.x, clipPlane.normal.y, clipPlane.normal.z, clipPlane.constant );				// calculate the clip-space corner point opposite the clipping plane and				// transform it into camera space by multiplying it by the inverse of the projection matrix				const projectionMatrix = virtualCamera.projectionMatrix;				q.x = ( Math.sign( clipVector.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];				q.y = ( Math.sign( clipVector.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];				q.z = - 1.0;				q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];				// calculate the scaled plane vector				clipVector.multiplyScalar( 2.0 / clipVector.dot( q ) );				// replacing the third row of the projection matrix				projectionMatrix.elements[ 2 ] = clipVector.x;				projectionMatrix.elements[ 6 ] = clipVector.y;				projectionMatrix.elements[ 10 ] = clipVector.z + 1.0 - clipBias;				projectionMatrix.elements[ 14 ] = clipVector.w;			};		} )();		// This will update the texture matrix that is used for projective texture mapping in the shader.		// see: http://developer.download.nvidia.com/assets/gamedev/docs/projective_texture_mapping.pdf		function updateTextureMatrix( camera ) {			// this matrix does range mapping to [ 0, 1 ]			textureMatrix.set(				0.5, 0.0, 0.0, 0.5,				0.0, 0.5, 0.0, 0.5,				0.0, 0.0, 0.5, 0.5,				0.0, 0.0, 0.0, 1.0			);			// we use "Object Linear Texgen", so we need to multiply the texture matrix T			// (matrix above) with the projection and view matrix of the virtual camera			// and the model matrix of the refractor			textureMatrix.multiply( camera.projectionMatrix );			textureMatrix.multiply( camera.matrixWorldInverse );			textureMatrix.multiply( scope.matrixWorld );		}		//		function render( renderer, scene, camera ) {			scope.visible = false;			const currentRenderTarget = renderer.getRenderTarget();			const currentXrEnabled = renderer.xr.enabled;			const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;			renderer.xr.enabled = false; // avoid camera modification			renderer.shadowMap.autoUpdate = false; // avoid re-computing shadows			renderer.setRenderTarget( renderTarget );			if ( renderer.autoClear === false ) renderer.clear();			renderer.render( scene, virtualCamera );			renderer.xr.enabled = currentXrEnabled;			renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;			renderer.setRenderTarget( currentRenderTarget );			// restore viewport			const viewport = camera.viewport;			if ( viewport !== undefined ) {				renderer.state.viewport( viewport );			}			scope.visible = true;		}		//		this.onBeforeRender = function ( renderer, scene, camera ) {			// Render			renderTarget.texture.encoding = renderer.outputEncoding;			// ensure refractors are rendered only once per frame			if ( camera.userData.refractor === true ) return;			// avoid rendering when the refractor is viewed from behind			if ( ! visible( camera ) === true ) return;			// update			updateRefractorPlane();			updateTextureMatrix( camera );			updateVirtualCamera( camera );			render( renderer, scene, camera );		};		this.getRenderTarget = function () {			return renderTarget;		};	}}Refractor.prototype.isRefractor = true;Refractor.RefractorShader = {	uniforms: {		'color': {			value: null		},		'tDiffuse': {			value: null		},		'textureMatrix': {			value: null		}	},	vertexShader: /* glsl */`		uniform mat4 textureMatrix;		varying vec4 vUv;		void main() {			vUv = textureMatrix * vec4( position, 1.0 );			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );		}`,	fragmentShader: /* glsl */`		uniform vec3 color;		uniform sampler2D tDiffuse;		varying vec4 vUv;		float blendOverlay( float base, float blend ) {			return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );		}		vec3 blendOverlay( vec3 base, vec3 blend ) {			return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );		}		void main() {			vec4 base = texture2DProj( tDiffuse, vUv );			gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );		}`};export { Refractor };
 |